
DECmpp12000/SxModel100
HardwareServiceManual
Part Number: EK–DECAC–SM. C01

September 1992

This document provides service and diagnostic procedures for DECmpp
12000/Sx and DECmpp 12000–LC/Sx Series systems.

Revision/Update Information: This document has been revised for
DECmpp Version 1.1.

Operating System and Version: ULTRIX Version 4.2A.
Future releases may require higher
versions.

Software Version: DECmpp 12000/Sx Version 1.1.

Digital Equipment Corporation
Maynard, Massachusetts

First Printing, January 1992
Revised, September 1992

The information in this document is subject to change without notice and should not be construed
as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

NOTICE—Class A Computing Device:
This equipment generates, uses, and may emit radio frequency energy. The equipment has been
type tested and found to comply with the limits for a Class A computing device pursuant to Subpart
J or Part 15 of FCC rules, which are designed to provide reasonable protection against such radio
frequency interference when operated in a commercial environment. Operation of this equipment in
a residential area may cause interference; in which case, measures taken to correct the interference
are at the user’s expense.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions
as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1992.

All Rights Reserved.

The postpaid Reader’s Comments forms at the end of this document request your critical evaluation
to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: DECnet, DECstation, DECsupport,
DECsystem, DECwindows, Rdb/VMS, ThinWire, TURBOchannel, ULTRIX, VAX, VAX DOCUMENT,
VMS, and the DIGITAL logo.

The following are registered trademarks of the MasPar Computer Corporation: MasPar and
the MasPar logo. The following are trademarks of the MasPar Computer Corporation: MasPar
Data Display Library (MPDDL), MasPar FORTRAN (MPF), MasPar Input/Output Channel,
MasPar Parallel Application Language (MPL), MasPar Parallel Disk Array (MPDA), and MasPar
Programming Environment (MPPE). UNIX is a registered trademark of UNIX System Laboratories,
Inc.

This document was prepared using VAX DOCUMENT, Version 2.0.

Contents

Preface . vii

1 System Overview

1.1 Turning the System On and Off . 1–4
1.1.1 Powerup Sequence . 1–6
1.1.2 Powerdown Sequence . 1–6

2 DPU Controls and Indicators

2.1 Overview of Controls and Indicators . 2–5
2.2 DPU Power System . 2–5
2.3 Indicators . 2–7
2.3.1 Front Panel Indicators . 2–7
2.3.2 Service Indicators . 2–7
2.3.2.1 Power Tray Indicators . 2–9
2.3.2.2 Array Control Unit PCB Indicators . 2–10
2.3.2.3 PE Array and Router PCB Indicators . 2–12
2.3.2.4 PVME Indicators . 2–13

3 Checking and Adjusting DPU Power Supply

3.1 Voltage Measurements and Adjustments . 3–3

4 Cables, Connectors, and Auxiliary PCBs

4.1 Cables and Connectors . 4–1
4.2 Auxiliary PCBs . 4–2

5 Using Diagnostic Software

5.1 Diagnostic Environment . 5–2
5.1.1 Running the Diagnostics . 5–2
5.1.2 Suspending a Diagnostic Program . 5–2
5.2 Types of Tests . 5–3
5.2.1 Test Suites . 5–3
5.2.1.1 The acu_diag Test Suite . 5–3
5.2.1.2 The pe_diag Test Suite . 5–3
5.2.2 Test Descriptions . 5–4
5.3 Interpreting Log File Messages . 5–7
5.3.1 The ./LOG File . 5–8
5.3.2 The /usr/adm/dpujobmgr.log File . 5–10
5.3.3 The /etc/uerf File . 5–12

iii

6 Removal and Replacement Procedures

6.1 Card Cage Access . 6–1
6.2 DPU Card Cage Slots . 6–4
6.2.1 I/O Slots . 6–4
6.2.2 PE Array PCB Slots . 6–4
6.3 Replacing DPU Card Cage PCBs . 6–6
6.3.1 Replacing the Array Control Unit PCB . 6–6
6.3.2 Replacing Front-End VME Interface PCB . 6–9
6.3.3 Replacing PE Array and Router PCBs . 6–10
6.4 Replacing DPU Power Trays . 6–11
6.4.1 Removing the DECmpp 12000/Sx Power Tray 6–11
6.4.2 Installing the DECmpp 12000/Sx Power Tray 6–13
6.4.3 Removing the DECmpp 12000–LC/Sx Power Tray 6–14
6.4.4 Installing the DECmpp 12000–LC/Sx Power Tray 6–15
6.5 Replacing the DECmpp 12000/Sx DPU Fan Tray . 6–18
6.6 Replacing the DECmpp 12000–LC/Sx DPU Fan Tray 6–19
6.7 Removing and Replacing the Lightpipe PCB . 6–20
6.7.1 DECmpp 12000/Sx Lightpipe . 6–20
6.7.2 DECmpp 12000–LC/Sx Lightpipe . 6–21

7 Backplane Jumpers and Upgrading PE Arrays

7.1 DPU Backplane Jumpers . 7–1
7.1.1 Backplane Access . 7–3
7.1.2 ACU, VMEbus, and I/O Jumpers . 7–4
7.1.3 X-Net Jumpers . 7–5
7.2 System Issues for Upgrades . 7–7
7.3 Adding Processor Element Array PCBs . 7–8
7.4 Reconfiguring Processor Element Array PCBs . 7–9

A Recommended Spares List

B Data Parallel Unit Reference Pages

acu_ppdma(1) . B–2
mpconfig(1) . B–3
mpi(1) . B–4
mpq(1) . B–5
mpstat(1) . B–6
pe_arith(1) . B–8
pe_ckonet(1) . B–9
pe_diag(1) . B–10
pe_func(1) . B–12
pe_macro(1) . B–13
pe_memdiag(1) . B–59
pe_rtbp(1) . B–60
pe_rtdiag(1) . B–62
pe_rtr(1) . B–63
pe_scan(1) . B–64
dpumanager(8) . B–65
mpshutdown(8) . B–68

iv

Index

Figures

1–1 Typical DECmpp 12000/Sx Installation with DECsystem 5900
Server . 1–2

1–2 Typical DECmpp 12000/Sx Installation with DECstation 5000/240
Server . 1–2

1–3 Typical DECmpp 12000–LC/Sx Installation . 1–3
1–4 DECsystem 5900 Power Switch . 1–5
1–5 DECstation 5000 Power Switch . 1–5
2–1 DECmpp 12000/Sx DPU Front Controls and Indicators 2–2
2–2 DECmpp 12000-LC/Sx DPU Front Controls and Indicators 2–3
2–3 DPU Front Controls . 2–3
2–4 DPU Rear Controls and Indicators . 2–4
2–5 PCB Service Indicator Locations . 2–8
2–6 Power Tray Service Indicators . 2–9
2–7 Array Control Unit PCB Indicators . 2–10
2–8 PE and Router PCB Indicators . 2–12
2–9 PVME Signal Indicators . 2–13
3–1 DPU Backplane Voltage Test Points . 3–2
3–2 DECmpp 12000 Power Supply Wiring and Voltage Adjustments 3–4
3–3 DECmpp 12000–LC HC Power Supply and Voltage Adjustments 3–5
3–4 DECmpp 12000–LC Powertec Power Supply and Voltage Adjustments

. 3–5
4–1 DPU-Server Cables . 4–2
6–1 DECmpp 12000/Sx Card Cage Access . 6–2
6–2 DECmpp 12000–LC/Sx Card Cage Access . 6–3
6–3 DPU Card Cage Slots . 6–5
6–4 PCB Ejector Levers . 6–7
6–5 ACU Jumpers . 6–8
6–6 DECmpp 12000 DPU Power Tray Rear . 6–12
6–7 DECmpp 12000 DPU Power Tray Front . 6–12
6–8 Powertec Power Supply . 6–16
6–9 HC Power Supply . 6–17
6–10 Removing the DECmpp 12000–LC Enclosure Top 6–22
6–11 Replacing the Lightpipe PCB . 6–22
7–1 DPU Card Cage Slots . 7–2
7–2 DECmpp 12000–LC/Sx Front Doors . 7–3
7–3 DPU Backplane Jumpers . 7–4
7–4 DECmpp 12000–LC/Sx X-Net Jumper Configurations 7–5
7–5 DECmpp 12000/Sx X-Net Jumper Configurations 7–6

v

Tables

1 Related Documents . viii
1–1 DPU Power Settings . 1–4
2–1 Front Panel Indicators . 2–7
2–2 Power Tray Service Indicators . 2–9
2–3 ACU Indicators . 2–11
2–4 PE Array and Router Indicators . 2–12
2–5 PVME Indicator Descriptions . 2–14
5–1 FLTCOD Values . 5–7
6–1 ACU Jumper Settings . 6–8
6–2 Powertec Power Supply Wiring . 6–16
6–3 HC Power Supply Wiring . 6–17
A–1 DECmpp 12000/Sx Data Parallel Unit RSL . A–1

vi

Preface

This manual provides service and diagnostic procedures for DECmpp 12000/Sx
systems. Anyone who services DECmpp 12000/Sx Series systems or needs to
replace any items should read this manual and be familiar with the procedures.

Intended Audience
This guide is for use by Digital Services personnel and by self-maintenance
customers who will be servicing the DECmpp 12000 and DECmpp 12000–LC
systems.

Document Structure
The DECmpp 12000/Sx Hardware Service Manual contains seven chapters and
two appendixes.

• Chapter 1 is a system overview and contains the power-up and power-down
routines for both the data parallel unit (DPU) and the front-end server.

• Chapter 2 describes the DPU switches, controls, indicators, and the DPU
power system.

• Chapter 3 describes the DPU power supply settings and how to adjust them,
if necessary.

• Chapter 4 describes the DECmpp 12000/Sx system cables, connectors, and the
printed circuit boards (PCBs) outside the DPU card cage.

• Chapter 5 describes the diagnostic software provided, how to use it, and how
to interpret the results.

• Chapter 6 explains the procedures for removing and replacing the DPU
components.

• Chapter 7 explains the procedures for upgrading the DECmpp 12000/Sx
Series systems by adding more processor element (PE) array PCBs.

• Appendix A lists all of the recommended spare parts for the DPU.

• Appendix B is a collection of Reference Pages that apply to the DPU.

vii

Related Documents
Table 1 lists documents that provide additional information about the DECmpp
12000/Sx system.

Table 1 Related Documents

Document Title Order Number

DECmpp 12000/Sx System Overview Manual AA-PMAPB-TE

DECmpp 12000/Sx System Administration Guide AA-PKU3C-TE

DECmpp 12000/Sx Architecture Specification AA-PMASB-TE

DECmpp 12000/Sx Parallel Disk Array Reference Manual EK-DECAB-RM

DECmpp 12000/Sx Parallel VME Reference Manual EK-DECAB-PM

DECmpp 12000/Sx Hardware Installation Guide EK-DECAC-IG

DECstation 5000/240 User Documentation Kit EK-PM380-DK

DECstation 5000/240 Maintenance Guide EK-PM38C-MG

DECstation 5000/240 Pocket Service Guide EK-PM38D-PG

DECsystem 5900 Site Preparation Guide EK-D590A-SP

DECsystem 5900 Installation Guide EK-D590A-IN

DECsystem 5900 Owner’s Guide EK-D590A-OG

DECsystem 5900 Pocket Service Guide EK-D590A-PS

DECsystem 5900 Enclosure Maintenance Manual EK-D590A-EN

DWTVX-Ax VME I/O Subsystem Pocket Service Guide EK-DWTVX-PS

T6000 Module Installation/Owner’s Card EK-T6000-IN

viii

Conventions
The following conventions are used throughout the DECmpp 12000/Sx
documentation set:

Convention Meaning

Return In examples, a key name shown within a box indicates that
you press a key on the keyboard. In text, a key name is not
enclosed in a box but is printed with an initial capital letter,
like Return.

Ctrl/x A key combination, shown with a slash separating the two key
names, indicates that you hold down the first key while you
press the second key.

MB1, MB2, MB3 The buttons on a mouse. MB1 is the left button, MB2 is the
center button, and MB3 is the right button of a mouse whose
button arrangement is right-handed. It is possible to redefine
the mouse buttons.

% A percent sign (%) represents the default user prompt for your
system.

A number sign (#) represents the default superuser (root)
prompt for your system.

. . . In examples, a horizontal series of dots, or ellipsis, indicates
that additional parameters, values, or other information can be
entered.

... In examples, a vertical series of dots, or vertical ellipsis,
indicates that a portion of the example is intentionally omitted.

[] In syntax descriptions and functional descriptions, brackets
indicate optional items.

dpumanager(6) Cross-references to the ULTRIX Reference Pages, which include
the appropriate section number in parentheses.

italicized text In examples, italicized text denotes parameters, values, or
other information that will change from either session to
session or user to user. In text, italicized words or phrases are
used to add emphasis to important words, concepts, or titles of
manuals.

ULTRIX keywords This typeface is used to indicate system output or the exact
name of a command, option, partition, pathname, directory, or
file.

Code examples This typeface is used to display program coding examples.

UPPERCASE and
lowercase strings

The ULTRIX system differentiates between lowercase and
uppercase characters. Literal strings that appear in text,
examples, syntax descriptions, and function descriptions must
be entered exactly as shown.

ix

Both the DECmpp 12000/Sx and DECmpp 12000–LC/Sx Series hardware systems
are described in this manual. However, because the two systems are very similar,
references to the DECmpp 12000 system also apply to the DECmpp 12000–LC
system, unless specific differences between the two systems are noted.

Three types of notes are used in this manual:

• Note

Gives additional information or information particularly important to the
procedure.

• Caution

Indicates potential damage to equipment or data.

• Warning

Indicates potential injury to a person.

x

1
System Overview

DECmpp 12000/Sx Series systems are powerful single-instruction, multiple data
(SIMD) computers, consisting of a data parallel unit (DPU), which performs
the parallel calculations, and a front-end server. The server runs the ULTRIX
operating system and functions as a scalar processor. A high-speed VMEbus
interface carries data between the DPU and the front-end server.

The DPU contains the array control unit (ACU) PCB and from 1 to 16 processor
element (PE) array PCBs. The ACU controls the PE arrays, which perform the
parallel calculations. Each PE array PCB provides 1024 processor elements. The
total collection of PE array PCBs in a system comprise the PE array.

DECmpp 12000 systems support 1, 2, 4, 8, or 16 PE array PCBs and have 15
I/O slots for optional I/O PCBs. The DPU is housed within an H9A00 series
enclosure. DECmpp 12000 systems may be ordered with either a DECsystem
5900 server or a DECstation 5000/240 server. The DECsystem 5900 is contained
within a separate H9A00 series enclosure. This configuration is illustrated in
Figure 1–1. The DECstation 5000/240 and its storage devices are contained
within two desktop boxes. This configuration is illustrated in Figure 1–2.

DECmpp 12000–LC systems support 1, 2, or 4 PE array PCBs and have 5 I/O
slots for optional I/O PCBs. The DPU is contained within a low profile cabinet
and connects to a table-top DECstation 5000 server (Figure 1–3).

Any of the DECmpp 12000/Sx/Sx system configurations may also contain an
optional Parallel Disk Array (PDA). The PDA subsystem is housed in a separate
H9A00 series enclosure.

System Overview 1–1

Figure 1–1 Typical DECmpp 12000/Sx Installation with DECsystem 5900 Server

DECmpp 12000 Sx Series

Console
Monitor

DECsystem 5900 Server Data Parallel Unit
Parallel Disk Array

(Optional)

MKV−040000314−19−RAGS

Figure 1–2 Typical DECmpp 12000/Sx Installation with DECstation 5000/240 Server

MKV−040000314−46−RAGS

DECstation 5000/240
Server

Parallel Disk Array
(Optional)

Data Parallel Unit

1–2 System Overview

Figure 1–3 Typical DECmpp 12000–LC/Sx Installation

Parallel Disk Array
(Optional)

Data Parallel Unit

MKV−040000314−23−RAGS

DECmpp 12000
DECstation 5000/240

Server

System Overview 1–3

1.1 Turning the System On and Off

1.1 Turning the System On and Off
The DPU has three switches that control power: the keyswitch, the power
selector, and the circuit breaker. Figure 2–1, Figure 2–2, and Figure 2–4 show
their locations. Chapter 2 provides details on these switches.

The DPU keyswitch inside the front door has three positions: OFF, ON, and
DIAGNOSTIC:

• OFF turns DPU power off.

• ON turns DPU power on.

• DIAGNOSTIC is similar to ON, but it also enables the VMEbus RESET
button.

The DPU power selector switch has three positions: REMOTE, LOCAL, and
OVERRIDE:

• REMOTE (lower position): Not used.

• LOCAL (middle position): Turns on the DPU independently of the server.

• OVERRIDE (straight up): Turns on the DPU, regardless of other conditions.

Warning

Do not use the OVERRIDE setting. It overrides critical safety
systems. The OVERRIDE setting is for factory use only.

Table 1–1 shows the relationships between the DPU keyswitch and the DPU
power selector.

Table 1–1 DPU Power Settings

DPU Power Selector DPU Keyswitch DPU Power

REMOTE N/A N/A

LOCAL OFF OFF

LOCAL ON/DIAGNOSTIC ON

OVERRIDE Any setting ON (Factory Use Only)

The power switch for the DECsystem 5900 server is on the front of the CPU
drawer. It is labeled ! in Figure 1–4. The power switch for the DECstation 5000
server is at the rear of the CPU box. It is labeled ! in Figure 1–5. Both are
rocker switches, labeled O and | . The server is ON when the | is pushed in.

1–4 System Overview

1.1 Turning the System On and Off

Figure 1–4 DECsystem 5900 Power Switch

MKV-040000314-36-DG

1

Figure 1–5 DECstation 5000 Power Switch

1

MKV-040000314-50-DG

System Overview 1–5

1.1 Turning the System On and Off

1.1.1 Powerup Sequence
Caution

To avoid unpredictable system operation, always turn the system
components on or off in the correct sequence.

Take these steps to power up the DECmpp 12000/Sx:

1. Set the DPU rear circuit breaker to ON.

2. Turn on the DPU, setting the keyswitch to ON.

3. Turn on the Parallel Disk Array (PDA), if present in the configuration, by
setting the rear circuit breaker to ON.

4. Turn on the server.

5. Boot the server.

When the system boots, it is ready to operate.

If you boot the server before you turn on the DPU, you cannot access the DPU.
Any time you reconnect or cycle DPU power down and up, you must reboot the
server.

1.1.2 Powerdown Sequence
Take these steps to power down the DECmpp 12000/Sx:

1. Halt the server, using either the /etc/halt or /etc/shutdown command.

2. Turn off the PDA, if present in the configuration, by setting the rear circuit
breaker to OFF.

3. Turn off the DPU, setting the keyswitch to OFF.

4. Set the DPU rear circuit breaker to OFF.

5. Turn off the server.

Warning

Always set the circuit breaker at the rear of the DPU to OFF and unplug
the power cord when working on the power supply or power system.

1–6 System Overview

2
DPU Controls and Indicators

Chapter 2 provides descriptions and functional definitions of the data parallel
unit (DPU) controls. Indicators on both the outside and the inside of the DPU
show the status of the system and critical internal components.

Figure 2–1 (DECmpp 12000) and Figure 2–2 (DECmpp 12000–LC) show the
locations of the DPU front controls and indicators. To access the front controls
in either configuration, open the front door. The controls are located inside the
enclosure at the top. Figure 2–3 provides a detail of the front controls.

Figure 2–4 shows the location of the rear controls and indicators. The DPU
controls and indicators are described in detail in the following sections.

DPU Controls and Indicators 2–1

Figure 2–1 DECmpp 12000/Sx DPU Front Controls and Indicators

MKV−040000314−58−RAGS

Power Status Indicators

Front Controls
(Located Inside
Front Door)

19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

2–2 DPU Controls and Indicators

Figure 2–2 DECmpp 12000-LC/Sx DPU Front Controls and Indicators

MKV−040000314−52−RAGS

Power Status Indicators

10111719 18 16 15 14 13 12 010709 08 06 05 04 03 02 00

Figure 2–3 DPU Front Controls

DISCONNECT
CONNECT

MODEM

OFF
ON

DIAGNOSTIC

RESET POWER
MKV−040000314−43−RAGS

DPU Controls and Indicators 2–3

Figure 2–4 DPU Rear Controls and Indicators

MKV−040000314−81−RAGS

Connection

P1 P2 P13

P3

P4P10

Power
LEDs

DPU Interface PCA

Remote Daisy−chain

Temperature Sensor

Fan Tray Power Selector
Switch

Power Cable

Backplane
Sense Lines

Modem

Lightpipe/
Key Switch 30A Circuit

Breaker

1A Circuit
Breaker

2–4 DPU Controls and Indicators

2.1 Overview of Controls and Indicators

2.1 Overview of Controls and Indicators
Several of the DECmpp 12000/Sx controls and indicators are described briefly in
the list below. The rest are described in more detail in the following sections.

• POWER (keyswitch) — Controls power to the DPU and enables the VMEbus
RESET button.

• VMEbus RESET pushbutton — Pushing this button resets the VMEbus only
if the POWER keyswitch is set at DIAGNOSTIC.

• MODEM switch — At CONNECT, it enables the internal system modem
(USA only). At DISCONNECT, it disables the modem.

• POWER indicator — Provides information about the power supplies and fan
assembly, part of the front indicators.

• Power Selector — A three-position toggle switch, part of the rear controls.

• Service Indicators — Service indicators are described in detail in Section 2.3.

ACU Indicators — Provides information about the ACU PCB.

MVIB Indicator — Provides information about the Front-end VME
interface (T6000) PCB.

PVME Indicators — Provides information about the PVME PCB.

PE and Router PCB Indicators — Provides information about the PE
array and router.

2.2 DPU Power System
The DPU power system is complex, and you should understand it thoroughly
before changing any settings.

Caution

To avoid system problems, do not turn the DPU off before bringing the
front-end server to console or single-user mode.

The power system includes indicators that show the status of the various power
supplies and a power sequencer that ensures the power supplies start in the
correct order.

The DPU power system includes the following controls:

• The POWER keyswitch, shown in Figure 2–3, has three settings:

OFF (straight up) turns DPU power off.

ON (middle position) turns DPU power on when the power selector switch
is set to LOCAL.

DIAGNOSTIC (lower position) is similar to ON, but also enables the
VMEbus RESET button.

DPU Controls and Indicators 2–5

2.2 DPU Power System

• The POWER SELECTOR switch is on the power tray panel inside the DPU
enclosure at the rear. It is a toggle switch that must be pulled out slightly
before it can be moved. It has three positions.

LOCAL (middle position): Allows the DPU to power up independent of
the server.

OVERRIDE (straight up): Allows the DPU to power up regardless of
other conditions.

REMOTE (lower position): Not used.

• Two circuit breakers are on the outside rear of the DPU power tray and are
shown in Figure 2–4.

The rocker switch next to the power cable is a circuit breaker that is ON
when it is UP. The circuit breaker is rated at 30 A for the DECmpp 12000
and 15 A for the DECmpp 12000–LC. The amber lamp above the rocker
switch indicates there is power on both sides of the circuit breaker when
it is lit.

The small rocker-type breaker controls the current to the circuits
controlling the power sequencer. The amber lamp above the pushbutton
indicates that there is power on both sides of the breaker. The breaker
trips when it detects loads of more than 1 A. Push it in to reset it.

• The power status indicator on the DPU left front panel indicates the condition
of the power supplies.

Yellow during power supply ramp-up

Green when all DPU DC voltages are correct

When you first turn on the DPU, this indicator is yellow for approximately 3
seconds, then turns green. If it remains yellow, there is a power malfunction.

• A heat sensor shuts down all power supplies if it detects excess heat. The
power status indicator changes to yellow. After cooling, the power supplies
do not start again until the keyswitch is switched to OFF and then back to
ON or DIAGNOSTIC. An indicator on the power tray also indicates excess
temperature.

• When the DPU is turned on, the power sequencer turns on the -5 V power
supply and verifies its correct operation before turning on the +5 V power
supply. During this period (approximately 3 seconds), the power status
indicator is yellow. When the sequencer turns on the +5 V power supply, the
power status indicator turns green.

If the power status indicator remains yellow, the powerup sequencer did not
complete its sequence successfully. If this happens, switch the keyswitch to
OFF and then back to ON or DIAGNOSTIC.

2–6 DPU Controls and Indicators

2.3 Indicators

2.3 Indicators
The DPU has indicators on the front panel, the ACU PCB, the MVIB Front-end
VME interface PCB (T6000), the PVME PVB, the PE array PCBs, the router
PCBs, and on the power tray. All of these indicators provide information about
the status of the system.

2.3.1 Front Panel Indicators
The DPU has 10 active indicators on the front panel, providing information about
the state of the DPU (Figure 2–1 or Figure 2–2). Most of these are two-color
indicators; they are either green, yellow, or off.

The front panel indicators are arranged in two banks of 10 indicators each.
Table 2–1 lists the front panel indicators, starting from the left.

Table 2–1 Front Panel Indicators

Label Green Yellow Off

Power Power, fan, and
temperature are OK

System powering up 1 No AC power
present

19 System run light:
instructions are executing

Macrocode is not running Not used

18 ACU is waiting for
TOBEQ

Not used ACU is not waiting
for TOBEQ

17 ACU is waiting for
FRBEQ

Page fault (overrides
green)

ACU is not waiting
for FRBEQ

16 PMem is using PE PMem is not using PE

15 Router is active Not used No router activity

14 I/O is taking place
between PEs and I/O
devices

Machine is temporarily
stalled due to register
interlock

One or more PEs are
selected.

13 VME AS is active Not used VME AS is not
active

12 VME DTACK is active Not used VME DTACK is not
active

11 Not used VME parity error VME parity OK

10 Not used Normally always on Not used

9-02 3 Not used Not used Not used

1During normal system powerup, the power status indicator is yellow for a few seconds, then changes
to green. If it remains yellow, the power sequencer did not complete powerup, and the power tray
indicators indicate the reason for failure. When the power sequencer stops trying to power up the
DPU, this indicator turns red.
2Indicators 0-4 cycle when the software daemon is running.
3Indicator 5 may become yellow if the background diagnostic tests fail.

2.3.2 Service Indicators
Service indicators include those on the various PCBs and on the power tray.
Figure 2–4 shows the location of the power tray service indicators. Figure 2–5
shows the location of the PCB service indicators.

DPU Controls and Indicators 2–7

2.3 Indicators

Figure 2–5 PCB Service Indicator Locations

Modem
(USA Only)

Modem
(USA Only)

DECmpp 12000 Card Cage

DECmpp 12000−LC Card Cage

MKV−040000314−54−RAGS

PE and
Router Indicators

PE or Router PCBs (Shown with
4 PE PCBs and 12 Router PCBs)

ACU
Indicators

ACU
Indicators

PE and Router Indicators
(Shown with 4 PE PCBs)

PVME
Indicators

MVIB
Indicator

MVIB
Indicator

2–8 DPU Controls and Indicators

2.3 Indicators

2.3.2.1 Power Tray Indicators
Figure 2–6 shows the ten indicators located on the DPU power tray rear panel.
These indicators provide information about the power tray. They all show the
status of some part of the power tray and are green during normal operation. If
a failure is detected, the corresponding indicator changes to red, and the power
tray shuts down. Any red indicators are latched ON, indicating the problem area,
and initiate the power shutdown.

Figure 2–6 Power Tray Service Indicators

MKV−040000314−55−RAGS

Chassis Ground
Temperature
Main Power Vcc +5 V
Main Power Vee −5 V
Main Power +12 V
Main Power −12 V
AUX Power Vcc +5 V
AUX Power Vee −5 V
AUX Power +12 V
AUX Power −12 V

Table 2–2 lists the function of each power tray indicator (from the top).

Table 2–2 Power Tray Service Indicators

PS Indicator Function

Chassis Ground Green — Normal
Red — Logic ground to chassis ground short; excess voltage
detection

Temperature Green — Normal
Red — Excess temperature

Main Power Vcc +5 V Green — Normal
Red — Failure in +5 V supply

Main Power Vee –5 V ON — Normal

Main Power +12 V ON — Normal

Main Power –12 V ON — Normal

Auxiliary Power Vcc +5 V ON — 15 A or 30 A breaker is set ON
OFF — indicates problem with power sequencer

Auxiliary Power Vee –5 V ON — 15 A or 30 A breaker is set ON
OFF — indicates problem with power sequencer

Auxiliary Power +12 V ON — 15 A or 30 A breaker is set ON
OFF — indicates problem with power sequencer

Auxiliary Power –12 V ON — 15 A or 30 A breaker is set ON
OFF — indicates problem with power sequencer

DPU Controls and Indicators 2–9

2.3 Indicators

The chassis ground circuit detects differences in potential between chassis ground
and logic ground and shuts down the power tray when the potential exceeds a
preset 70 mV threshold.

2.3.2.2 Array Control Unit PCB Indicators
Figure 2–5 shows indicator locations on the array control unit (ACU) PCB. The
12 indicators on the ACU PCB are arranged in three groups of four (Figure 2–7).
Table 2–3 lists the ACU indicator functions (from the top).

Figure 2–7 Array Control Unit PCB Indicators

MKV−040000314−56−RAGS

Power
Bus Grant
Microcode Interrupt
Any_Reg
Data Strobe

DTACK
IBUSY
BUSERR
MMSEL
Mempty
IFUVAL

Address Strobe

2–10 DPU Controls and Indicators

2.3 Indicators

Table 2–3 ACU Indicators

Indicator Function

Power ON when the ACU PCB is powered

Bus Grant ON when the ACU has VMEbus grant

Microcode
Interrupt

ON when a microcode interrupt is in progress

Any_Reg ON during a valid ACU access over the VMEbus

DSVME Data strobe

ASVME Address strobe

DTACK ACU is generating DTACK

IBUSY ACU is master of the bus

BUSERR When ON, a VMEbus transaction did not complete or completed with
an error. (An addressed VMEbus device did not respond within the
VMEbus timeout limit (approximately 60 �sec) or returned an error
signal in response to a VMEbus access.)

MMSEL ON when the ACU is issuing current microcode from the M machine.
(The current operation is a memory access, not a PE calculation.)

Mempty ON when there are no pending memory operations in the M machine

IFUVAL ON when the instruction fetch unit (IFU) is directed to a valid address.
Reasons for an invalid IFU access are:

Attempting to execute code while a refresh cycle is in progress

A page fault

Attempting to execute code while the VMEbus is talking to
instruction memory

DPU Controls and Indicators 2–11

2.3 Indicators

2.3.2.3 PE Array and Router PCB Indicators
Each PE array PCB has eight indicators arranged into two 4-LED groups. The
upper group provides status information about the PCB, and the lower bank
displays the results of the global OR (GOR) for that PCB. Router PCBs have
only the status indicators. Figure 2–5 shows the location of the PE and router
indicators in the DPU. Figure 2–8 shows the indicator pattern. Table 2–4 lists
the PE array and Router indicator functions (from the top).

Figure 2–8 PE and Router PCB Indicators

MKV−040000314−57−RAGS

GOR Bit 0
GOR Bit 1
GOR Bit 2
GOR Bit 3

Power
Parity Error
Selected for Diagnostics
GOR Enable

Power
Parity Error
Selected for Diagnostics
GOR Enable

PE Array Router

Table 2–4 PE Array and Router Indicators

Indicator Function

Power ON to indicate that the PCB is powered

Parity Error ON when a parity error occurs, and OFF when the error-handling
routine is completed or cleared by a reset

Selected for
Diagnostics

ON when the PCB is selected by a diagnostic routine

GOR Enable ON when the PCB GOR utility is selected

GOR Bit 0 ON when GOR bit 0 is active

GOR Bit 1 ON when GOR bit 1 is active

GOR Bit 2 ON when GOR bit 2 is active

GOR Bit 3 ON when GOR bit 3 is active

2–12 DPU Controls and Indicators

2.3 Indicators

2.3.2.4 PVME Indicators
The PVME PCB has 28 signal indicators, as shown in Figure 2–9. Table 2–5 lists
the signal name and the signal abbreviation used on the PCB. When the indicator
is ON (green), the signal is true.

Figure 2–9 PVME Signal Indicators

MKV−040000314−02−RAGS

VCC
AS1
VDS
DAK

ACK
CYC
VAKI
VAKO

LBGI
LBGO
RBGI
RBGO

DMST
DBR
DBSY
DDAK

DXFR
STAL
ERR
QMTY

QFRZ
BWAT
BWRT
BREF

VGNT
CGNT
RGNT
BSLW

DPU Controls and Indicators 2–13

2.3 Indicators

Table 2–5 PVME Indicator Descriptions

Signal Abbreviation Description

Vcc VCC ON: +5 V power supply is ON

AS1_ AS1 ON: VMEbus AS (address strobe) is true

vmeDS VDS ON: VMEbus DS (data strobe) is true

DTACK_ DAK ON: IOCTLR generated DTACK is true

bIACK ACK ON: VMEbus IACK (interrupt acknowledge) is true

IACKCYC CYC ON: IOCTLR is responding to an IACK VMEbus cycle

vmeIACKIN_ VAKI ON: VMEbus interrupt acknowledge daisy chain-in is true

vmeIACKOUT_ VAKO ON: VMEbus interrupt acknowledge daisy chain-out is true

vmeLBGIN_ LBGI ON: Local VMEbus grant daisy chain-in is true

dmaLBBGOUT_ LBGO ON: Local VMEbus grant daisy chain-out is true

vmeRBGIN_ RBGI ON: Remote VMEbus grant daisy chain-in is true

dmaRBGOUT_ RBGO ON: Remote VMEbus grant daisy chain-out is true

dmaMASTER DMST ON: IOCTLR is dma bus master

dmaBR_ DBR ON: IOCTLR is asserting request for VMEbus

dmaBBSY_ DBSY ON: IOCTLR is asserting VMEbus Busy

vmeDTACK_ DDAK ON: VMEbus DTACK is true

chDXFR_ DXFR N/A — May be ON or OFF (value is X)1

chSTALL_ STAL N/A — May be ON or OFF (value is X)

chERR ERR N/A — May be ON or OFF (value is X)

queueEMPTY_ QMTY N/A — May be ON or OFF (value is X)

queueFROZ QFRZ N/A — May be ON or OFF (value is X)

babWAIT_ BWAT ON: IORAM is holding off access; address has crossed page boundary

babWRT_ BWRT ON: IORAM is performing a write cycle

refGNT_ BREF ON: IORAM is performing a refresh cycle

vmeGRANT_ VGNT ON: VME Interface has been granted IORAM access

chGRANT_ CGNT N/A — May be ON or OFF (value is X)

rioGRANT_ RGNT ON: RIO Interface has been granted IORAM access

babSLOWDEV_ BSLW ON: Slow VME device has accessed IORAM

1N/A = not applicable to PVME

2–14 DPU Controls and Indicators

3
Checking and Adjusting DPU Power Supply

Chapter 3 describes how to measure and adjust power supply voltage levels.

The data parallel unit (DPU) has four power supply output levels: +5 V, –5.2
V, +12 V, and –12 V. Measure these voltages at the DPU backplane, at the test
points shown in Figure 3–1. For DECmpp 12000 systems adjust the voltage
levels at the points shown in Figure 3–2. For DECmpp 12000–LC systems
adjust the voltage levels at the points shown in either Figure 3–3 or Figure 3–4,
depending on the power supply used in the system.

Warning

Physical tolerances are very tight at the power supply. 5 V current levels
are in the 600 A range.

Do not short the power supply leads to ground or to other power supply
leads.

Do not use conductive adjustment tools. Use only insulated tools.

When working around the power supply, do not wear loose clothing or
jewelry, especially watches or rings.

Failure to observe these precautions can cause personal injury and
damage to the equipment.

Checking and Adjusting DPU Power Supply 3–1

Figure 3–1 DPU Backplane Voltage Test Points

IO15 IO15 IO15 IO15 IO15 IO15 IO15 IO15 IO15 IO15 IO15 IO15 IO15 IO15 IO15 IO15 IO15

AGND
-12V

+12V
TERM

GND

+5V
-5.2V

-5V

+5V

DECmpp 12000 Backplane

IO15 IO15 IO15 IO15 IO15 IO15 IO15 IO15 IO15 IO15 IO15

DECmpp 12000-LC Backplane

AGND
-12V

+12V

GND

+5V

-5.2V

3–2 Checking and Adjusting DPU Power Supply

3.1 Voltage Measurements and Adjustments

3.1 Voltage Measurements and Adjustments
For all voltage measurements and adjustments:

• Use a digital voltmeter to measure the supplies.

• Measure the voltages at the points shown in Figure 3–1.

• Use an insulated tool to make any adjustment.

Note

Adjust voltages only if they measure outside the tolerances specified in
the following lists.

Follow these guidelines for adjusting the DPU power supplies:

• +5 V supply

Adjust only if it is outside the range of +4.95 V to +5.05 V.

Adjust to exactly 5.0 V.

• –5.2 V supply

Adjust only if it is outside the range of –5.25 V to –5.15 V.

Adjust to exactly –5.2 V.

• –12 V supply

Adjust only if it is outside the range of –12.15 V to –11.85 V.

Adjust to exactly –12 V.

• +12 V supply

Adjust only if it is outside the range of +11.85 V to +12.15 V.

Adjust to exactly +12 V.

Figure 3–2 shows the power supply adjustment points and wiring for the
DECmpp 12000 DPU.

Figure 3–3 and Figure 3–4 show the supply adjustment points and wiring for
each of the power supplies used in the DECmpp 12000–LC DPU.

Checking and Adjusting DPU Power Supply 3–3

3.1 Voltage Measurements and Adjustments

Figure 3–2 DECmpp 12000 Power Supply Wiring and Voltage Adjustments

Fan

AdjAdj
Adj

Adj

+5V

-5V

+12V-12V

-
++

-
+

-

+ -

Y
E

LLO
W

W
H

IT
E

R
E

D

B
LA

C
K

Unused

BLACK REDBLACK

Jumper

Caution: Overtightening the 12V wires can break
the posts on the power supply.

Use an Insulated Tool

MKV-040000314-58-MPS

3–4 Checking and Adjusting DPU Power Supply

3.1 Voltage Measurements and Adjustments

Figure 3–3 DECmpp 12000–LC HC Power Supply and Voltage Adjustments

V 1

_ _ _ _ _+ + + + +
V5V5

V4 V4 V2V2V3S V3SV3 V3

V3 Adj

V4 Adj

V2 Adj

V1 Adj

Fan Connector
From System V1= +5V

V2= -5V
V3= +12V
V4= -12VB

LU
E

R
E

D B
LA

C
K

R
E

D

Power Cable
RED

BLACK

WHITE

JUMPER

115V
230V
ACC
GND

Figure 3–4 DECmpp 12000–LC Powertec Power Supply and Voltage
Adjustments

+5V

+12V-12V

+
-

+
-

+

-

-5V

+
-

Fan Connector

B
LU

E

W
H

IT
E

R
E

D

R
E

D

B
LA

C
K

JUMPER

Adj Adj Adj
Adj

Caution: Overtightening the 12V wires can break
the posts on the power supply.

R
E

D

B
LA

C
K

Checking and Adjusting DPU Power Supply 3–5

4
Cables, Connectors, and Auxiliary PCBs

Chapter 4 describes and identifies the connectors and cables in the DECmpp
12000/Sx system. It also describes PCBs that are not mounted in the data
parallel unit (DPU) card cages.

4.1 Cables and Connectors
DECmpp 12000 systems require a 30 A, 250 V twist lock connector on a dedicated
circuit in the United States. Systems shipped outside the United States require
a 30 A, 220 Vac circuit and may be fitted with local cables and/or connectors
during installation. The DECmpp 12000/Sx Hardware Installation Guide lists
all optional power cable part numbers.

DECmpp 12000–LC systems must connect to either a dedicated 15 A, 110 Vac
circuit or to a dedicated 10 A, 220 Vac or 240 Vac circuit, depending on local
power availability.

Following are brief descriptions of cables and connectors for the front-end server
and the DPU. Refer to Figure 4–1 for a simplified diagram of the DECmpp
system internal and external cable connections. The internal cables are used on
the DECmpp 12000–LC configuration only.

• Telephone Connection — Internal DPU 2-foot cable to the modem; external
cable length determined by installation site requirements (United States
only).

• Data Cables

Internal 4 foot cable with 100-pin connectors between the Front-end VME
interface PCB (T6000) in the DPU card cage and the DPU rear panel
interconnect PCB.

External 15 foot cable with 100-pin connectors between the DPU rear panel
cable connection and the server rear panel connection.

• Internal RS-232 Cable — Between the modem and the DPU rear panel
interconnect PCB.

• External RS-232 Cable — Between the server rear panel and the DPU rear
panel cable connection.

• Power Cable — In DECmpp 12000 systems, the power cable is wired directly
to a terminal block inside the DPU power supply. DECmpp 12000–LC
systems use a standard power cable.

Cables, Connectors, and Auxiliary PCBs 4–1

4.2 Auxiliary PCBs

Figure 4–1 DPU-Server Cables

Modem
PCBInternal Phone Cable

Phone
Line

Internal VME
Data Cable
29-29565-01

DPU

Front-End
VME
Interface
PCB
(MVIB)

2T-T6000-AA

29-29373-01

Internal RS232 Cable

29-29566-01

DECsystem 5900

External RS232 CableExternal VME Data Cable

Internal Cables Used on -LC Configuration Only

MKV-040000314-40-DG

External RS232 Cable
29-29564-01

External VME
Data Cable
29-29563-01

DECstation 5000/240

4.2 Auxiliary PCBs
Auxiliary PCBs are defined as those not located in the DPU card cage. The
DECmpp 12000/Sx Series DPUs have three auxiliary PCBs mounted inside the
DPU enclosure.

• DPU Interconnect PCB (DECmpp 12000-LC/Sx configuration only)

Provides a bulkhead connection for the VME and RS-232 cables. It is located
inside the DPU, at the lower rear, behind the power supply.

• Lightpipe PCB

Drives the LEDs on the DPU front indicator panel. In DECmpp 12000
systems this is mounted to the inside of the front door, along with the power
switch assembly. In DECmpp 12000–LC systems it is mounted inside the
DPU top cover, over the inner front door.

• Power Supply Controller PCB

Controls the power sequencing system. This PCB is located inside the power
tray enclosure.

4–2 Cables, Connectors, and Auxiliary PCBs

5
Using Diagnostic Software

The DECmpp 12000/Sx contains diagnostics and related utility programs to
test the array control unit (ACU) PCB, the processor element (PE) array PCBs,
the PE array/router connections, the router PCB, EEPROMs, and memory.
Appendix B provides reference pages for many of the diagnostics.

Note

Before running any DECmpp 12000/Sx diagnostics, make sure the
front-end system is running correctly. Make sure no other users are on
the system.

Running diagnostic programs may cause the system to crash, especially if
the programs encounter problems.

To abort a diagnostic program while it is running, do not kill the process.
Suspend it by entering Ctrl/C; this allows the diagnostic to restore the
system to a usable state.

Using Diagnostic Software 5–1

5.1 Diagnostic Environment

5.1 Diagnostic Environment
The diagnostic programs run under the ULTRIX operating system, version 4.2,
and reside in the directory $MP_PATH/field/bin .

5.1.1 Running the Diagnostics
To run a diagnostic test, enter the name of the test followed by a space and
any desired option, and then press Return. The default is a verbose mode that
displays all related messages.

The options are as follows:

• -C — Customer environment [default] [-q] [-t]

• -F — Field environment; runs diagnostics in customer services mode [-m]
[-q] [-t]

• -M — Manufacturing environment [-l] [-m] [-q] [-s] [-t]

• -l — Loop on error (Ctrl/C will break the loop)

• -m — Menu mode (provides a menu of subtests and parameter options)

• -q — Quick mode (some lengthy tests, such as pe_arith and acu_clim , are
shortened)

• -s — Stop on error (User has the option to continue or abort the test)

• -t — Terse mode (displays only summary messages)

5.1.2 Suspending a Diagnostic Program
To suspend a diagnostic test, enter Ctrl/C. This suspends the current test and
displays a menu similar to the following example:

TEST SUSPENDED AT USER’S REQUEST

1. Exit to the shell
2. Continue with the test

Select one:

Enter 1 or 2 to make the selection. The selections have the following effects:

• 1 — Exit to the shell

The program returns from the diagnostic environment and leaves the system
in good order for the next user.

• 2 — Continue with the test

The diagnostic continues exactly what it was doing when Ctrl/C was pressed.

5–2 Using Diagnostic Software

5.2 Types of Tests

5.2 Types of Tests
DECmpp 12000/Sx diagnostics consist of two sets of programs: test suites and
individual tests.

5.2.1 Test Suites
The DECmpp 12000/Sx contains two test suites, acu_diag and pe_diag . Run
acu_diag , then pe_diag . The individual tests are described in Section 5.2.2. Total
time for executing the full suite of diagnostics in a 4K PE system is approximately
45 minutes in default mode.

5.2.1.1 The acu_diag Test Suite
The acu_diag suite tests the ACU PCB. It runs the following tests in the order
shown:

• acu_reg1

• met wcs

• acu_micr

• met cmem

• acu_reg2

• met imem

• met aux

• met map

• met pgtbl

• acu_macr

• acu_bound

• acu_pptest

• acu_clim

5.2.1.2 The pe_diag Test Suite
The pe_diag suite tests processor array PCBs and the backplane. It runs the
following tests in the order shown:

• pe_scan

• pe_macro

• pe_ckxnet

• pe_ckonet

• pe_rtbp

Using Diagnostic Software 5–3

5.2 Types of Tests

5.2.2 Test Descriptions
This section briefly describes the diagnostic and utility programs:

• acu_bound — ACU Boundary Test

Tests the ability of macro code to operate across page and row boundaries.

• acu_clim

Tests the action of the ACU when certain CMEM limits and alignments are
violated.

• acu_diag

This test suite checks the ACU PCB. The tests in the suite are listed in
Section 5.2.1.1.

• acu_int

Tests the operation of interrupts.

• acu_macro

Tests the ability of macro code to execute basic instructions.

• acu_micro

Tests data paths, registers, and components on the ACU PCB.

• acu_pgtbl

Tests the page table translation and comparison mechanism.

• acu_pptest

Verifies the 32 general-purpose registers are functional; uses peeks and pokes.

• acu_prof

Tests the three profile counters and the profile configuration register.

• acu_reg1

Tests the ACU front-end registers.

• acu_reg2

Tests the ACU front-end firmware-emulated registers.

• acu_sup

Tests the hardware necessary to support user/supervisor mode firmware,
CMEM address map, and software interrupt generation.

5–4 Using Diagnostic Software

5.2 Types of Tests

• met

Tests memory. To run met , enter met , a space, the type of memory you wish to
test, and press Return. If you need to run more detailed tests with met , you
can get instructions by entering met , and then pressing Return.

Memory Types are:

umem— Microcode memory (wc and umemare the same memory, accessed
in different formats)

cmem— CMem

imem — IMem

idma — IMem DMA

aux — Auxiliary IMem

map — Map RAM

pgtbl — Page table

lru — Least-recently-used page reference memory

preg — PReg

pmem— PMem (1-Mbyte DRAM chips)

qmem— PMem (4-Mbyte DRAM chips)

rio — Router I/O; IORAM accessed via router system

rpm — Router parallel memory; high-speed RIO/PE test (rp uses the PE
array to expand the test data by the number of PEs)

vme — VME memory; tests any memory on VME bus, especially auxiliary
RAM PCB

ioram — IORAM; accessed via slave read/write over VME bus

iodma — IORAM DMA; IORAM is master, FE is slave

iodmb — IORAM DMA; IORAM is master, auxiliary RAM PCB is slave
(iodmb is like iodma , but data is bounced off the VME RAM PCB)

• pe_arith

Tests PE arithmetic functions.

• pe_ckonet

Shifts data around successively larger octagonal loops among the PEs.

• pe_ckxnet

Shifts data around the X-Net and checks for X-Net parity errors.

Using Diagnostic Software 5–5

5.2 Types of Tests

• pe_diag

This test suite checks the PE array PCBs and the backplane. The tests in the
suite are listed in Section 5.2.1.2.

• pe_func

Tests various PE functions.

• pe_macro

Tests the instruction set.

• pe_memdiag

Tests PMem and reports the exact location of any errors found.

• pe_rtbp

Tests various signal paths passing between PE array, backplane, and router
PCBs. When it detects a failing path, it gives a complete report:

Signal name — as shown on schematic

Source PCB — chip pin number, backplane connector pin number

Destination PCB — chip pin number; backplane connector pin number

Note

The default mode is for a DECmpp 12000 system. If you run this test on
a DECmpp 12000–LC system, enter 1100 after the test name.

• pe_rtdiag

Tests the transmitting and receiving router functions.

• pe_rtr

PE router wire test.

• pe_scan

Tests the serial scan chains on the ACU, PE array, and router PCBs.

• pe_xnet

Exhaustive test of all three X-Net instructions. If a failure occurs, it identifies
the fault’s PCB, chip, pin number, and backplane pin number.

• rts

Tests the transmitting, receiving, and intermediate router functions. To run
rts , rtscfg must be in the same directory.

• rts13

Tests the transmitting and receiving router functions.

• rts2

Tests the intermediate router functions.

5–6 Using Diagnostic Software

5.3 Interpreting Log File Messages

5.3 Interpreting Log File Messages
Three logs provide useful information about the status of the DPU:

• ./LOG

• /usr/adm/dpujobmgr.log

• /etc/uerf

Many of these logs have references to fltcod , which is the Fault Code Word. Its
value provides a clue to the cause of an error, as described in Table 5–1.

Table 5–1 FLTCOD Values

Value Error Meaning

0x1 CLTSTOPARITY Control store parity error

0x2 CTLPEPARITY Control store PE parity error

0x4 CTLIOPARITY Control store I/O parity error

0x10 CMEMLIMIT CMem limit violation

0x20 PREGLIMIT PReg limit violation

0x40 PMEMLIMIT PMem limit violation

0x100 IMEMPARITY Instruction memory parity error

0x200 RTRPARITY Router parity error

0x400 XNETPARITY X-Net parity error

0x800 RTRTNOR Router T no R

0x1000 PREGALIGN PReg alignment

0x2000 IMEMALIGN IMem alignment

0x4000 CMEMALIGN CMem alignment

0x10000 ILLOP Illegal operation

0x80000 BUSERR VMEbus error

0x100000 MACHFAULT Machine fault

0x200000 IRR I/O instruction error

0x400000 RPROTO Router protocol error

0x800000 ILLPEADDR Illegal PE address

0x1000000 DIV0 Integer divide by zero

0x8000000 FINEXACT Floating-point inexact result

0x10000000 FINVOP Floating-point invalid operand

0x20000000 FDIV0 Floating-point divide by zero

0x40000000 FUNFLO Floating-point underflow

0x80000000 FOVFLO Floating-point overflow

Using Diagnostic Software 5–7

5.3 Interpreting Log File Messages

5.3.1 The ./LOG File
All diagnostic programs scroll output to the screen and copy it to the LOG file in
the current directory (directory in which you executed diagnostics). If a LOG file
already exists, diagnostic output is appended to it.

If you do not have write-permission in the directory from which you are running
the diagnostics, the LOG file is not changed.

Most tests produce more than a screenful of output, and you may want to edit
the LOG. The LOG files can become quite large, especially in the default verbose
mode. The grep utility is useful for displaying keywords and obtaining a quick
summary. For example, entering grep FAILED LOG and pressing Return produces
a list of all the failure messages.

LOG output and contents are similar to the following examples. LOG file
messages are described below.

Example of Standard Messages:

Start of diagnostic test: ACU HARDWARE VME REGISTERS TEST (acu_reg1)
Timestamp: Mon May 6 09:43:43 1991

CUSTOMER ENVIRONMENT:
Standard length tests
Standard messages

$Revision: 1.5 $
PASSED.... ECSR register test: 0 errors
PASSED.... Page Table registers test: 0 errors
FAILED.... Instruction Memory register test: 1 error
PASSED.... Master Interrupt Registers Test: 0 errors
FAILED.... Instruction DMA Registers test: 2 errors
PASSED.... Microcode Registers Test: 0 errors
PASSED.... Serial Scan Registers test: 0 errors
PASSED.... MAPCSR Register Test: 0 errors
SUMMARY... ACU HARDWARE VME REGISTERS TEST (acu_reg1). 3 errors, 0 aborts

End of diagnostic test: ACU HARDWARE VME REGISTERS TEST (acu_reg1)
Timestamp: Mon May 6 09:43:46 1991

Example of Terse Messages:

Start of diagnostic test: ACU HARDWARE VME REGISTERS TEST (acu_reg1)
Timestamp: Mon May 6 09:44:06 1991

CUSTOMER ENVIRONMENT:
Standard length tests
Terse messages

$Revision: 1.5 $
SUMMARY... ACU HARDWARE VME REGISTERS TEST (acu_reg1). 3 errors, 0 aborts

End of diagnostic test: ACU HARDWARE VME REGISTERS TEST (acu_reg1)
Timestamp: Mon May 6 09:44:09 1991

5–8 Using Diagnostic Software

5.3 Interpreting Log File Messages

The following list contains standard LOG file messages and brief explanations:

• NOTE

Provides information about the environment in which the test is running. It
describes what the test is doing, so you understand the context if there is an
error.

• CAUTION

An abnormal result, but not an actual error. This could indicate trouble
elsewhere; this is often the case when there are unused bits not at 0.

• ERROR

Something is actually wrong. For example, the test might have written 1 to a
bit and read back 0.

• FAILED

The reporting test received one or more ERRORs.

• ABORTED

The test terminated abnormally before completion.

• WARNING

The program encountered a serious situation associated with an area not
being directly tested. This situation does not necessarily cause the current
test to fail, but it can provide a clue to other problems. This is a more serious
message than CAUTION.

• PASSED

The selected test completed successfully.

Using Diagnostic Software 5–9

5.3 Interpreting Log File Messages

5.3.2 The /usr/adm/dpujobmgr.log File
This file is a log of all the dpumanager daemon activity. This log reports
background diagnostic errors, register status when errors are reported, and
ACU kernel information. This log is especially helpful when you are trying to
determine what might have caused a problem when a program aborts.

This example shows there was a control store parity error (FLTCOD=2). Control
store parity errors can occur on a PE array PCB, ACU PCB, or the backplane.

(dpu0) Tue Apr 30 07:04:11 1991 (21) DPU fault: SWOPT=5; HWOPT=5;
FLTCOD=0x2; PMSTAT=0x0; PMEMECC=0

For this type of error, look at the parity LED on the PE PCBs for a clue to which
PCB is generating the error.

This example shows an execution of a mpshutdown command and the execution of
a dpumanager command.
(dpu0) Mon May 13 10:39:44 1991 Termination signal received; shutting down
(dpu0) Tue Jul 21 15:40:10 1992 Starting up; Version 2.2.0
(dpu0) Tue Jul 21 15:40:11 1992 loading microcode file: "/usr/mpp/etc/mp12ucode.wo"
(dpu0) Tue Jul 21 15:40:18 1992 loading ACU kernel file: "/usr/mpp/etc/acuk"
(dpu0) Wed Jul 22 12:10:55 1992 ACU kernel timeout (command 6)
ECSR=0x4002, QCSR=0x0, PTACCESS=0, CPC=0xffff00a8
(dpu0) Wed Jul 22 12:10:55 1992 Save of context failed, killing job; pid = 10333
(dpu0) Wed Jul 22 12:10:55 1992 ACU kernel command error (!ECSR<Run>)
(dpu0) Wed Jul 22 12:10:55 1992 unable to abort user -- reloading ACU kernel
(dpu0) Wed Jul 22 12:10:55 1992 Job context lost in system reset; pid = 10333
(dpu0) Wed Jul 22 12:10:55 1992 Job context lost in system reset; pid = 10355
(dpu0) Wed Jul 22 12:10:55 1992 loading ACU kernel file: "/usr/mpp/etc/acuk"
(dpu0) Wed Jul 22 12:10:56 1992 (@1) DPU fault: SWOPT=4; HWOPT=4;
FLTCOD=0x200; PMSTAT=0x0; PMEMECC=0
(dpu0) Wed Jul 22 12:10:56 1992 (@2) 15 PEs had errors
(dpu0) Wed Jul 22 12:10:56 1992 (@2) PE fault: PE number=0x678 (board
5, cluster 3,6, PE-in-cluster 0,0); error bits=0x2 (ROUTER)
(dpu0) Wed Jul 22 12:10:56 1992 (@2) PE fault: PE number=0x674 (board
5, cluster 3,5, PE-in-cluster 0,0); error bits=0x2 (ROUTER)
(dpu0) Wed Jul 22 12:10:56 1992 (@2) PE fault: PE number=0x64c (board
4, cluster 3,3, PE-in-cluster 0,0); error bits=0x2 (ROUTER)
(dpu0) Wed Jul 22 12:10:56 1992 (@2) PE fault: PE number=0x638 (board
1, cluster 3,6, PE-in-cluster 0,0); error bits=0x2 (ROUTER)
(dpu0) Wed Jul 22 12:10:56 1992 (@2) PE fault: PE number=0x634 (board
1, cluster 3,5, PE-in-cluster 0,0); error bits=0x2 (ROUTER)
(dpu0) Wed Jul 22 12:10:56 1992 (@2) PE fault: PE number=0x60c (board
0, cluster 3,3, PE-in-cluster 0,0); error bits=0x2 (ROUTER)
(dpu0) Wed Jul 22 12:10:56 1992 (@2) PE fault: PE number=0x27c (board
5, cluster 1,7, PE-in-cluster 0,0); error bits=0x2 (ROUTER)
(dpu0) Wed Jul 22 12:10:56 1992 (@2) PE fault: PE number=0x278 (board
5, cluster 1,6, PE-in-cluster 0,0); error bits=0x2 (ROUTER)
(dpu0) Wed Jul 22 12:10:56 1992 (@2) PE fault: PE number=0x260 (board
5, cluster 1,0, PE-in-cluster 0,0); error bits=0x2 (ROUTER)
(dpu0) Wed Jul 22 12:10:56 1992 (@2) PE fault: PE number=0x25c (board
4, cluster 1,7, PE-in-cluster 0,0); error bits=0x2 (ROUTER)
(dpu0) Wed Jul 22 12:10:56 1992 (@2) PE fault: PE number=0x23c (board
1, cluster 1,7, PE-in-cluster 0,0); error bits=0x2 (ROUTER)
(dpu0) Wed Jul 22 12:10:56 1992 (@2) PE fault: PE number=0x238 (board
1, cluster 1,6, PE-in-cluster 0,0); error bits=0x2 (ROUTER)
(dpu0) Wed Jul 22 12:10:56 1992 (@2) PE fault: PE number=0x21c (board
0, cluster 1,7, PE-in-cluster 0,0); error bits=0x2 (ROUTER)
(dpu0) Wed Jul 22 12:10:56 1992 (@2) PE fault: PE number=0x44 (board 4,
cluster 0,1, PE-in-cluster 0,0); error bits=0x2 (ROUTER)
(dpu0) Wed Jul 22 12:10:56 1992 (@2) PE fault: PE number=0x4 (board 0,
cluster 0,1, PE-in-cluster 0,0); error bits=0x2 (ROUTER)
(dpu0) Wed Jul 22 18:24:32 1992 (@1) DPU fault: SWOPT=3; HWOPT=4;
FLTCOD=0x400000; PMSTAT=0x0; PMEMECC=0
(dpu0) Wed Jul 22 18:24:32 1992 (@2) 1822 PEs had errors (only 21 reported)
(dpu0) Wed Jul 22 18:24:32 1992 (@2) PE fault: PE number=0x1c (board 0,
cluster 0,7, PE-in-cluster 0,0); error bits=0x2 (ROUTER)
(dpu0) Wed Jul 22 18:24:32 1992 (@2) PE fault: PE number=0x1b (board 0,
cluster 0,6, PE-in-cluster 0,3); error bits=0x2 (ROUTER)

5–10 Using Diagnostic Software

5.3 Interpreting Log File Messages

(dpu0) Wed Jul 22 18:24:32 1992 (@2) PE fault: PE number=0x1a (board 0,
cluster 0,6, PE-in-cluster 0,2); error bits=0x2 (ROUTER)
(dpu0) Wed Jul 22 18:24:32 1992 (@2) PE fault: PE number=0x19 (board 0,
cluster 0,6, PE-in-cluster 0,1); error bits=0x2 (ROUTER)
(dpu0) Wed Jul 22 18:24:32 1992 (@2) PE fault: PE number=0x18 (board 0,
cluster 0,6, PE-in-cluster 0,0); error bits=0x2 (ROUTER)
(dpu0) Wed Jul 22 18:24:32 1992 (@2) PE fault: PE number=0x14 (board 0,
cluster 0,5, PE-in-cluster 0,0); error bits=0xf (XNET ROUTER PMEM/HARD PMEM/SOFT)
(dpu0) Wed Jul 22 18:24:32 1992 (@2) PE fault: PE number=0x13 (board 0,
cluster 0,4, PE-in-cluster 0,3); error bits=0x8 (PMEM/SOFT)
(dpu0) Wed Jul 22 18:24:32 1992 (@2) PE fault: PE number=0x12 (board 0,
cluster 0,4, PE-in-cluster 0,2); error bits=0x7 (XNET ROUTER PMEM/HARD)
(dpu0) Wed Jul 22 18:24:32 1992 (@2) PE fault: PE number=0x11 (board 0,
cluster 0,4, PE-in-cluster 0,1); error bits=0x7 (XNET ROUTER PMEM/HARD)
(dpu0) Wed Jul 22 18:24:32 1992 (@2) PE fault: PE number=0x10 (board 0,
cluster 0,4, PE-in-cluster 0,0); error bits=0x5 (XNET PMEM/HARD)
(dpu0) Wed Jul 22 18:24:32 1992 (@2) PE fault: PE number=0xf (board 0,
cluster 0,3, PE-in-cluster 0,3); error bits=0xd (XNET PMEM/HARD PMEM/SOFT)
(dpu0) Wed Jul 22 18:24:32 1992 (@2) PE fault: PE number=0xe (board 0,
cluster 0,3, PE-in-cluster 0,2); error bits=0x7 (XNET ROUTER PMEM/HARD)
(dpu0) Wed Jul 22 18:24:32 1992 (@2) PE fault: PE number=0xd (board 0,
cluster 0,3, PE-in-cluster 0,1); error bits=0x7 (XNET ROUTER PMEM/HARD)
(dpu0) Wed Jul 22 18:24:32 1992 (@2) PE fault: PE number=0xc (board 0,
cluster 0,3, PE-in-cluster 0,0); error bits=0xe (ROUTER PMEM/HARD PMEM/SOFT)
(dpu0) Wed Jul 22 18:24:32 1992 (@2) PE fault: PE number=0xa (board 0,
cluster 0,2, PE-in-cluster 0,2); error bits=0x6 (ROUTER PMEM/HARD)
(dpu0) Wed Jul 22 18:24:32 1992 (@2) PE fault: PE number=0x9 (board 0,
cluster 0,2, PE-in-cluster 0,1); error bits=0x6 (ROUTER PMEM/HARD)
(dpu0) Wed Jul 22 18:24:32 1992 (@2) PE fault: PE number=0x8 (board 0,
cluster 0,2, PE-in-cluster 0,0); error bits=0xf (XNET ROUTER PMEM/HARD PMEM/SOFT)
(dpu0) Wed Jul 22 18:24:32 1992 (@2) PE fault: PE number=0x7 (board 0,
cluster 0,1, PE-in-cluster 0,3); error bits=0x2 (ROUTER)
(dpu0) Wed Jul 22 18:24:32 1992 (@2) PE fault: PE number=0x6 (board 0,
cluster 0,1, PE-in-cluster 0,2); error bits=0xc (PMEM/HARD PMEM/SOFT)
(dpu0) Wed Jul 22 18:24:32 1992 (@2) PE fault: PE number=0x5 (board 0,
cluster 0,1, PE-in-cluster 0,1); error bits=0xc (PMEM/HARD PMEM/SOFT)
(dpu0) Wed Jul 22 18:24:32 1992 (@2) PE fault: PE number=0x4 (board 0,
cluster 0,1, PE-in-cluster 0,0); error bits=0x3 (XNET ROUTER)
(dpu0) Wed Jul 29 10:54:21 1992 Starting up; Version 2.2.0
(dpu0) Wed Jul 29 10:54:22 1992 loading microcode file: "/usr/mpp/etc/mp12ucode.wo"
(dpu0) Wed Jul 29 10:54:41 1992 loading ACU kernel file: "/usr/mpp/etc/acuk"
(dpu0) Tue Aug 11 08:19:50 1992 Starting up; Version 2.2.0
(dpu0) Tue Aug 11 08:19:51 1992 loading microcode file: "/usr/mpp/etc/mp12ucode.wo"
(dpu0) Tue Aug 11 08:20:12 1992 loading ACU kernel file: "/usr/mpp/etc/acuk"

This example shows a hangup with the ACU kernel. The kernel timed out and
automatically restarted.

(dpu0) Tue Apr 30 15:43:00 1991 ACU kernel timeout (command 15)
ECSR=0x4002, QCSR=0x0, PTACCESS=0, CPC=0xffff00a8
(dpu0) Tue Apr 30 15:43:00 1991 unable to run background diagnostics --
reloading ACU kernel
(dpu0) Tue Apr 30 15:43:00 1991 loading ACU kernel file:
"/usr/maspar/etc/acuk"

This example shows the log after a correctable PMEM error occurred. If
PMEMECC=6or more, a hard error is recorded, and the program aborts.

(dpu0) Mon May 13 05:37:49 1991 (2) 1 PE had errors
(dpu0) Mon May 13 05:37:49 1991 (2) PE fault: PE number=0xa5f (board 4,
cluster 5,7, PE-in-cluster 0,3); error bits=0x8 (PMEM/SOFT)
(dpu0) Mon May 13 06:46:01 1991 (4) PMEM parity errors detected;
PMEMECC=1 (in rollpmem)

Using Diagnostic Software 5–11

5.3 Interpreting Log File Messages

5.3.3 The /etc/uerf File
All errors are reported in this log. This is very helpful when the dpumanager is
not running.

To look at the log, enter the following commands:

cd /etc
uerf -R | more

In the log examples below, Example 1 is a message from the DPU; FLTCOD 200
indicates a router parity error. Example 2 is an example of an ULTRIX error
message; it has nothing to do with the DPU, but is shown here as a contrast to
the DPU message.

Example 1:

----- EVENT INFORMATION -----

EVENT CLASS OPERATIONAL EVENT
OS EVENT TYPE 250. ASCII MSG
SEQUENCE NUMBER 29.
OPERATING SYSTEM ULTRIX 32
OCCURRED/LOGGED ON Wed Jul 22 12:10:54 1992 EDT
OCCURRED ON SYSTEM mpdemo.mps.m
SYSTEM ID x82020230 HW REV: x30

FW REV: x2
CPU TYPE: R2000A/R3000

PROCESSOR TYPE KN02/R3000
MESSAGE pc=0xffff127c, fltcod=0x200

Example 2:

----- EVENT INFORMATION -----

EVENT CLASS OPERATIONAL EVENT
OS EVENT TYPE 250. ASCII MSG
SEQUENCE NUMBER 37.
OPERATING SYSTEM ULTRIX 32
OCCURRED/LOGGED ON Thu Jul 23 01:03:06 1992 EDT
OCCURRED ON SYSTEM mpdemo.mps.m
SYSTEM ID x82020230 HW REV: x30

FW REV: x2
CPU TYPE: R2000A/R3000

PROCESSOR TYPE KN02/R3000
MESSAGE NFS server mpsg not responding, still

_trying

5–12 Using Diagnostic Software

6
Removal and Replacement Procedures

Chapter 6 describes how to remove and replace the following data parallel unit
(DPU) components:

• Array control unit (ACU) Printed Circuit Board (PCB)

• Front-end VME interface PCB (T6000)

• Processor element (PE) array PCB

• Router PCB

• Power/status indicator PCB

• Power tray

• Fan tray

Appendix A provides a list of recommended spares for DECmpp 12000/Sx Series
Data Parallel Units.

6.1 Card Cage Access
The ACU, PE array, front-end VME interface, and router PCBs are accessed from
the rear of the DPU. Figure 6–1 shows the card cage access for a DECmpp 12000
DPU. Figure 6–2 shows the card cage access for a DECmpp 12000–LC DPU.

To open the DPU rear door, use the hex wrench supplied with the system.

Removal and Replacement Procedures 6–1

6.1 Card Cage Access

Figure 6–1 DECmpp 12000/Sx Card Cage Access

MKV−040000314−59−RAGS

Fan Tray

Power Supply

Card Cage

6–2 Removal and Replacement Procedures

6.1 Card Cage Access

Figure 6–2 DECmpp 12000–LC/Sx Card Cage Access

Cardcage

Fan Tray

Power Supply

Lower door (swings down)

Removal and Replacement Procedures 6–3

6.2 DPU Card Cage Slots

6.2 DPU Card Cage Slots
The DPU card cage is divided into two dedicated blocks: one for I/O PCBs and
the other for PE array PCBs, as shown in Figure 6–3. The DECmpp 12000
supports the ACU, the VME interface PCB, 16 PE array PCBs, and 15 I/O PCBs.
The DECmpp 12000–LC supports the ACU, the VME interface PCB, 4 PE array
PCBs, and 5 I/O PCBs.

6.2.1 I/O Slots
The first I/O slot, labeled ACU, always holds the ACU PCB. The second I/O slot
(slot IO00) is configured to support the Front-end VME interface PCB (MVIB).
This is a T6000 PCB mounted on a Parallel VME 6U Adapter PCB. The other
slots are for the PVME PCB and VMEbus PCBs mounted on Parallel VME 6U
Adapters.

In the DECmpp 12000 configuration, physical slot 10 (slot IO08) is reserved for
the PVME controller PCB and physical slot 6 (slot IO04) is reserved for the PDA
interface.

In the DECmpp 12000–LC configuration, physical slot 5 (slot I/O 03) is reserved
for the PVME controller and physical slot 6 (slot IO04) is reserved for the PDA
interface.

6.2.2 PE Array PCB Slots
DECmpp 12000 systems support 1, 2, 4, 8, or 16 PE array PCBs; DECmpp
12000–LC systems support 1, 2, or 4 PE array PCBs. The PE array PCBs must
be in contiguous slots, starting with the first PE array PCB slot. If the number of
PE array PCBs changes, backplane jumpers must be reconfigured, as described in
Chapter 7.

All PE array PCB slots that do not contain a PE array PCB must contain a router
PCB. The DECmpp will not work if any PE array PCB slot is empty.

6–4 Removal and Replacement Procedures

6.2 DPU Card Cage Slots

Figure 6–3 DPU Card Cage Slots

O
I
O

I
O

I
O

I
O

I
O

P
E
5

P
E
6

P
E
7

P
E
8

P
E
9

P
E

P
E

P
E

P
E

P
E

P
E

P
E

Input/Output

PE Array Slots

A
C
U

I
O
0
0

I
O
0
1

I
O
0
2

I
O
0
3

I
O
0
4

I
O
0
5

I
O
0
6

I
O
0
7

I
O
0
8

P
E
1

P
E
2

P
E
3

P
E
4

A
C
U

I
O
0
0

I
O
0
1

I
O
0
2

I
O
0
3

I
O
0
4

I
O
0
5

P
E
1

P
E
2

P
E
3

P
E
4

I/O Slots PE Array Slots

Modem
(USA Only)

DECmpp 12000

Card Cage (Rear View)

DECmpp 12000−LC

Card Cage (Rear View)

MKV−040000314−03−RAGS

0
9

1
0

1
1

1
2

1
3

1
4

1
5

1
0

1
1

1
2

1
3

1
4

1
5

1

SlotsP
V
M
E

P
V
M
E

Modem
(USA Only)

Array
Control
Unit

6

I
O

I
O

I
O

I
O

I
O

I
O

I
O

*

*

* Slot IO04 Reserved for Optional PDA Interface

M

V
I
B

M
V
I
B

Removal and Replacement Procedures 6–5

6.3 Replacing DPU Card Cage PCBs

6.3 Replacing DPU Card Cage PCBs
Warning

To avoid personal injury or damage to equipment, make sure the system
is turned off before replacing or adding any PC PCBs. 5 V power supplies
deliver current in the 600 A range.

Proper antistatic protection must be worn while servicing the DPU.

To avoid damage, always handle a PCB correctly:

• Wear antistatic equipment (for instance, a wrist or ankle strap) when
handling a PCB.

• If working on a PCB, use a static-free work surface.

• Handle it gently by the edges.

• Never handle a PCB by the component or etched surfaces.

• Store PCBs in a static-proof container.

Each PCB in the DPU card cage has ejector levers on the top and bottom of
the PCB faceplate, shown in Figure 6–4. Always use the ejector levers when
removing or replacing PCBs:

• To release the PCB, lift up the lower end of the top lever, and press down on
the upper end of the bottom lever, moving the PCB partway out of its slot.

• To secure the PCB in the card cage slot, press down the lower end of the top
lever and the upper end of the bottom lever.

6.3.1 Replacing the Array Control Unit PCB
Caution

Make sure that you are grounded through a wrist or ankle strap before
handling the ACU.

The ACU PCB is in the first I/O slot (labeled ACU) in the DPU card cage. To
replace the ACU PCB, take the following the steps.

1. Turn off the system, as described in Chapter 1.

2. Open the DPU rear door.

3. Loosen the captive screws on the top and bottom of PCB faceplate.

4. Remove the top PCB retainer bar.

5. Use the ejector levers shown in Figure 6–4 to release the PCB and move it
outward from its slot.

6. Carefully remove the PCB from its slot, handling it by the edges, and place it
in a static-proof container.

7. Verify the jumper configuration on the new ACU PCB (Table 6–1).

8. Carefully slide the replacement PCB into the slot.

6–6 Removal and Replacement Procedures

6.3 Replacing DPU Card Cage PCBs

Figure 6–4 PCB Ejector Levers

Ejector Levers

MKV-040000314-37-MPS

9. With the ejector levers open (out), seat the PCB, and push the levers closed.
Although you may have to push firmly to seat the PCB, do not force it.

10. Secure the PCB in the card cage, tightening the captive screws on the top and
bottom of faceplate.

11. Install the upper PCB retainer bar.

12. Close and latch the DPU rear door.

13. Turn on DPU power, as described in Chapter 1.

Figure 6–5 shows the location of the ACU jumpers. The darkened blocks indicate
installed jumpers.

Removal and Replacement Procedures 6–7

6.3 Replacing DPU Card Cage PCBs

Table 6–1 ACU Jumper Settings

Jumper Function Factory Setting

ACU VMEbus address 0xFCC000000

ACU VMEbus interrupt request level Level 1

ACU VMEbus interrupt acknowledge
level

Level 1

Independent scan path selection from the
server (for diagnostics only)

Off

Selection of ACU as a VMEbus arbiter ACU VMEbus arbiter selected

16-bit or 32-bit word selection for ACU
instruction DMA

32-bit

Block or pipelined mode for ACU
instruction DMA

Pipelined

IMem size 1 MB

ACU PCB clock enable/disable Enabled

Figure 6–5 ACU Jumpers

RFDA

IMem Size

Clock
Enable

VMEbus Interrupt Request Level

VMEbus Interrupt Acknowledge Level

A[31:26]
A[23:14] & [12:10]

BC GHJKLMNP
AAAA AAAAAAAAAA

RFDABC GHJKLMNPE

Backplane Connectors

Serial Scan Path

Note: Darkened Jumpers
are INSTALLED.

Crystal
Oscillator

MKV-040000314-38-MPS

6–8 Removal and Replacement Procedures

6.3 Replacing DPU Card Cage PCBs

6.3.2 Replacing Front-End VME Interface PCB
To replace the front-end VME interface PCB, follow these steps:

1. Turn off the system, as described in Chapter 1.

2. Open the DPU rear door.

3. Disconnect the 100-pin AMP connector on the PCB faceplate.

4. Remove the upper PCB retainer bar.

5. Loosen the captive screws at the top and bottom of the PCB faceplate.

6. Use the ejector levers shown in Figure 6–4 to release the PCB and move it
outward from its slot.

7. Carefully remove the PCB from its slot, handling it by the edges, and place it
in a static-proof container.

8. Carefully slide the replacement PCB into the slot.

9. With the ejector levers open (out), seat the PCB, and push the levers closed.
Although you might have to push firmly to seat the PCB, do not force it.

10. Secure the PCB in the card cage, tightening the captive screws on the top and
bottom of the faceplate.

11. Install the upper PCB retainer bar.

12. Reconnect the 100-pin AMP connector to the front of the PCB.

13. Close and latch the DPU rear door.

14. Turn on the power to the DPU, as described in Chapter 1.

Removal and Replacement Procedures 6–9

6.3 Replacing DPU Card Cage PCBs

6.3.3 Replacing PE Array and Router PCBs
To replace PE array or router PCBs, follow these steps:

1. Turn off the system, as described in Chapter 1.

2. Open the DPU rear door.

3. Loosen the captive screws at the top and bottom of the PCB faceplate.

4. Use the ejector levers shown in Figure 6–4 to release the PCB and move it
outward from its slot.

5. Remove the lower PCB retainer bar.

6. Carefully remove the PCB from its slot, handling it by the edges, and place it
in a static-proof container.

7. Carefully slide the replacement PCB into the slot.

8. With the ejector levers open (out), seat the PCB, and push the levers closed.
Although you may have to push firmly to seat the PCB, do not force it.

9. Secure the PCB in the card cage, tightening the captive screws on the top and
bottom of faceplate.

10. Install the lower PCB retainer bar.

11. Close and latch the DPU rear door.

12. From the front, open the DPU front door(s), and make sure that the DPU
backplane jumpers are installed correctly, as described in Chapter 7.

13. Close the DPU front door(s).

14. Turn on the power to the DPU, as described in Chapter 1.

Note

When removing the PE PCBs and the router PCBs, make sure that the
slot number that the PCB was removed from is noted on the defective
module tag.

6–10 Removal and Replacement Procedures

6.4 Replacing DPU Power Trays

6.4 Replacing DPU Power Trays
This section contains instructions for removing and installing the DPU power
trays.

6.4.1 Removing the DECmpp 12000/Sx Power Tray
Caution

It is important to label all cables as you disconnect them. Reinstalling
cables with the wrong polarity can render the system inoperative.

Follow these steps to remove the power tray:

1. Shut down the server and turn off the power to the server and the DPU.

2. Open the back door of the DPU.

3. Set the DPU 30 A circuit breaker OFF, and unplug the power cord from the
power source.

4. To avoid possible problems when powering up, use the ejector levers shown
in Figure 6–4 to remove each PCB from the backplane, in both the upper and
lower card cages.

5. Disconnect all the cables at the back of the power tray (Figure 6–6).

6. Open the DPU front door. Figure 6–7 shows a front view of the power tray.

7. Using two 9/16-inch open-end wrenches, remove the +5 V positive and
negative power bars at the front of the power tray. Note the offset on the
negative post for reinstallation. This offset is needed for clearance between
the positive and negative posts.

To avoid damage to the power post on the –12 V supply, do not use a deep
socket when removing the positive +5 V bar.

8. Using a 9/16-inch wrench, remove the cables from the –5 V supply.

9. Using a 5/16-inch wrench, remove the +12 V and –12 V cables.

10. Cut any cable restraints fastening cables to the power tray.

11. Remove four screws in the front and two screws in the rear that secure the
power tray to the enclosure frame and air plenum.

12. Make sure you have disconnected all cables from the back of the power tray.
Do not let the power cables get caught on the power tray while sliding it out
or in. Cuts in cable insulation can cause direct shorts.

13. From the DPU front, gently slide the power tray forward, checking that no
cables are getting caught on the power tray. Make sure the attached AC
power cord does not get caught coming through the rear skirt assembly. Also,
make sure that the gasket on the fan tray above does not get caught and tear
away.

14. Do not place any weight on the back of the power tray.

Removal and Replacement Procedures 6–11

6.4 Replacing DPU Power Trays

Figure 6–6 DECmpp 12000 DPU Power Tray Rear

MKV−040000314−81−RAGS

Connection

P1 P2 P13

P3

P4P10

Power
LEDs

DPU Interface PCA

Remote Daisy−chain

Temperature Sensor

Fan Tray Power Selector
Switch

Power Cable

Backplane
Sense Lines

Modem

Lightpipe/
Key Switch 30A Circuit

Breaker

1A Circuit
Breaker

Figure 6–7 DECmpp 12000 DPU Power Tray Front

Fan

AdjAdj
Adj

Adj

+5V

-5V

+12V-12V

-
++

-
+

-

+ -

Y
E

LLO
W

W
H

IT
E

R
E

D

B
LA

C
K

Unused

BLACK REDBLACK

Jumper

Caution: Overtightening the 12V wires can break
the posts on the power supply.

Use an Insulated Tool

MKV-040000314-58-MPS

6–12 Removal and Replacement Procedures

6.4 Replacing DPU Power Trays

6.4.2 Installing the DECmpp 12000/Sx Power Tray
Follow these steps to install the power tray:

1. Gently slide the new power tray into place, feeding the AC power cord
through the DPU rear skirt assembly. Again, make sure that the fan tray
gasket does not get caught. Before sliding the tray in the last few inches,
make sure that there are no cables in the back of the DPU blocking its way.

2. Replace six screws, securing the power tray to the frame and air plenum.

3. Connect the +12 V and –12 V cables to the power supply. To avoid snapping
the power post, apply minimum force when tightening the nut.

4. Install the –5 V cables. The cable going to the top post (+) is actually ground
if you didn’t mark the cable earlier.

5. Install the +5 V power bars. It is easiest to install the positive bar first,
followed by the negative bar.

6. Connect 2-pin connectors to the back of the power tray:

a. Left connector from the DPU interface PCA

b. Middle connector for daisy-chaining other machines

c. Right connector from the temperature sensor

7. Make sure that all cables are connected properly and install cable restraints,
fastening cables to the power tray.

8. Before proceeding, ensure that all PCBs have been removed from the
backplane.

9. Ensure that there are no shorts in the DC voltage supply system. With an
ohmmeter, check the +5 V, –5 V, +12 V, and –12 V connections with respect to
ground. A zero ohm reading indicates a short and must be investigated before
applying power.

10. Plug the power cable into the source of power.

11. Set the 30 A circuit breaker to ON.

12. Set the power selector switch set to LOCAL.

13. Turn on power to the DPU with the keyswitch.

14. With a digital voltmeter, measure all DC voltage levels. Measure the voltages
on the backplane as described in Chapter 3. If needed, adjust the appropriate
levels on the power supply. Make sure you have checked all voltage levels.

15. Turn off the DPU.

16. Reinstall and secure all card cage PCBs using the ejector levers, seating them
firmly into the backplane.

17. Turn on the power to the DPU.

18. Remeasure the DC voltages and fine tune them if necessary.

19. Close the front door.

20. Turn on the server.

21. Run diagnostics and applications to verify the system operation.

Removal and Replacement Procedures 6–13

6.4 Replacing DPU Power Trays

6.4.3 Removing the DECmpp 12000–LC/Sx Power Tray
Caution

It is important to label all cables as you disconnect them. Reinstalling
cables with the wrong polarity can render the system inoperative.

Follow these steps to remove the power tray:

1. Shut down the DECstation and turn off power to the workstation and the
DECmpp 12000–LC, as described in Chapter 1.

2. Set the DPU breaker switch to OFF, and unplug the power cord from the
power source.

3. Open the DPU back door.

4. To avoid possible problems when powering up, use the ejector levers to detach
each PCB from the backplane.

5. Disconnect all cables at the back of the power tray.

6. Open the DPU front door and remove the front inner door.

7. Using a 9/16-inch open-end wrench or socket wrench, remove the cables from
the +5 V power supply.

8. Remove the –5 V, +12 V, and –12 V wires from the power supplies:

• Powertec — Using a 5/16-inch socket wrench, remove the –5 V, +12 V, and
–12 V wires

• HC Power — Using a Phillips screwdriver, remove the –5 V, +12 V, and
–12 V wires

9. Remove the four Phillips Screws holding the power tray to the frame.

10. Make sure you have removed all of the cables from the back of the power tray.

Caution

Do not let the power cables get caught on the power tray when sliding it
in or out. If the cable insulation is cut, it can cause a direct short.

11. From the DPU front, carefully lift the power tray cables out of the way while
pulling the power tray out of the enclosure.

12. Lay the power tray down flat or on its side. Do not put weight on the back of
the tray.

6–14 Removal and Replacement Procedures

6.4 Replacing DPU Power Trays

6.4.4 Installing the DECmpp 12000–LC/Sx Power Tray
Take the following steps to install the power tray:

1. Slide the new power tray into place.

2. Lift the power supply cables out of the way and slide in the power tray.

3. Replace the four Phillips Screws, fastening the power tray to the frame.

4. Replace the –5 V, +12 V, and –12 V wires:

• Powertec power supply — Use a 5/16-inch socket wrench to secure the
nuts after the wires are in place; to avoid snapping the power post,
apply minimum force when tightening the nuts. Refer to Table 6–2 and
Figure 6–8 when connecting the wires.

• HC Power supply — Use a Phillips screwdriver to secure the wires to the
power supply, referring to Table 6–3 and Figure 6–9.

5. Connect the +5 V cables.

6. Connect the cables on the back of the power tray.

7. Before turning on the system power, make sure that all the cables have been
installed properly and ensure that there are no shorts in the DC voltage
supply system. With an ohmmeter, check the +5 V, –5 V, +12 V, and –12 V
connections with respect to ground. A zero ohm reading indicates a short and
must be investigated before applying power.

8. Turn on the power to the DPU.

9. Measure the voltage levels, and, if needed, fine tune the levels on the power
supplies. Measure the voltages at the backplane. Voltage settings are
described in Chapter 3.

10. Turn the DPU power off.

11. Using the ejector levers, replace the card cage PCBs, seating them firmly into
the backplane.

12. Turn the DPU power on.

13. On the backplane, measure the power supply voltages again, and adjust if
necessary.

14. Close the DPU doors.

15. Run diagnostics and application programs to verify proper performance.

Removal and Replacement Procedures 6–15

6.4 Replacing DPU Power Trays

Figure 6–8 Powertec Power Supply

+5V

+12V-12V

+
-

+
-

+

-

-5V

+
-

Fan Connector

B
LU

E

W
H

IT
E

R
E

D

R
E

D

B
LA

C
K

JUMPER

Adj Adj Adj
Adj

Caution: Overtightening the 12V wires can break
the posts on the power supply.

R
E

D

B
LA

C
K

Table 6–2 Powertec Power Supply Wiring

Voltage Value Wire Connection

–5 V + Black Ground from backplane

– Red – 5 V to backplane

–12 V + Black Jumper to +12 V (–) terminal

– White –12 V to backplane

– Blue Ground for fan tray

+12 V + Red +12 V to backplane

+ Red To fan tray

– Black Ground to backplane for �12 V

– Black Jumper to –12 V (+) terminal

6–16 Removal and Replacement Procedures

6.4 Replacing DPU Power Trays

Figure 6–9 HC Power Supply

V 1

_ _ _ _ _+ + + + +
V5V5

V4 V4 V2V2V3S V3SV3 V3

V3 Adj

V4 Adj

V2 Adj

V1 Adj

Fan Connector
From System V1= +5V

V2= -5V
V3= +12V
V4= -12VB

LU
E

R
E

D B
LA

C
K

R
E

D

Power Cable
RED

BLACK

WHITE

JUMPER

115V
230V
ACC
GND

Table 6–3 HC Power Supply Wiring

Connector Wire Connection

+V2 Black Ground from backplane

–V2 Red –5 V to backplane

+V3S — Blank

+V3 Red +12 V to backplane

Red To fan tray

–V3 Black Ground to backplane for �12 V

Black Jumper to +V4

–V3S — Blank

+V4 Black Jumper from –V3

–V4 White –12 V to backplane

Blue To fan tray

+V5 — Blank

–V5 — Blank

Removal and Replacement Procedures 6–17

6.5 Replacing the DECmpp 12000/Sx DPU Fan Tray

6.5 Replacing the DECmpp 12000/Sx DPU Fan Tray
Take the following steps to replace the DECmpp 12000/Sx DPU fan tray:

1. Open the front and rear doors.

2. Turn off the DPU. Set the 30 A circuit breaker OFF, and disconnect the power
cord from the power source.

3. From the back of the DPU, unplug the power cable that runs from the power
tray to the fan tray.

4. Using a 5/16-inch open-end wrench and a 5/16-inch socket wrench, remove
the +5 V bus bars from the +5 V power supply. Gently pull them forward,
and lay them down so that they are out of the way of the fan tray when it is
pulled out.

5. Remove the four Phillips Screws fastening the fan tray to the enclosure.

6. Pull the fan tray out smoothly. Be careful not to pinch the +5 V cables. This
can break the insulation, causing the +5 V power to short to ground.

7. Note the arrow indicating the tray’s proper orientation. This is important
when installing the new fan tray.

8. Slide the new fan tray in. Be careful not to pinch the +5 V cables. This can
break the insulation, causing the +5 V power to short to ground.

9. Replace the four Phillips Screws, securing the fan tray to the frame.

10. Connect the power cable to the fan tray.

11. Connect the +5 V bus bars. Make sure that the bus bars are not shorting to
the frame or to each other.

12. With an ohmmeter, check the resistance between +5 V and ground. A zero
ohm reading indicates a short which must be investigated.

13. Turn on the DPU, and verify that the new fan is operating properly.

6–18 Removal and Replacement Procedures

6.6 Replacing the DECmpp 12000–LC/Sx DPU Fan Tray

6.6 Replacing the DECmpp 12000–LC/Sx DPU Fan Tray
Take the following steps to replace the DECmpp 12000–LC/Sx DPU fan tray:

1. Turn off the system power, as described in Chapter 1. Set the 15 A circuit
breaker to OFF (down), and unplug the power cord from the power source.

2. Open the front and lower-front doors.

3. Open the front inner door.

4. Remove the front inner door:

• Unplug the switch connector from the lightpipe (under the top cover).

• Pull down on the latch on the upper hinge and pull the door out. Place
the door upright against the wall.

5. Disconnect the power connector from the fan tray.

6. Remove the four Phillips Screws that secure the fan tray to the frame. In
some cases, to be able to slide the fan tray out, you may need to remove the
+5 V cables from the power supply.

7. Slide the fan tray out.

8. Slide in the replacement fan tray. Reconnect the +5 V cables to the power
tray if they were removed.

9. Replace the four Phillips Screws that secure the fan tray to the frame.

10. Connect the power connector to the fan tray.

11. Replace the front inner door:

• While holding the upper hinge latch down, put the door in place, securing
the lower hinge and then sliding the upper hinge into place so that the
latch connects properly.

• Reconnect the switch connector to the rightmost lightpipe connector.

12. Close and latch the front inner door.

13. Close and latch the front and lower-front doors.

14. Turn on the power to the DPU and make sure that the fan is working
properly.

Removal and Replacement Procedures 6–19

6.7 Removing and Replacing the Lightpipe PCB

6.7 Removing and Replacing the Lightpipe PCB
The DECmpp 12000 and DECmpp 12000–LC DPUs use identical lightpipe PCBs.
However, the bracketing and mounting locations are different and the method to
access them differs somewhat.

6.7.1 DECmpp 12000/Sx Lightpipe
In the DECmpp 12000 DPU, the lightpipe is mounted to the inside surface of the
front door. Follow these steps to remove and replace the lightpipe.

1. Turn the DPU circuit breaker OFF.

2. Open the DPU front door. The lightpipe PCB is mounted to the inside surface
of the front door.

3. Disconnect the lightpipe 50-pin ribbon signal cable, control panel cable, and
power cable.

4. Loosen but do not remove the four screws that secure the lightpipe PCB
bracket to the door.

5. Lift the lightpipe PCB bracket up and off the mounting studs and screws.

6. Put the replacement lightpipe PCB into position over the mounting studs and
screws, checking the alignment of the lightpipe and the lightpipe cutouts in
the door.

7. Secure the bracket of the replacement PCB to the door by turning the four
screws. Do not tighten; the PCB should be able to be moved slightly.

8. Connect the lightpipe power supply cable, control panel cable, and the 50-pin
ribbon signal cable to the lightpipe PCB.

9. Turn the PDA circuit breaker ON.

10. Place the lightpipe LED test switch in the TEST position.

11. Fine tune the alignment of the lightpipe and the cutouts in the door to ensure
maximum light transmission through the cutouts.

12. Tighten the four screws securing the PCB bracket to the door.

13. Place the lightpipe LED test switch in the NORMAL position.

14. Close the DPU front door.

6–20 Removal and Replacement Procedures

6.7 Removing and Replacing the Lightpipe PCB

6.7.2 DECmpp 12000–LC/Sx Lightpipe
In the DECmpp 12000–LC DPU, the top of the enclosure must be removed to
access the lightpipe. Follow these steps to remove the top of the -LC DPU and
replace the lightpipe.

1. Turn the DPU circuit breaker OFF (down).

2. Open the DPU front door.

3. Unscrew the corner caps on the MPDA top (Figure 6–10).

4. Remove the four screws attaching the top.

5. The bottom edge of the lightpipe printed circuit board (PCB) is visible under
the top-front edge. Disconnect the ribbon signal cable connector, the 9-pin
control panel connector, and the 9-pin power connector.

6. Turn the enclosure top over, and place it on a flat surface.

7. Remove the four screws attaching the lightpipe PCB to the top inner edge
(Figure 6–11).

8. Check the alignment of the replacement PCB LEDs with the lightpipe
cutouts.

If necessary, gently bend the LED wires to align the LEDs properly with the
cutouts.

9. Use four screws to attach the replacement PCB to the top.

10. Lift the DPU top, turn it over, and put it in place.

11. Connect the lightpipe power supply cable and the control panel cable, lifting
the top front edge up, if necessary.

12. Connect the ribbon signal cable to the lightpipe PCB.

13. Use four screws to attach the DPU top.

14. Screw the corner caps onto the top.

15. Close the DPU front door.

16. Turn the DPU circuit breaker switch ON (up).

Removal and Replacement Procedures 6–21

6.7 Removing and Replacing the Lightpipe PCB

Figure 6–10 Removing the DECmpp 12000–LC Enclosure Top

MKV-040000314-60-MPS

Figure 6–11 Replacing the Lightpipe PCB

6–22 Removal and Replacement Procedures

7
Backplane Jumpers and Upgrading PE Arrays

Chapter 7 explains the various DPU backplane jumpers and describes how to
add additional processor element (PE) array printed circuit boards (PCBs) for
increased system performance.

7.1 DPU Backplane Jumpers
To understand how to configure the backplane jumpers, you must understand the
slot arrangement in the card cage. The DPU card cage is divided into two regions
(Figure 7–1).

• The array control unit (ACU), Front-end VME interface (MVIB), and I/O PCB
slots

• The PE array/router PCB slots

The DECmpp 12000 backplane has two rows of card cage slots. The top row is
for I/O slots, and the bottom row is for PE array/router PCB slots. Looking at the
backplane slots from the DPU front, the ACU is in the upper-right I/O slot. The
second I/O slot from the right is always occupied by the Front-end VME interface
(MVIB). This is a T6000 VMEbus controller PCB mounted on a Parallel VME 6U
Adapter PCB. The balance of the I/O slots are reserved for the PVME controller
and I/O interface PCBs such as that used for the disk array.

The bottom row has 1, 2, 4, 8, or 16 PE array PCBs in contiguous locations
starting from the right and router PCBs in slots not containing PE array PCBs.

Note

When you are looking into the card cage, this view is reversed.

The DECmpp 12000–LC card cage has one row of 11 card cage slots. Looking at
the backplane slots from the DPU front and starting from the right, the first slot
is the ACU PCB slot, the second is the front-end VME interface PCB, the next
five are I/O slots, and the remaining four are PE array/router PCB slots.

The DECmpp 12000–LC can have 1, 2, or 4 PE array PCBs at contiguous
locations and router PCBs in slots not containing PE array PCBs.

Note

When you are looking into the card cage, this view is reversed.

Backplane Jumpers and Upgrading PE Arrays 7–1

7.1 DPU Backplane Jumpers

Figure 7–1 DPU Card Cage Slots

O
I
O

I
O

I
O

I
O

I
O

P
E
5

P
E
6

P
E
7

P
E
8

P
E
9

P
E

P
E

P
E

P
E

P
E

P
E

P
E

Input/Output

PE Array Slots

A
C
U

I
O
0
0

I
O
0
1

I
O
0
2

I
O
0
3

I
O
0
4

I
O
0
5

I
O
0
6

I
O
0
7

I
O
0
8

P
E
1

P
E
2

P
E
3

P
E
4

A
C
U

I
O
0
0

I
O
0
1

I
O
0
2

I
O
0
3

I
O
0
4

I
O
0
5

P
E
1

P
E
2

P
E
3

P
E
4

I/O Slots PE Array Slots

Modem
(USA Only)

DECmpp 12000

Card Cage (Rear View)

DECmpp 12000−LC

Card Cage (Rear View)

MKV−040000314−03−RAGS

0
9

1
0

1
1

1
2

1
3

1
4

1
5

1
0

1
1

1
2

1
3

1
4

1
5

1

SlotsP
V
M
E

P
V
M
E

Modem
(USA Only)

Array
Control
Unit

6

I
O

I
O

I
O

I
O

I
O

I
O

I
O

*

*

* Slot IO04 Reserved for Optional PDA Interface

M

V
I
B

M
V
I
B

7–2 Backplane Jumpers and Upgrading PE Arrays

7.1 DPU Backplane Jumpers

7.1.1 Backplane Access
Backplane access is through the front of the DPU. DECmpp 12000 enclosures
have a conventional front door which is opened by unlocking a 1/4-turn Allen
head cap latch. DECmpp 12000–LC enclosures have three doors on the front of
the DPU, as shown in Figure 7–2.

1. Open the outer top and bottom doors.

2. Open the inner door, using the door latch key.

3. Reverse these steps to close the DPU front doors: close the inner door first,
then the bottom door, and finally the outer door.

Figure 7–2 DECmpp 12000–LC/Sx Front Doors

Outer Door (1)

Inner Door (3) Bottom Door (2)

Fan Tray

Power Supply

Latches

Backplane

MKV-040000314-44-MPS

Backplane Jumpers and Upgrading PE Arrays 7–3

7.1 DPU Backplane Jumpers

7.1.2 ACU, VMEbus, and I/O Jumpers
As shown in Figure 7–3, there are jumpers at the top of the backplane for the
ACU, IO00 (MVIB), and each I/O slot (two shown). The jumpers over the ACU
and IO00 slots should be installed exactly as shown. As MPVMEbus I/O devices
are added and removed, corresponding jumpers above each I/O slot must be added
and removed.

Each I/O slot, I/O01 through I/O14, has a set of pins above it which allow certain
MPVMEbus signals to be jumpered past those slots which are not occupied
by PCBs. Going from right to left, ensure that the set of three jumpers have
been removed from above all I/O01 through I/O14 slots that are occupied by
MPVMEbus PCBs.

Conversely, ensure that jumpers are installed above all unoccupied I/O slots up
to, but not including, the slot containing the last I/O PCB. Slots after (to the left
of) the last occupied I/O slot may or may not have the jumpers installed. It is of
no consequence.

Figure 7–3 DPU Backplane Jumpers

ABCDEF ABCDEF

E B

ACUIO 00
P02

E B

 Slot ACU Slot

MKV−040000314−21−RAGS

IO 01P03

E C

ABCDEF

Any Unoccupied
I/O Slot

IO 02P03

E C

ABCDEF

Any Occupied
I/O Slot

VME Interface
Front−End

7–4 Backplane Jumpers and Upgrading PE Arrays

7.1 DPU Backplane Jumpers

7.1.3 X-Net Jumpers
The X-Net jumpers control the X-Net connections between PE array PCBs. They
are on the bottom of the backplane, beneath PE array slots 0 through 15 on
DECmpp 12000 systems, and beneath slots 0 through 3 on DECmpp 12000–LC
systems.

When changing X-Net jumpers:

• Only slots with PE array PCBs should have X-Net jumpers installed. Never
install any X-Net jumper on a slot that does not contain a PE array PCB.

• The X-Net jumper installations for all occupied PE array PCB slots can
change when the number of PE array PCBs in the system changes. When you
increase or decrease the number of PE array PCBs, review the X-Net jumper
configurations for every slot containing a PE array PCB.

Figure 7–4 shows jumpering for DECmpp 12000–LC configurations. Figure 7–5
shows the X-Net jumpering for DECmpp 12000 configurations.

Figure 7–4 DECmpp 12000–LC/Sx X-Net Jumper Configurations

Single PE-array board systems

Two PE-array board systems

Four PE-array board systems

J11 J10 J09 J08

Backplane Jumpers and Upgrading PE Arrays 7–5

7.1 DPU Backplane Jumpers

Figure 7–5 DECmpp 12000/Sx X-Net Jumper Configurations

M
K

V
−

0
4

0
0

0
0

3
1

4
−

2
0

−
R

A
G

S

J7
J5

J4
J6

J3
J2

J1
J0

J7
J5

J4
J6

J3
J2

J1
J0

J7
J5

J4
J6

J3
J2

J1
J0

J7
J5

J4
J6

J3
J2

J1
J0

J7
J5

J4
J6

J3
J2

J1
J0

B
oa

rd
G

lo
ba

l

Lo
ca

l

B
oa

rd
G

lo
ba

l

Lo
ca

l

B
oa

rd
G

lo
ba

l

Lo
ca

l

B
oa

rd
G

lo
ba

l

Lo
ca

l

B
oa

rd
G

lo
ba

l

Lo
ca

l

S
in

gl
e

P
E

−A
rr

ay
 B

oa
rd

 S
ys

te
m

s

T
w

o
P

E
−A

rr
ay

 B
oa

rd
 S

ys
te

m
s

F
ou

r P
E

−A
rr

ay
 B

oa
rd

 S
ys

te
m

s

E
ig

ht
 P

E
−A

rr
ay

 B
oa

rd
 S

ys
te

m
s

S
ix

te
en

 P
E

−A
rr

ay
 B

oa
rd

 S
ys

te
m

s

7–6 Backplane Jumpers and Upgrading PE Arrays

7.2 System Issues for Upgrades

7.2 System Issues for Upgrades

Note

Observe the following configuration rules:

• Every DECmpp system must have the correct number of supported
PE array PCBs. DECmpp 12000 systems may have 1, 2, 4, 8, or 16
PE array PCBs. DECmpp 12000–LC systems may have 1, 2, or 4 PE
array PCBs. No other combinations are supported.

• When you add PE array PCBs, you must change the data parallel
unit (DPU) backplane X-Net jumpers.

• PE array PCBs start in the first PE array PCB slot and occupy
contiguous slots up to the maximum installed. Each remaining PE
array PCB slot must have a router PCB installed. No PE array PCB
slot can be left empty.

No system software changes are required. The system software automatically
reconfigures itself to accommodate any supported number of PE array PCBs when
booted.

With one exception, DPU programs run on any legal size PE array (1, 2, 4, 8, or
16) and increasing the array size increases the run speed. However, if you have
hard-coded the size of the processor array in a DECmpp Programming Language
(MPL) program, the program may need to be changed and recompiled before
being run on a different-sized PE array.

Backplane Jumpers and Upgrading PE Arrays 7–7

7.3 Adding Processor Element Array PCBs

7.3 Adding Processor Element Array PCBs
Follow this procedure to add additional PE array PCBs. Refer to the guidelines in
Section 6.3 for instructions on handling PCBs and Figure 7–1 for PCB placement
in the DPU card cage.

Caution

Always wear antistatic straps. PE array and router PCBs can be damaged
very easily by an inadvertant static discharge.

1. Open the DPU rear door to access the card cage.

2. Turn off the power to the DPU as described in Chapter 1.

3. Identify the slots that will receive the new PE array PCBs.

4. Remove the router PCBs from these slots:

a. Remove the lower PCB retainer bar.

b. Loosen the captive screws (if present) at the top and bottom of the PCB
faceplate.

c. Use the ejector levers to release the PCB and move it outward from its
slot.

d. Place the router PCB on an antistatic mat.

5. Carefully slide the new PE array PCB into the slot. When it is almost in
place, you might encounter some resistance; push firmly to seat it in the
backplane connectors.

6. Secure the PCB to the card cage by closing the ejector levers.

7. Tighten the captive screws (if present) at the top and bottom of the PCB
faceplate.

8. Place the router PCB just removed in the PE array packing material.

9. Repeat for each new PE array PCB.

10. Replace the lower PCB retainer bar.

11. Open the DPU front door and inner front door (-LC only).

12. Reconfigure the backplane X-Net jumpers, as described in Section 7.1.3.

13. Turn on the system, as described in Chapter 1.

14. Close and lock the DPU rear door, the DPU inner front door (-LC only), and
the front door.

15. Run the PE diagnostics as a confidence check.

7–8 Backplane Jumpers and Upgrading PE Arrays

7.4 Reconfiguring Processor Element Array PCBs

7.4 Reconfiguring Processor Element Array PCBs
PE arrays can be downgraded so that a DECmpp system can be used with
reduced performance while PE array spares are being acquired. However,
this necessitates additional router PCBs because no PE array slot may be left
unoccupied. The process of downgrading a PE array is very similar to that of
upgrading.

Caution

Always wear antistatic straps. PE array and router PCBs can be damaged
very easily by an inadvertant static discharge.

1. Open the DPU rear door to access the card cage.

2. Turn off the power to the DPU as described in Chapter 1.

3. Determine the next lower supported PE array configuration (Section 7.2).

4. Identify the slots that will have PE array PCBs taken out and router PCBs
installed.

5. Remove the PE array PCBs from these slots:

a. Remove the lower PCB retainer bar.

b. Loosen the captive screws (if present) at the top and bottom of the PCB
faceplate.

c. Use the ejector levers to release the PCB and move it outward from its
slot.

d. Place the PE array PCB on an antistatic mat.

6. Carefully slide the spare router PCB into the slot. When it is almost in place,
you might encounter some resistance; push firmly to seat it in the backplane
connectors.

7. Secure the PCB to the card cage by closing the ejector levers.

8. Tighten the captive screws at the top and bottom of the PCB faceplate.

9. Repeat for each PE array PCB being removed.

10. Replace the lower PCB retainer bar.

11. Open the DPU front door and inner front door (-LC only).

12. Reconfigure the backplane X-Net jumpers to support the temporary
configuration, as described in Section 7.1.3.

13. Turn on the system, as described in Chapter 1.

14. Close and lock the DPU rear door, the DPU inner front door (-LC only), and
the front door.

15. Run the PE diagnostics as a confidence check.

As soon as the PE array spares arrive, reconfigure the array to the original state
(using the new spares) and rerun PE diagnostics as a confidence check.

Backplane Jumpers and Upgrading PE Arrays 7–9

A
Recommended Spares List

Table A–1 is a recommended spares listing (RSL) for the DECmpp 12000/Sx and
DECmpp 12000–LC/Sx Series Data Parallel Units.

Table A–1 DECmpp 12000/Sx Data Parallel Unit RSL

DEC PN Vendor PN Description

29-29371-01 3400-0000-01 Array control unit PCB1;2

29-29397-01 3400-0002-00 1K PE PCB w/16MB RAM1;2

29-29396-01 3400-0002-01 1K PE PCB w/64MB RAM1;2

29-29372-01 3400-0018-00 Router PCB 1;2;3

29-29377-01 3400-0031-02 Parallel VME I/O controller PCB1;2

29-29563-01 4200-0079-00 100-pin front-end VME I/O cable1;2

29-29564-01 4200-0078-00 RS-232 modem cable1;2

54-20087-01 N/A VMEbus interface (MVIB)1;2

54-20085-01 N/A TURBOchannel VMEbus controller (3VIA)1;2

12-25537-01 N/A VME loopback connector1;2

29-29373-01 8000-0009 Modem assembly (for United States systems only)2

70-30318-01 N/A Lightpipe assembly2

70-30319-01 N/A DPU power supply assembly2

70-30317-01 N/A DPU fan cage assembly2

FC-10169-AC N/A VME test module4

1Branch-level spare
2Geography-level spare
3Recommend sufficient quantity be stocked (see Product Support Plan)
4Special test tool

Recommended Spares List A–1

B
Data Parallel Unit Reference Pages

This appendix contains the following Data Parallel Unit reference pages.

• acu_ppdma(1)

• mpconfig(1)

• mpi(1)

• mpq(1)

• mpstat(1)

• pe_arith(1)

• pe_ckonet(1)

• pe_diag(1)

• pe_func(1)

• pe_macro(1)

• pe_memdiag(1)

• pe_rtbp(1)

• pe_rtdiag(1)

• pe_rtr(1)

• pe_scan(1)

• dpumanager(8)

• mpshutdown(8)

Data Parallel Unit Reference Pages B–1

acu_ppdma(1)

acu_ppdma(1)

acu_ppdma — DECmpp Sx array control unit (ACU) Peek/Poke, DMA transfer test

Syntax

acu_ppdma [-qtb]

Description

The acu_ppdma command tests the ACU board’s ability to perform a DMA transfer
between the front-end processor’s memory and PMem. It also exercises the peek
/poke capability.

Options

-b
Use this option to select the Burn-in test; runs the diagnostic repetitively,
reporting the error count at the end of each pass.

-q
Use this option to select the Quick test; selects a brief version of some of the
tests.

-t
Use this option to select the Terse message style; the test prints only the most
essential messages.

Diagnostics

The test defines an array of 32 x 32 processor elements for its area of operation,
starting at the processor element at row 0, column 0. It loads a buffer in front-
end processor memory with 16K bytes of random data which it then transfers via
DMA to PMem, allotting 16 bytes to each processor element (PE). Then, by means
of the peek/poke mechanism, it reads the data a byte at a time from PMem and
verifies its correctness.

Next, the test loads a new random sequence of data a byte at a time into PMem.
It then makes a DMA transfer from PMem into the front-end processor’s memory
where it checks the correctness of the data.

If the test detects a data error, it determines where it occurred in the PE array
and reports this information to the user. If too many errors occur, the test is
aborted.

Files

$MP_PATH/field/bin/acu_ppdma

B–2 Data Parallel Unit Reference Pages

mpconfig(1)

mpconfig(1)

mpconfig — DECmpp Sx data parallel unit (DPU) configuration information,
Version 1.1

Syntax

mpconfig

Description

The mpconfig(1) command prints out information about the DPU. This command
can only be run from a machine attached to a DECmpp Sx DPU. The information
generated is similar to the following:

DECmpp Sx DPU Model MP-1204 (64 rows, 64 columns)
Serial number: 0
Microcode version: 2.2.67
Hardware option: 3
processor element (PE) memory size: 16384 bytes
array control unit (ACU) memory size: 114688 bytes

Files

/usr/tmp/.dpuconfig

Data Parallel Unit Reference Pages B–3

mpi(1)

mpi(1)

mpi — DECmpp Sx data parallel unit (DPU) configuration information, network
style, Version 1.1

Syntax

mpi [hostname]

Description

The mpi command prints out information about all data parallel units (DPUs) on
any attached local area network supporting SO_BROADCAST sockets and the
broadcast address INADDR_BROADCAST. The broadcast message is received
by a daemon program, maspard(8) , running on all machines that have a DPU
attached. Upon receipt of the broadcast message, each daemon sends a message
describing the DPU attached to the client program, mpi . The mpi can be run
on any machine in the network; even those without a DPU. The information
generated is similar to the following:

Copyright (c) 1991 MasPar Computer Corporation. All rights reserved.
processor
element

Version 2.2 MACHINE TYPE (PE) PMem CMem MODEL UCODE QUEUE
svsales 4.2RISC 64x64 65536 114688 1104 2.4.11 0
krusty 4.2RISC 32x32 16384 114688 1101 2.7.8 0
pigpen 4.2RISC 64x64 16384 114688 1204 2.6.228 0
lucy 4.2RISC 64x128 16384 114688 1208 2.6.179 1
linus 4.2RISC 32x32 16384 114688 1101 2.7.8 0
alpha2 4.2RISC 32x64 16384 114688 1202 2.6.238 1

Files

/usr/tmp/.dpuconfig

See Also

mpq(1)

B–4 Data Parallel Unit Reference Pages

mpq(1)

mpq(1)

mpq — DECmpp Sx job queue examination program, Version 1.1

Syntax

mpq [hostname]

Description

The mpq command examines the shared memory segment maintained by
dpumanager(8) that contains the list of DECmpp Sx data parallel unit (DPU)
jobs waiting for execution. When a host name is specified, information on that
machine’s job queue is given. When no host name is specified, the job queue for
the current machine is shown.

For each job queued, mpq reports the current rank in the queue, the user’s name,
the id of the process that opened the DPU device file, the process group, the
processor element (PE) memory size requirement, time in current status (active
or waiting), and the current job status.

The job status may be one of these values:

• active — The job currently holds the DPU device.

• waiting — The job is waiting for DPU to be available.

• inactive — The DPU device has been opened by the job but access has not yet
been requested (or the device has been released).

Jobs in DPU memory that are not actually running have the additional status of
swapped. An example of an inactive job is a program that has run to completion
under the symbolic debugger and has not been quit or restarted yet. A job that is
inactive does not hold the DPU device; other jobs can use the DPU while that job
is still inactive.

If dpumanager(8) is not running, no output is given.

Restrictions

Due to the dynamic nature of the queue, mpq may occasionally print erroneous
information.

See Also

dpumanager(8), mpstat(1)

Data Parallel Unit Reference Pages B–5

mpstat(1)

mpstat(1)

mpstat — Prints DECmpp Sx job accounting statistics, Version 1.1

Syntax

mpstat [options]

Description

The mpstat command examines, and optionally clears, the accounting file
generated by the dpumanager(8) program. Depending on the options specified, it
prints a list of all jobs run and/or a summary.

Options

-a
Use this option to request a chronological list of all of the relevant jobs listed in
the accounting file. The job starting time, user name, process id, running time
and waiting time is printed for each job. Waiting time includes time waiting for
access, time when a job is swapped out, inactive periods after the job has released
the data parallel unit (DPU) but has not closed the device, and a small amount of
system overhead.

-c
Use this option to request the accounting file to be cleared at the end of the
program.

-f file
Use this option to specify the name of an accounting file to be used in place of the
default.

-s
Use this option to request a summary showing the number of jobs, the average
and maximum running times, and the average and maximum wait times. This is
the default when neither the -a nor -c options are specified.

-t job_count
Use this option to specify that only the tail job_count entries in the accounting
log are of interest. This allows you to see only the most recent log entries. Note
that other filters (like the -u option) are applied after this one, so you may see
less than the specified number of entries. This option may be used with both the
-a and -s options.

-u userName
Use this option to cause mpstat to only count jobs for the specified user (login
name).

Restrictions

The accounting file may only be cleared when you are running mpstat as root.

B–6 Data Parallel Unit Reference Pages

mpstat(1)

Files

/usr/adm/dpuacct

See Also

dpumanager(8), mpq(1)

Data Parallel Unit Reference Pages B–7

pe_arith(1)

pe_arith(1)

pe_arith — DECmpp Sx processor element (PE) arithmetic operations test

Syntax

pe_arith [-bqt]

Description

The pe_arith command tests the operation of the arithmetic commands.

Using peek/poke, the front-end program loads four buffers of data into each PE’s
PMem: an 8-bit, 16-bit, 32-bit and 64-bit buffer.

The front-end program starts the back-end program and gives it the op code and
op size. The back-end program has each PE perform the requested operation,
each PE storing the result in another data buffer in its PMem. The back-end
program is halted and the front-end program directly checks the results in
PMem, using peek/poke.

Options

-b
Use this option to specify the Burn-in test; runs the diagnostic repetitively,
reporting the error count at the end of each pass.

-t
Use this option to specify terse message style; prints only the most essential
messages.

Files

$DIAG_PATH/field/bin/pe_arith

B–8 Data Parallel Unit Reference Pages

pe_ckonet(1)

pe_ckonet(1)

pe_ckonet — DECmpp Sx octagon net test

Syntax

pe_ckonet [-qtb]

Description

The pe_ckonet command tests the ability of processor elements (PE) to shift data
using the xnet. The test takes a 32-bit pattern and does a zero distance 32-bit
xnet move north, northeast, east, southeast, south, southwest, west, and finally
northwest. It compares the value received by northwest with the value originally
sent. It repeats the test, successively increasing the distance, until data is shifted
a distance of 2048.

If an error occurs, the test reports the size of the octagon loop (the distance
shifted) encountering the error. Nothing further can be inferred about the
location of the fault. However, when this happens, the test then uses peek/poke
to check each PE for parity error. It reports the exact location of the offending
PE. Although it is possible that some other failure mechanism could cause a data
errror in the octagon shift ring, it is most likely to be a parity error.

Options

-b
Use this option to specify the Burn-in test. This runs the diagnostic repetitively,
reporting the error count at the end of each pass.

-q
Use this option to specify quick test. This selects a brief version of some of the
tests.

-t
Use this option to specify terse message style. The test prints only the most
essential messages.

Files

$MP_PATH/field/bin/pe_ckonet —Executable binary

Data Parallel Unit Reference Pages B–9

pe_diag(1)

pe_diag(1)

pe_diag — DECmpp Sx processor element (PE) board and backplane diagnostic

Syntax

pe_diag [-qtb]

Description

The pe_diag command performs the following diagnostics:

1. Serial Scan Tests (pe_scan) — Tests the serial scan chains on the array
control unit (ACU) board, the PE board and the router boards:

• ACU Board

Main scan chain

EEPROM scan chain

• PE and ROUTER boards

Router shift chain S1, S2 and S3

EEPROM scan chain

GOR scan chain

PReg scan chain

Parity: PReg address parity, PE instruction parity, RT instruction
parity, M-Machine instruction parity

2. Macro Instruction Tests (pe_macro)

• Arithmetic and logic instruction tests

• Move instruction tests

• Load/store instruction tests

• XNet instruction tests

• Router instruction tests

• Full backplane router instruction tests

3. XNet Tests (pe_xnet)

• XNet simple test

• XNet complex test

• XNet pipe mode simple test

• XNet pipe mode complex test

• XNet copy mode simple test

• XNet copy mode complex test

• PE parity test

4. Router backplane test (pe_rtbp)

B–10 Data Parallel Unit Reference Pages

pe_diag(1)

Options

-b
Use this option to specify the Burn-in test; runs the diagnostic repetitively,
reporting the error count at the end of each pass.

-q
Use this option to select quick test; selects a brief version of some of the tests.

-t
Use this option to specify terse message style; prints only the most essential
messages.

Files

Executable file found in directory $MP_PATH/field/bin :
pe_diag .

See Also

pe_macro, pe_rtbp, pe_scan, pe_xnet

Data Parallel Unit Reference Pages B–11

pe_func(1)

pe_func(1)

pe_func — DECmpp Sx processor element (PE) function test

Syntax

pe_func [-t]

Description

The pe_func command enables the entire array and has each PE perform the
following functions:

• div32: 0x12345678 / 1 = ?

• mul64: 0x123456789abcdef0 * 0xfedcba9876543210 = ?

• div32: 0x11111111 / 2 = ?

• div32: 0x87654321d / 1 = ?

• div64: 0x123456789abcdef0 / 1 = ?

• udiv32: 4 / 2 = ?

• add8: 0xff + 0xff = ?

• add8: 0xff + 1 = ?

• add8: 0 + 1 = ?

• add8: 1 + 1 = ?

• add8: 2 + 2 = ?

• add8: 4 + 4 = ?

• add8: 0x10 + 0x10 = ?

• add8: 0x20 + 0x20 = ?

• add8: 0x40 + 0x40 = ?

A GOR of the answers to each function is returned to the front end and verified.
In case of error, prints the operation number, the expected result and the actual
result.

Options

-t
Use this option to specify terse message style; prints only the most essential
messages.

Files

Binary executable file: $DIAG_PATH/field/bin/pe_func

B–12 Data Parallel Unit Reference Pages

pe_macro(1)

pe_macro(1)

pe_macro — DECmpp 12000/Sx processor element (PE) board macro instruction
tests

Syntax

pe_macro [-qtb]

Description

The pe_macro command performs the following tests:

1. Arithmetic and logic instruction tests

• ortest1 — Global OR test

• ebit1 — E-bit operation test

• And1Tests1 — Single bit AND test

• AndTests1 — Preg to PReg AND test

• AndTests2 — Immediate to PReg AND test

• AndTests3 — 64-bit AND test

• OrTests1 — Register to register OR test

• OrTests2 — Immediate to register OR test

• sadd1 — Short add test

• AddTests1 — Register to register ADD test

• AddTests2 — Immediate to register ADD test

• AddTests3 — Check flags and ADD and MOV instructions

• SubTests1 — Preg to PReg subtraction test

• SubTests1 — Immediate to PReg subtraction test

• ShiftTests — Shift instruction test

• mult1 — Multiply test

• div1 — 64-bit signed integer divide test

• divu0 — 64-bit unsigned integer divide test

• fadd1 — 64-bit floating point add test

• fmult1 — 64-bit floating point multiply test

• random1 — Random macro instruction test

2. Move instruction tests

• MoveTests1 — 8-bit move test

• MoveTests2 — 16-bit move test

• MoveTests3 — 64-bit move test

• MoveTests4a — MOV1: set flag bits test (part 1)

• MoveTests4b — MOV1: set flag bits test (part 2)

Data Parallel Unit Reference Pages B–13

pe_macro(1)

• MoveTests4c — MOV1: clear flag bits test (part 1)

• MoveTests4d — MOV1: clear flag bits test (part 2)

• MoveTests4e — MOV1: PReg to flag bit test

• MoveTests4f — MOV1: Immediate to PReg test

• MoveTests5a — MOV1UC: Flag to flag 1’s test (part 1)

• MoveTests5b — MOV1UC: Flag to flag 1’s test (part 2)

• MoveTests5c — MOV1UC: Flag to flag 0’s test (part 1)

• MoveTests5d — MOV1UC: Flag to flag 0’s test (part 2)

• MoveTests5f — MOV1UC: Immediate to PReg test

• Else1ucTests — ELSE1UC instruction test

• MoveTests6 — 8-bit & 32-bit move test

3. Load/store instruction tests

• msol0 — Directly addressed solitary load/store test

• msol1 — Indirectly addressed solitary load/store test

• msol2 — Indirectly addressed single PE load/store test

• LdSt — Load/store instruction test

• mtest0 — 32-bit direct load/store test

• mtest1 — Load, store and M-bit queue test

• mtest2 — Indirect load/store test

• mtest3 — Simple indirectly addressed load/store test

• mtest4 — 64-bit directly addressed load/store test

• mtest5 — 32-bit byte offset load/store test

• tagtest0 — Tag stall test - many PReg’s to single PMem location

• tagtest0f — Tag stall test - many PReg’s to many PMem locations

4. XNet instruction tests

• xnetNW — XNet shift NorthWest test

• xnetN — XNet shift North test

• xnetNE — XNet shift NorthEast test

• xnetE — XNet shift East test

• xnetSE — XNet shift SouthEast test

• xnetS — XNet shift South test

• xnetSW — XNet shift SouthWest test

• xnetW — XNet shift West test

• xnet1 — Shift data from odd to even columns and back

• onet — XNet octagon shift test

• onet1 — XNet octagon shift test (with PMem activity)

B–14 Data Parallel Unit Reference Pages

pe_macro(1)

5. Router instruction tests

• rt0a — 16-bit router send test

• rt0b — 16-bit router fetch test

• rt0c — Router send test (1, 8, 16, 32, 64 bits

• rt0d — Router fetch test (1, 8, 16, 32, 64 bits)

• rt0e — Router send and fetch test

• rt0f — Router send and fetch (while storing) test

• rt0g — Router open/send and fetch/close test

• rt1a — Single PE per cluster router send & fetch test

• rt2a — All PEs send/fetch to self

• rt2b — All PEs r0send/rfetchc to self

6. Full backplane router instruction tests

• rt2c — Forward router send test

• rt2d — Forward router fetch test

• rt2e — Reverse router send test

• rt2f — Reverse router fetch test

• rt2g — All PEs send/fetch to self (M-machine busy)

Basic Test Strategy

Each of the following tests employ the same structure and control method.
Since it is nearly impossible for a short error message to convey the full context
including the events preceding the error, it is important that you be able to trace
this back using the program listings.

The diagnostic consists of a common front-end program (HDB script) which
downloads and starts the assembly language program (macro program), which
runs on the array control unit (ACU). The macro program performs various
operations and returns results to the front end program using the FRBEQ. The
front-end program has access to a golden file which contains all the correct values
to be returned using the FRBEQ.

The golden file also contains an error message with each value and when the
actual value does not compare, the front-end program prints the error message as
well as the error message number.

If you want to delve more deeply into the matter, refer to the macro program
listing. This listing contains a comment at each statement sending data down the
FRBEQ. These comments are numbered, and the number corresponds to the error
message number. Knowing this, you can quickly locate the place in the macro
program where the error occurred.

Sometimes when testing a faulty system, a FRBEQ timeout is a common problem.
The front-end program loads and starts the macro program, then waits for data
to appear on the FRBEQ. If none appears after a reasonable length of time, the
front-end program aborts the test. However, it also reports the contents of the
Halt Code Status Register, which tells why the macro program halted. This can
give a clue to the difficulty.

Data Parallel Unit Reference Pages B–15

pe_macro(1)

Sometimes the macro program sends data out the FRBEQ for awhile before
halting. The front-end program reports which record it was waiting for when it
timed out, and this information may prove useful.

Individual Test Descriptions

The following list describes the individual tests in alphabetical order:

• AddTests1 : Register To Register ADD Test — This test performs 8-bit, 16-bit,
32-bit, and 64-bit addition between PRegs. It performs the following sums for
each of the four word sizes:

1 + 1 = 2

1 + –1 = 0

–1 + –1 = –2

1 + –81 = –80

It demonstrates the ability to handle both positive and negative numbers, as
well as the proper sign extension for each word size.

The test enables all the PEs and loads an identical set of data into each
PE’s PRegs. After each addition, the test performs a global OR of each PE’s
answer. If it detects an error, the test prints an error message which gives
the addition the test was attempting, the expected answer and the actual
answer.

After each addition, it performs a global OR of each PE’s flag bits. If any of
these is in error, an error message is printed giving the operation attempted,
the expected flag bits and the actual flag bits. The flag bits are collected as
shown:

2 1 0

n z v c

Overflow flag
Zero flag
Negative flag

bit3

Carry flag

MPP_FIG_276

If this test reports a wrong answer, it indicates that the fault is associated
with one or more PEs.

• AddTests2 : Immediate To Register ADD Test — This test performs 8-bit,
16-bit, 32-bit, and 64-bit addition between an immediate and a PReg. It
performs the following sums for each of the four word sizes:

• 1 + 1 = 2

• 1 + –1 = 0

• –1 + –1 = –2

• 1 + –81 = –80

It demonstrates the ability to handle both positive and negative numbers, as
well as the proper sign extension for each word size.

B–16 Data Parallel Unit Reference Pages

pe_macro(1)

The test enables all the PEs. After each addition, the test performs a global
OR of each PE’s answer. If it detects an error, the test prints an error
message which gives the addition the test was attempting, the expected
answer and the actual answer.

After each addition, it performs a global OR of each PE’s flag bits. If any of
these is in error, an error message is printed giving the operation attempted,
the expected flag bits and the actual flag bits. The flag bits are collected as
shown:

2 1 0

n z v c

Overflow flag
Zero flag
Negative flag

bit3

Carry flag

MPP_FIG_276

If this test reports a wrong answer, it indicates that the fault is associated
with one or more PEs.

• AddTests3 : Check Flags After ADD And MOV Instructions — This test
executes a variety of additions and move instructions.

The test enables all the PEs and initializes their PRegs with an identical set
of data. After each operation, the test does a global OR of each PE’s answer,
then a global OR of each PE’s flag bits.

If it detects an error in the result, it prints an error message giving the
instruction under test, the expected result and the actual result. If any flag
is in error, the test prints an error message stating which flag is in error, the
expected value and the actual value.

• And1Tests1 : Single Bit AND Test — This is a test of the AND1 instruction.
It uses the following bits as operands:

Flag Bits PReg’s

lsb 2[c4] — where c4 = 1024
lflag 3[c4]
cflag 4[c4]
vflag 5[c4]
zflag 6[c4]
nflag 7[c4]
tflag 8[c4]
fflag 9[c4]
rflag 10[c4]
64[c0] 11[c4]

12[c4]

Data Parallel Unit Reference Pages B–17

pe_macro(1)

The test starts by testing the ability to perform the AND1 function between
the following sources and destinations:

SRC Destination Message Reference

Each flag bit lsb Message #1–#40
Each flag bit lflag Message #41–#80
Each flag bit cflag Message #81–#120
Each flag bit vflag Message #121–#160
Each flag bit zflag Message #161–#200
Each flag bit nflag Message #201–#240
Each flag bit tflag Message #241–#180
Each flag bit fflag Message #281–#320
Each flag bit rflag Message #321–#360
Each flag bit 64[c0] Message #361–#400

If it detects an error in the result, it prints an error message giving the
instruction under test, the source and destination operands, the expected
result and the actual result.

After each AND1 operation, it tests the lflag. If this is wrong, it prints an
error message giving the expected and actual value of the flag.

Next, initializing the destinations as shown, the test performs the AND1
function between the following source and destination operands.

Dest
Init. SRC Destination Message Reference

1 1025[c2] Each flag bit Message #401–#422
1 Each flag bit Each PReg bit Message #423–#444
0 1025[c2] Each flag bit Message #445–#466
0 Each flag bit Each PReg bit Message #467–#488

After each AND1 operation, it tests the lflag. If this is wrong, it prints an
error message giving the expected and actual value of the flag.

If it detects an error in the result, it prints an error message giving the
instruction under test, the destination operand, the expected result and the
actual result.

• AndTests1 : Register To Register AND Test (8, 16, 32 and 64 bit) — This test
performs 8-bit, 16-bit, 32-bit, and 64-bit AND operations.

After each AND, if it detects an error, the test prints an error message which
gives the AND the test was attempting, the expected answer and the actual
answer.

After each AND, it checks the flag bits. If any of these is in error, an error
message is printed giving the operation attempted, the expected flag bits and
the actual flag bits. The flag bits are collected as shown:

B–18 Data Parallel Unit Reference Pages

pe_macro(1)

2 1 0

n z v c

Overflow flag
Zero flag
Negative flag

bit3

Carry flag

MPP_FIG_276

• AndTests2 : Immediate To PReg AND Test (8, 16, 32 and 64 bit) — This test
performs 8-bit, 16-bit, 32-bit, and 64-bit AND operations.

After each AND, if it detects an error, the test prints an error message which
gives the AND the test was attempting, the expected answer and the actual
answer.

After each AND, it checks the flag bits. If any of these is in error, an error
message is printed giving the operation attempted, the expected flag bits and
the actual flag bits. The flag bits are collected as shown:

2 1 0

n z v c

Overflow flag
Zero flag
Negative flag

bit3

Carry flag

MPP_FIG_276

• AndTests3 : 64 Bit AND Test — With all PEs enabled, this test performs eight
64-bit AND operations in immediate succession into eight adjacent PReg
locations. Then it checks each of these PReg locations for the correct answer.
One purpose of this test is to verify that AND64 operations into adjacent
PReg locations do not affect each other.

This test performs the following PReg to PReg operations:

0x21436587deadbeef & 0x21436587deadbeef –> 0x000[c0]

0x21436587deadbeef & 0x0000000000000000 –> 0x040[c0]

0x21436587deadbeef & 0xffffffffffffffff –> 0x080[c0]

0x21436587deadbeef & 0x1248124812481248 –> 0x0c0[c0]

0x21436587deadbeef & 0xedb7edb7edb7edb7 –> 0x100[c0]

It then performs the following IMMEDIATE to PReg operations:

0xffffffffffffffff & 0x1248124812481248 –> 0x140[c0]

0xffffffffffffffff & 0xedb7edb7edb7edb7 –> 0x180[c0]

0x0000000000000000 & 0xffffffffffffffff –> 0x1c0[c0]

After performing all of the above operations, keeping each answer in a
different PReg location, the test checks for errors. If it finds an error, it prints
an error message giving the attempted AND operation, the expected result
and the actual result.

Data Parallel Unit Reference Pages B–19

pe_macro(1)

• Else1ucTests : ELSE1UC Instruction Test — The ELSE1UC instruction
complements the destination value, then ANDs the source with the
destination, placing the results both in the destination and in lflag.

This test uses the following bits as operands:

Flag Bits PRegs

lsb 2[c4] — where c4 = 1024
lflag 3[c4]
cflag 4[c4]
vflag 5[c4]
zflag 6[c4]
nflag 7[c4]
tflag 8[c4]
fflag 9[c4]
rflag 10[c4]
65[c0] 11[c4]

12[c4]

The test starts by testing the ability to perform the ELSE1UC function
between the following sources and destinations:

SRC Destination Message Reference

Each flag bit lsb Message #1–#40
Each flag bit lflag Message #41–#80
Each flag bit cflag Message #81–#120
Each flag bit vflag Message #121–#160
Each flag bit zflag Message #161–#200
Each flag bit nflag Message #201–#240
Each flag bit tflag Message #241–#180
Each flag bit fflag Message #281–#320
Each flag bit rflag Message #321–#360
Each flag bit 64[c0] Message #361–#400

If it detects an error in the result, it prints an error message giving the
instruction under test, the source and destination operands, the expected
result and the actual result.

After each ELSE1UC operation, it tests the lflag. If this is wrong, it prints an
error message giving the expected and actual value of the flag.

Next, initializing the destinations as shown, the test performs the ELSE1UC
function between the following source and destination operands.

Dest
Init. SRC Destination Message Reference

1 1025[c2] Each flag bit Message #401–#422

B–20 Data Parallel Unit Reference Pages

pe_macro(1)

Dest
Init. SRC Destination Message Reference

1 Each flag bit Each PReg bit Message #423–#444
0 1025[c2] Each flag bit Message #445–#466
0 Each flag bit Each PReg bit Message #467–#488

After each ELSE1UC operation, it tests the lflag. If this is wrong, it prints an
error message giving the expected and actual value of the flag.

If it detects an error in the result, it prints an error message giving the
instruction under test, the destination operand, the expected result and the
actual result.

• LdSt : LOAD/STORE Instruction Test — All PEs are enabled and authorized
to make load/store transactions. Each PE stores a constant from PReg to
PMem, then loads it back from PMem to (another) PReg:

Constant --> PReg --> PMem --> PReg

If the test detects an error, it prints an error message showing the chain of
store/load operations, and giving the expected and actual result.

An erroneous value indicates that one or more PEs made an error during this
transaction.

• MoveTests1 : 8-Bit MOVE Test — This test verifies that the MOV8 instruction
moves only 8 bits and does not affect adjacent data.

All PEs are enabled. After initialization, the test makes the sequence of 8-bit
moves shown below:

Initialization

* MOV32: 0x5e461237 –> 16[c0]

* MOV32: 0xfffeffff –> acc

Test

* MOV8: 16[c0] –> 64[c0] –> acc –> 72[c0] = 0x37 (?)

If it detects an error, it prints an error message giving the operation, the
expected result and the actual result.

• MoveTests2 : 16-Bit & 32-Bit MOVE Test — This test verifies that the MOV16
instruction moves only 16 bits and does not affect adjacent data.

It enables all PEs, and initializes PReg 16[c0] with a 32-bit constant:

Test #1 — Makes three 16-bit moves starting with the data in 16[c0], and
verifies the result. Should not move the high order bits from 16[c0].

Test #2 — Makes three 32-bit moves starting with the data in 16[c0],
and verifies the result. The previous test should not have affected this
number.

If it detects an error, it prints an error message giving the operation, the
expected result and the actual result.

• MoveTests3 : 64-Bit MOVE Test — Assembles a 64-bit number using two
32-bit moves. Moves the 64-bit number using a 64-bit move. Then picks out
the low word and high word from the 64-bit number using two 32-bit moves.

Data Parallel Unit Reference Pages B–21

pe_macro(1)

• MoveTests4a : MOV1: Set Flag Bits Test (part 1) — This is a test of the
MOV1 instruction. It uses the following bits as operands:

lsb
lflag
cflag
vflag
zflag
nflag
tflag
fflag
rflag
64[c0]

First, it tests that the MOV1 instruction can move an immediate 1 or 0
into each of the above flag bits, and that the lflag is correct after each move
(message #1–#41).

Next, it successively moves a 1 from the source into each of the flag bits in
the list shown above.

SRC Destination Message Reference

lsb Each flag bit #42–#61
lflag Each flag bit #62–#81
cflag Each flag bit #82–#101
vflag Each flag bit #102–#121

After each move, it checks that lflag is set properly. After moving into all of
the flag bits, it checks that each was set properly.

The remainder of this test is continued in MoveTests4b.ma.

• MoveTests4b : MOV1 Set Flag Bits Test (part 2) — This is a test of the MOV1
instruction. It uses the following bits as operands:

lsb
lflag
cflag
vflag
zflag
nflag
tflag
fflag
rflag
64[c0]

It successively moves a 1 from the source into each of the flag bits in the list
shown above.

SRC Destination Message Reference

zflag Each flag bit #1–#20
nflag Each flag bit #21–#40
tflag Each flag bit #41–#60

B–22 Data Parallel Unit Reference Pages

pe_macro(1)

SRC Destination Message Reference

fflag Each flag bit #61–#80
rflag Each flag bit #81–#100
64[c0] Each flag bit #101–#120

After each move, it checks that lflag is set properly. After moving into all of
the flag bits, it checks that each was set properly.

• MoveTests4c : MOV1 Clear Flag Bits Test (part 1) — This is a test of the
MOV1 instruction. It uses the following bits as operands:

lsb
lflag
cflag
vflag
zflag
nflag
tflag
fflag
rflag
64[c0]

It successively moves a 0 from the source into each of the flag bits in the list
shown above.

SRC Destination Message Reference

lsb Each flag bit #1–#20
lflag Each flag bit #21–#40
cflag Each flag bit #41–#60
vflag Each flag bit #61–#80
zflag Each flag bit #81–#100
nflag Each flag bit #101–#120

After each move, it checks that lflag is cleared properly. After moving into all
of the flag bits, it checks that each was cleared properly.

The remainder of this test is continued in MoveTests4d.ma.

• MoveTests4d : MOV1 Clear Flag Bits Test (part 2) — This is a test of the
MOV1 instruction. It uses the following bits as operands:

lsb
lflag
cflag
vflag
zflag
nflag
tflag
fflag
rflag
64[c0]

Data Parallel Unit Reference Pages B–23

pe_macro(1)

It successively moves a 0 from the source into each of the flag bits shown
above.

SRC Destination Message Reference

tflag Each flag bit #1–#20
fflag Each flag bit #21–#40
rflag Each flag bit #41–#60
64[c0] Each flag bit #61–#80

After each move, it checks that lflag is cleared properly. After moving into all
of the flag bits, it checks that each was cleared properly.

• MoveTests4e : MOV1 MOVE PReg To Flag-Bit Test — This test uses the
following bits as operands:

Flags PRegs

lsb 1026[c2] — c2 = 0
lflag 1027[c2] — c4 = 1024
cflag 1028[c2]
vflag 1029[c2]
zflag 1030[c2]
nflag 1031[c2]
tflag 1032[c2]
fflag 1033[c2]
rflag 1034[c2]
2[c4] 1035[c2]

1036[c2]

The test starts by testing the ability to perform the MOV1 function between
the following sources and destinations:

SRC Destination Message Reference

1025[c2] Each flag bit #1–#22
Each flag bit Each PReg #23–#44

If it detects an error in the result, it prints an error message giving the
instruction under test, the source and destination operands, the expected
result and the actual result.

• MoveTests4f : MOV1 Immediate To PReg Test — Enables all PEs, then uses
MOV1 to move a 1 into eight different PReg locations.

Repeats the above operation moving a 0 into the eight PReg locations.

If the test detects an error, it prints an error message giving the operation
attempted, the expected result and the actual result.

• MoveTests5a : MOV1UC—Flag To Flag 1’s Test (part 1) — This is a test of the
ability of the MOV1UC instruction to move a 1 from flag to flag. It uses the
following bits as operands:

lsb

B–24 Data Parallel Unit Reference Pages

pe_macro(1)

lflag
cflag
vflag
zflag
nflag
tflag
fflag
rflag
64[c0]

First, it tests that the MOV1UC instruction can move an immediate 1 or 0
into each of the above flag bits, and that the lflag is correct after each move
(message #1–#41).

Next, it successively moves a 1 from the source into each of the flag bits in
the list shown above.

SRC Destination Message Reference

lsb Each flag bit #42–#51
lflag Each flag bit #52–#61
cflag Each flag bit #62–#71
vflag Each flag bit #72–#81

After moving 1 into all of the flag bits, it checks that each was set properly.

If the test detects an error, it prints an error message giving the operation,
the expected result and the actual result.

This test is continued in MoveTests5b.ma

• MoveTests5b : MOV1UC Flag To Flag 1’s Test (part 2) — This is a test of the
ability of the MOV1UC instruction to move a 1 from flag to flag. It uses the
following bits as operands:

lsb
lflag
cflag
vflag
zflag
nflag
tflag
fflag
rflag
64[c0]

It successively moves a 1 from the source into each of the flag bits in the list
shown above.

SRC Destination Message Reference

zflag Each flag bit #1–#10
nflag Each flag bit #11–#20
tflag Each flag bit #21–#30
fflag Each flag bit #31–#40

Data Parallel Unit Reference Pages B–25

pe_macro(1)

SRC Destination Message Reference

rflag Each flag bit #41–#50
64[c0] Each flag bit #51–#60

After moving 1 into all of the flag bits, it checks that each was set properly.

If the test detects an error, it prints an error message giving the operation,
the expected result and the actual result.

• MoveTests5c : MOV1UC Flag To Flag 0’s Test (Part 1) — This is a test of the
ability of the MOV1UC instruction to move a 0 from flag to flag. It uses the
following bits as operands:

lsb
lflag
cflag
vflag
zflag
nflag
tflag
fflag
rflag
64[c0]

It successively moves a 0 from the source into each of the flag bits in the list
shown above.

SRC Destination Message Reference

~lsbag Each flag bit #1--#10

~lflag Each flag bit #11--#20

~cflag Each flag bit #21--#30

~vflag Each flag bit #31--#40

~zflag Each flag bit #41--#50

~nflag Each flag bit #51--#60

After moving 0 into all of the flag bits, it checks that each was cleared
properly.

If the test detects an error, it prints an error message giving the operation,
the expected result and the actual result.

This test is continued in MoveTests5d.ma

• MoveTests5d : MOV1UC Flag To Flag 0’s Test (part 2) — This is a test of the
ability of the ’mov1uc’ instruction to move a 0 from flag to flag.

It uses the following bits as operands:

lsb
lflag
cflag
vflag
zflag
nflag
tflag
fflag

B–26 Data Parallel Unit Reference Pages

pe_macro(1)

rflag
64[c0]

It successively moves a 0 from the source into each of the flag bits in the list
shown above.

SRC Destination Message Reference

~tsfag Each flag bit #1–#10
~fflag Each flag bit #11–#20
~rflag Each flag bit #21–#30
~64[c0] Each flag bit #31–#40

After moving 0 into all of the flag bits, it checks that each was cleared
properly.

If the test detects an error, it prints an error message giving the operation,
the expected result and the actual result.

• MoveTests5f : MOV1UC Immediate To PReg Test — Moves a 1 into 8
different PReg locations, then checks for errors; moves a 0 into the same
PReg locations, then checks for errors.

If the test detects an error, it prints an error message giving the attempted
operation, the expected results and the actual results.

• MoveTests6 : 8-Bit & 32-Bit MOVE Test — Performs the following tests:

Test #1 — Makes the following 32-bit moves and checks the result:

0x5e461237 --> 16[c0] --> 1040[c0]

Test #2 — Makes the following 8-bit moves and checks the result:

0xa5 --> 0[c0] --> 1024[c0]

Test #3 — Makes the following 32-bit moves and checks the result:

0x12345678 --> acc --> 1040[c0]

Test #4 — Makes the following 8-bit moves and checks the result:

0xb6 --> acc --> 1024[c0]

If the test detects an error, it prints an error message giving the attempted
operation, the expected results and the actual results.

• OrTests1 : Register To Register OR Test — This test performs 8-bit, 16-bit,
32-bit and 64-bit OR operations.

After each OR, if it detects an error, the test prints an error message which
gives the OR the test was attempting, the expected answer and the actual
answer.

After each OR, it checks the flag bits. If any of these is in error, an error
message is printed giving the operation attempted, the expected flag bits and
the actual flag bits. The flag bits are collected as shown:

Data Parallel Unit Reference Pages B–27

pe_macro(1)

2 1 0

n z v c

Overflow flag
Zero flag
Negative flag

bit3

Carry flag

MPP_FIG_276

• OrTests2 : Immediate To Register OR Test — This test performs 8-bit, 16-bit,
32-bit and 64-bit OR operations.

After each OR, if it detects an error, the test prints an error message which
gives the OR the test was attempting, the expected answer and the actual
answer.

After each OR, it checks the flag bits. If any of these is in error, an error
message is printed giving the operation attempted, the expected flag bits and
the actual flag bits. The flag bits are collected as shown:

2 1 0

n z v c

Overflow flag
Zero flag
Negative flag

bit3

Carry flag

MPP_FIG_276

• ShiftTests : Shift Instruction Test — Tests the four shift instructions:

shll: Logical shift left

shla: Arithmetic shift left

shrl: Logical shift right

shra: Arithmetic shift right

It performs 4-bit and 7-bit shifts, using a variety of operands:

Test #1 (message #1–#40): This test uses the value c1 = 4 to determine
how many places to shift the contents of 16[c0].

Test #2 (message #41–#80): This test uses the value c1 = 7 to determine
how many places to shift the contents of 16[c0].

Test #3 (message #81–#120): This test uses an immediate number in the
instruction to determine how many places to shift the contents of 16[c0].

Test #4 (message #121–#160): This test uses an immediate number in the
instruction to determine how many places to shift the contents of acc.

Test #5 (message #161–#180): This test uses the value 128[c0] = 4 to
determine how many places to shift the contents of 16[c0].

Test #6 (message #181–#200): This test uses the value acc = 4 to
determine how many places to shift the contents of 16[c0].

B–28 Data Parallel Unit Reference Pages

pe_macro(1)

Test #7 (message #201–#240): This test uses the value in 128[c0] to
determine how many places to shift the contents of acc.

Test #8 (message #241–#260): This test uses the value 128[c0] = 7 to
determine how many places to shift the contents of 16[c0].

Test #9 (message #261–#280): This test uses the contents of acc to
determine how many places to shift the contents of 16[c0].

Test #10 (message #281–#300): This test uses the contents of 128[c0] to
determine how many places to shift the contents of acc.

Test #11 (message #301–#320): This test uses the contents of acc to
determine how many places to shift. It also shifts the contents of acc.

If the test detects an error, it prints an error message giving the attempted
operation, the expected results and the actual results.

• SubTests1 : Register To Register SUBTRACTION Test — This test enables all
PEs and has them load data into PReg. Then it performs various 8-bit, 16-bit,
32-bit and 64-bit subtractions between PRegs.

After each SUBTRACTION, if it detects an error, the test prints an error
message which gives the SUBTRACTION the test was attempting, the
expected answer and the actual answer.

After each SUBTRACTION, it checks the flag bits. If any of these is in error,
the test prints an error message giving the operation attempted, the expected
flag bits and the actual flag bits. The flag bits are collected as shown:

2 1 0

n z v c

Overflow flag
Zero flag
Negative flag

bit3

Carry flag

MPP_FIG_276

• SubTests2 : Immediate To Register SUBTRACTION Test — This test enables
all PEs, then performs various 8-bit, 16-bit, 32-bit and 64-bit subtractions
between immediate and PRegs.

After each SUBTRACTION, if it detects an error, the test prints an error
message which gives the SUBTRACTION the test was attempting, the
expected answer and the actual answer.

After each SUBTRACTION, it checks the flag bits. If any of these is in error,
the test prints an error message giving the operation attempted, the expected
flag bits and the actual flag bits. The flag bits are collected as shown:

2 1 0

n z v c

Overflow flag
Zero flag
Negative flag

bit3

Carry flag

MPP_FIG_276

Data Parallel Unit Reference Pages B–29

pe_macro(1)

• div1 : 64-Bit Signed Integer DIVIDE Test — This test enables all the PEs,
then performs a series of 64-bit divisions. After each division, the test inverts
all the bits of the answer and saves this separately.

If an error occurs, the test prints an error message which gives the attempted
division, the expected result, the actual result and whether or not this is the
bit-inverted version of the answer. Typically, if the answer is wrong, the bit
inversion is also wrong, and the test prints a separate message for each.

• divu0 : 64-Bit Unsigned Integer DIVIDE Test — This test enables all the PEs,
then performs a series of 64-bit unsigned divisions.

If an error occurs, the test prints an error message which gives the attempted
division, the expected result and the actual result.

• ebit1 : E-Bit Operation Test — This test verifies that when the e-bit is turned
on, data transfers to PReg can take place, and that when the e-bit is turned
off, data transfers to PReg are blocked.

If it detects an error, this test prints an error message which gives the
attempted operation, the expected result and the actual result.

• fadd1 : 64-Bit Floating Point ADD Test — This tests performs two simple
64-bit floating point additions: 1.0 + 2.0 = ? and 2.0 + 1.0 = ? .

If it detects an error, this test prints an error message which gives the
attempted operation, the expected result and the actual result. Both the
expected and the actual result is expressed in VAX floating point g-format.
This is a 64-bit integer whose fields have the following meaning:

0481216202428323640444852566064 bit

Fraction 1 Fraction 2 Fraction 3

Fraction 4
(Least Significant)

(Most Significant)Sign bit

Exponent (in
excess of 1024)

MPP_FIG_277

• fmult1 : 64-Bit Floating Point MULTIPLY Test — This test performs a series
of 64-bit floating point multiplication operations.

It enables all the PEs, then performs a series of 64-bit multiplications. After
each operation, the test inverts all the bits of the answer and saves this
separately.

If an error occurs, the test prints an error message which gives the attempted
operation, the expected result, the actual result and whether or not this is the
bit-inverted version of the answer. Typically, if the answer is wrong, the bit
inversion is also wrong, and the test prints a separate message for each.

Both the expected and the actual result is expressed in VAX floating point
g-format. This is a 64-bit integer whose fields have the following meaning:

B–30 Data Parallel Unit Reference Pages

pe_macro(1)

0481216202428323640444852566064 bit

Fraction 1 Fraction 2 Fraction 3

Fraction 4
(Least Significant)

(Most Significant)Sign bit

Exponent (in
excess of 1024)

MPP_FIG_277

• msol0 : Brief Solitary LDSOL64/STSOL64 Test — This test enables a single
PE per cluster for load/store operations. It performs a solitary 64-bit store
and several solitary 64-bit load operations, and verifies that the data transfers
correctly. It then verifies that none of the data reached the unselected PEs.

If an error occurs, the test prints an error message which gives the attempted
operation, the expected result and the actual result.

• msol1 : Indirectly Addressed LDSOL/STSOL Test — Performs the following
tests:

Test #1 — With a single PE per cluster enabled for load/store operation,
the test uses the solitary load/store commands to move data to and from
PMem, using indirect addressing. It verifies that the data has transferred
correctly, and that no data has transferred to disabled PEs. (message
#1–#10)

Test #2 — Repeats test #1, using different data and initialization patterns.
(message #11–#20)

Test #3 — Uses the regular load command to read the data stored by
the solitary store command in the previous test, and to verify that no
data has transferred to disabled PEs (message #21–#28). In this test, it
enables all PEs for load/store before loading the data into PReg. Then it
enables only the single PE per cluster to verify the data in the PReg.

The following table summarizes the test operations. Notice the different ways
test #2 and test #3 use to verify that the PMem of unselected PEs remained
as originally initialized.

Test Single PE All Others Operation Result

Init: mbit = 1 mbit = 1 init –> PMem
Test
1-2:

mbit = 1 mbit = 0 data –> PMem –>
PReg

Data OK?

mbit = 0 mbit = 1 PMem –> PReg Unchanged?
Test 3: mbit = 1 mbit = 1 PMem –> PReg

ebit = 1 ebit = 0 PReg Data OK?
ebit = 0 ebit = 1 PReg Unchanged?

If an error occurs, the test prints an error message which gives the attempted
operation, the expected result and the actual result.

• msol2 : Indirectly Addressed Single PE LOAD/STORE Test — This test is
identical to msol1.ma , except that it uses the regular LD/ST commands
instead of the specialized LDSOL/STSOL commands.

Data Parallel Unit Reference Pages B–31

pe_macro(1)

• mtest0 : LOAD/STORE Overlap Test — The purpose of this test is to
verify the ability to perform overlapping operations by overlapping store,
multiplication and load operations. It is possible for the multiplication
process to corrupt the load and store data; but it is much more likely that the
process of loading and storing data upsets the multiplication process.

This test sets the e-bit and m-bit on all PEs. It then performs the following
operations in succession:

Each PE stores test data into 8 different PMem locations

Each PE performs five 64-bit multiplications

Each PE loads test data from the 8 different PMem locations

Checks test data

Checks multiplication data

If an error occurs, the test prints an error message which gives the attempted
operation, the expected result and the actual result.

• mtest1 : Dispatcher Lock And M-Bit Queue Test — Performs these tests:

Test #1 (Message #1–#2) — Tests the m-bit queue and dispatcher lock,
and verifies that the m-bits are correctly set and cleared.

First, it uses MOV1UC to clear all m-bits and verifies that they are all
cleared. In rapid succession, it issues 32 commands to clear the m-bits,
and then a command to set the m-bits. It checks that the m-bits are
set. If there is a fault in the queue mechanism or dispatcher lock, the
command to set the m-bit may be lost.

Test #2 (Message #3–#5) — Tests the action of the m-bits. It verifies that
turning on the m-bits allows a store, that turning off the m-bits prevents
a store and that turning off the m-bits prevents a load.

Test #3 (Message #6) — Dispatcher lock test; tests to see if, with the
m-bit queue full, the dispatcher lock prevents subsequent commands from
overflowing the queue. It verifies not merely that the m-bits are correctly
set or cleared, but that they are functional at the proper time.

With all m-bits on, the test stores and loads data. In rapid succession it
issues 32 commands to clear the m-bits (filling up the queue), then sets
the m-bits and attempts to load the data originally stored. It verifies that
it receives the correct data.

If an error occurs, the test prints an error message which describes the
suspected failure.

• mtest2 : Indirect LOAD/STORE Tests — This test verifies the ability of the
PEs to store and load indirectly addressed data to and from 0x1000 locations
in PMem.

The test enables all the PEs for load/store operations, and gives each PE
unique data to store and load. Using indirect addressing, it stores data at
0x1000 PMem locations, incrementing the data for each location. Still using
indirect addressing, it reads back the data from all those PMem locations and
verifies the accuracy of the data. Finally, using direct addressing, it reads
back the data from all those PMem locations and again verifies its accuracy.

Finally, the test has all PEs invert the bits in their original data and repeat
the above test.

B–32 Data Parallel Unit Reference Pages

pe_macro(1)

• mtest3 : Simple Indirectly Addressed LOAD/STORE Test — Performs a 64-bit,
32-bit, 16-bit and 8-bit indirectly addressed store followed by a similar set of
indirectly addressed loads from the same locations. Checks the accuracy of
the data. Repeats the above using different data.

If an error occurs, the test prints an error message which gives the attempted
operation, the expected result and the actual result.

• mtest4 : 64-Bit Directly Addressed LOAD/STORE Test — Performs 64-bit
stores to PMem starting with 0(c0) and ending with 16320(c0). After each
store, performs a 64-bit load from the same location and checks the result.

If an error occurs, the test prints an error message which gives the attempted
operation, the expected result and the actual result.

• mtest5 : 32-Bit Byte Offset LOAD/STORE Test — At 0-byte offset from
longword boundary, this test stores (writes) and loads (reads) data from
PMem. Each PE uses its own row/column as data which it increments for
each of 0xfff 32-bit locations. It checks that the same data is read back from
each location. It repeats the test using inverted data.

It then offsets the PMem addresses by a single byte and repeats for an offset
of 1, 2, and 3 bytes from a longword boundary. After doing this for each of the
4 possible byte offsets, it repeats the process 128 times.

If an error occurs, the test prints an error message which gives the attempted
operation, the expected result and the actual result.

• mult1 : MULTIPLY Test — This test performs the following multiplication
operations, between the source and destination as shown below. It checks the
result after each operation.

Operation SRC Dest Error Message

mul64: PReg PReg #1–#8
mul32: PReg PReg #9–#14
mul32: Immediate PReg #15–#16
mul32: Neg

immediate
PReg #17–#18

mul32: Immediate PReg #19–#20
mul32: Neg

immediate
PReg #21–#22

mulu32: Immediate PReg #23–#24
mul8: CReg PReg #25–#26
mul16: CReg PReg #27–#28
mul32: CReg PReg #29–#30
mul64: CReg PReg #31–#34
mul64: Immediate PReg #35–#38

If an error occurs, the test prints an error message which gives the attempted
operation, the expected result and the actual result.

• onet : XNet Octagon Shift Test — Tests the ability of the PEs to shift data
around an octagon: north, northeast, east, southeast, south, southwest, west
and northwest. Each PE uses its own row, column address as data and shifts
it in each of the eight directions. After the eight shifts, each PE does an

Data Parallel Unit Reference Pages B–33

pe_macro(1)

exclusive OR of the shifted result with the starting data. If no corruption
occurred, the result is zero.

The test begins with a distance of zero (shifts to itself), and successively
widens the distance to a distance of 2047.

If an error occurs with any PE, the test prints an error message which gives
the distance shifted, the expected state of the error status bit and the actual
state of the error status bit (which, of course, is 1 or the message would not
have been printed in the first place).

• onet1 : XNet Octagon Shift Test (with PMem activity) — Tests the ability of
the PEs to shift data around an octagon: north, northeast, east, southeast,
south, southwest, west and northwest. Each PE uses its own row, column
address as data and shifts it in each of the eight directions. After each shift,
the test performs several store operations to create extra activity in the
m-machine.

After the eight shifts, each PE does an exclusive OR of the shifted result with
the starting data. If no corruption occurred, the result is zero.

The test begins with a distance of zero (shifts to itself), and successively
widens the distance to a distance of 2047.

If an error occurs with any PE, the test prints an error message which gives
the distance shifted, the expected state of the error status bit and the actual
state of the error status bit (which, of course, is 1 or the message would not
have been printed in the first place).

• ortest1 : Global OR And XOR Test — With all PEs enabled, each PE moves
data into PReg. Then all PEs perform a global OR of the PRegs into an ACU
register, the contents of which is checked for error.

Next, each PE uses the XOR function to invert all the bits of the data in
PReg. A global OR operation is then performed and result is checked for
error.

If an error occurs, the test prints an error message giving the operation
attempted, the PReg in question, the expected result and the actual result.

• random1 : Random Macro Instruction Test — This test performs instructions
of all sizes and many types in random sequence. Occasionally, it checks
the contents of the CPSW status register for unexpected status. After each
instruction tested, it checks the results for error.

If an error occurs, it prints an error message giving the instruction under
test, the expected result and the actual result.

• rt0a : 16-Bit Router Send Test — Sets the e-bit and the t-bit for PE 0,0
only. Opens the router channel (to itself) and sends data using the router. It
checks the accuracy of the data and also checks that adjacent data remains
unchanged. This demonstrates not only that the data gets sent, but also that
only 16 bits are sent.

• rt0b : 16-Bit Router Fetch Test — Sets the e-bit and the t-bit for PE 0,0 only.
Opens the router channel (to itself) and fetches data using the router. It
checks the accuracy of the data and also checks that adjacent data remains
unchanged. This demonstrates not only that the data gets fetched, but also
that only 16 bits are fetched.

B–34 Data Parallel Unit Reference Pages

pe_macro(1)

• rt0c : Router Send Test (1, 8, 16, 32, 64 Bits) — Sets the e-bit and the t-bit
for PE 0,0 only. Opens the router channel (to itself) and sends data using
the router. It performs 1-bit, 8-bit, 16-bit, 32-bit and 64-bit send operations.
This test demonstrates not only that the data gets sent, but also that only the
specified number of bits are sent.

• rt0d : Router Fetch Test (1, 8, 16, 32, 64 Bits) — Sets the e-bit and the t-bit
for PE 0,0 only. Opens the router channel (to itself) and fetches data using
the router. It performs 1-bit, 8-bit, 16-bit, 32-bit and 64-bit fetch operations.
This test demonstrates not only that the data gets fetched, but also that only
the specified number of bits are fetched.

• rt0e : Router Send And Fetch Test — This test performs router send and
fetch operations. It disables all PEs except #0. The source and destination is
PE #0. It verifies that the correct data reaches the destination and that the
correct tflag, rflag and fflag is set after each operation. It also verifies that no
data reaches disabled PEs, and none of their flags are affected.

At each stage of the test, data and flags are checked. If an error occurs, the
test prints an error message.

This is the meaning of the expected and actual results mentioned in the
following error messages:

Message #1: The test attempts to send 0xa one bit at a time with
four rsend1 commands. The lower order word of the result was not as
expected.

Message #2: The high order word of the result was not as expected.

Message #3: The test attempts to fetch 0xb one bit at a time with four
rfetch1 commands. The lower order word of the result was not as
expected.

Message #4: The high order word of the result was not as expected.

Message #5: Each cluster of 3 bits shown below represents the state of
the fflag, the rflag and the tflag after each stage of the test. Please note
that bit 15 and bit 31 are not used.

0 f r t 0f f f f f f f f ffr r r r r r r r rt t t t t t t t t

After ropen1
After resend1

After rfetch1

After resend1
After resend1
After resend1

After rfetch1
After rfetch1
After rfetch1
After rclose

MPP_FIG_278

Messages #6–9: These words are comparable to words #1-4, except
they are from the unselected PEs. Normally, no data reaches these
destinations, and they remain at zero.

Message #10: This displays the flag bits from the unselected PEs which
should all remain at zero.

Data Parallel Unit Reference Pages B–35

pe_macro(1)

Message #11: The test attempts to send 0x8a using the rsend8 command.
This word contains the low order bits of that operation.

Message #12: This is the higher order bits of the destination. All these
bits should remain zero.

Message #13: The test attempts to fetch 0x8b using the rfetch8
command. This word contains the low order bits of that operation.

Message #14: This is the higher order bits of the destination. All these
bits should remain zero.

Message #15: Each cluster of 3 bits represents the state of the fflag, the
rflag and the tflag after each stage of the test:

0 0 f f f f ffr r r r rt t t t t0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

After enable
After ropen
After rsend8
After rfetch8
After rclose

MPP_FIG_279

Messages #16–19: These words are comparable to words #11–14, except
they are from the unselected PEs. Normally, no data reaches these
destinations, and they remain at zero.

Message #20: This displays the flag bits from the unselected PEs which
should all remain at zero.

Message #21: The test attempts to send 0x7a8a using the rsend16
command. This word contains the low order bits of that operation.

Message #22: This is the higher order bits of the destination. All these
bits should remain zero.

Message #23: The test attempts to fetch 0x7b8b using the rfetch16
command. This word contains the low order bits of that operation.

Message #24: This is the higher order bits of the destination. All these
bits should remain zero.

Message #25: Each cluster of 3 bits represents the state of the fflag, the
rflag and the tflag after each stage of the test:

0 0 f f f f ffr r r r rt t t t t0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

After enable
After ropen

After rclose

rsend16
rfetch16

After
After

MPP_FIG_280

Messages #26–29: These words are comparable to words #21–24, except
they are from the unselected PEs. Normally, no data reaches these
destinations, and they remain at zero.

B–36 Data Parallel Unit Reference Pages

pe_macro(1)

Message #30: This displays the flag bits from the unselected PEs which
should all remain at zero.

Message #31: The test attempts to send 0x5a6a7a8a using the rsend32
command. This word contains the result of that operation.

Message #32: This is the higher order bits of the destination. All these
bits should remain zero.

Message #33: The test attempts to fetch 0x5b6b7b8b using the rfetch32
command. This word contains the result of that operation. The higher
order bits should remain zero.

Message #34: This is the higher order bits of the destination. All these
bits should remain zero.

Message #35: Each cluster of 3 bits represents the state of the fflag, the
rflag and the tflag after each stage of the test.

0 0 f f f f ffr r r r rt t t t t0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

After enable
After ropen

After rclose

After
After

rsend32
rfetch32

MPP_FIG_281

Messages #36–39: These words are comparable to words #31–34, except
they are from the unselected PEs. Normally, no data reaches these
destinations, and they remain at zero.

Message #40: This displays the flag bits from the unselected PEs which
should all remain at zero.

Message #41: The test attempts to send 0x5a6a7a8a using the rsend64
command. This word contains the low order bits of that operation.

Message #42: This is the higher order bits of the destination.

Message #43: The test attempts to fetch 0x5b6b7b8b using the rfetch64
command. This word contains the low order bits of that operation.

Message #44: This is the higher order bits of the destination.

Message #45: Each cluster of 3 bits represents the state of the fflag, the
rflag and the tflag after each stage of the test.

0 0 f f f f ffr r r r rt t t t t0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

After enable
After ropen

After rclose

After
After

rsend64
rfetch64

MPP_FIG_282

Messages #46–49: These words are comparable to words #41-44, except
they are from the unselected PEs. Normally, no data reaches these
destinations, and they remain at zero.

Data Parallel Unit Reference Pages B–37

pe_macro(1)

Message #50: This displays the flag bits from the unselected PEs which
should all remain at zero.

• rt0f : Router Send And Fetch (While Storing) Test — This test performs
router send and fetch operations while the m-machine is busy doing 64-bit
store operations. It disables all PEs except #0. The source and destination is
PE #0. It verifies that the correct data reaches the destination and that the
correct tflag, rflag and fflag is set after each operation. It also verifies that no
data reaches disabled PEs, and none of their flags are affected.

At each stage of the test, data and flags are checked. If an error occurs, the
test prints an error message.

This is the meaning of the expected and actual results mentioned in the
following error messages:

Message #1: The test attempts to send 0xa one bit at a time with
four rsend1 commands. The lower order word of the result was not as
expected.

Message #2: The high order word of the result was not as expected.

Message #3: The test attempts to fetch 0xb one bit at a time with four
rfetch1 commands. The lower order word of the result was not as
expected.

Message #4: The high order word of the result was not as expected.

Message #5: Each cluster of 3 bits represents the state of the fflag, the
rflag and the tflag after each stage of the test. Please note that bit 15 and
bit 31 are not used.

0 f r t 0f f f f f f f f ffr r r r r r r r rt t t t t t t t t

After ropen1
After resend1

After rfetch1

After resend1
After resend1
After resend1

After rfetch1
After rfetch1
After rfetch1
After rclose

MPP_FIG_278

Messages #6–9: These words are comparable to words #1–4, except
they are from the unselected PEs. Normally, no data reaches these
destinations, and they remain at zero.

Message #10: This displays the flag bits from the unselected PEs which
should all remain at zero.

Message #11: The test attempts to send 0x8a using the rsend8 command.
This word contains the low order bits of that operation.

Message #12: This is the higher order bits of the destination. All these
bits should remain zero.

Message #13: The test attempts to fetch 0x8b using the rfetch8
command. This word contains the low order bits of that operation.

B–38 Data Parallel Unit Reference Pages

pe_macro(1)

Message #14: This is the higher order bits of the destination. All these
bits should remain zero.

Message #15: Each cluster of 3 bits represents the state of the fflag, the
rflag and the tflag after each stage of the test.

0 0 f f f f ffr r r r rt t t t t0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

After enable
After ropen
After rsend8
After rfetch8
After rclose

MPP_FIG_279

Messages #16–19: These words are comparable to words #11–14, except
they are from the unselected PEs. Normally, no data reaches these
destinations, and they remain at zero.

Message #20: This displays the flag bits from the unselected PEs which
should all remain at zero.

Message #21: The test attempts to send 0x7a8a using the rsend16
command. This word contains the low order bits of that operation.

Message #22: This is the higher order bits of the destination. All these
bits should remain zero.

Message #23: The test attempts to fetch 0x7b8b using the rfetch16
command. This word contains the low order bits of that operation.

Message #24: This is the higher order bits of the destination. All these
bits should remain zero.

Message #25: Each cluster of 3 bits represents the state of the fflag, the
rflag and the tflag after each stage of the test.

0 0 f f f f ffr r r r rt t t t t0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

After enable
After ropen

After rclose

rsend16
rfetch16

After
After

MPP_FIG_280

Messages #26–29: These words are comparable to words #21–24, except
they are from the unselected PEs. Normally, no data reaches these
destinations, and they remain at zero.

Message #30: This displays the flag bits from the unselected PEs which
should all remain at zero.

Message #31: The test attempts to send 0x5a6a7a8a using the rsend32
command. This word contains the result of that operation.

Message #32: This is the higher order bits of the destination. All these
bits should remain zero.

Data Parallel Unit Reference Pages B–39

pe_macro(1)

Message #33: The test attempts to fetch 0x5b6b7b8b using the rfetch32
command. This word contains the result of that operation. The higher
order bits should remain zero.

Message #34: This is the higher order bits of the destination. All these
bits should remain zero.

Message #35: Each cluster of 3 bits represents the state of the fflag, the
rflag and the tflag after each stage of the test.

0 0 f f f f ffr r r r rt t t t t0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

After enable
After ropen

After rclose

After
After

rsend32
rfetch32

MPP_FIG_281

Messages #36–39: These words are comparable to words #31–34, except
they are from the unselected PEs. Normally, no data reaches these
destinations, and they remain at zero.

Message #40: This displays the flag bits from the unselected PEs which
should all remain at zero.

Message #41: The test attempts to send 0x5a6a7a8a using the rsend64
command. This word contains the low order bits of that operation.

Message #42: This is the higher order bits of the destination.

Message #43: The test attempts to fetch 0x5b6b7b8b using the rfetch64
command. This word contains the low order bits of that operation.

Message #44: This is the higher order bits of the destination.

Message #45: Each cluster of 3 bits represents the state of the fflag, the
rflag and the tflag after each stage of the test.

0 0 f f f f ffr r r r rt t t t t0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

After enable
After ropen

After rclose

After
After

rsend64
rfetch64

MPP_FIG_282

Messages #46–49: These words are comparable to words #41–44, except
they are from the unselected PEs. Normally, no data reaches these
destinations, and they remain at zero.

Message #50: This displays the flag bits from the unselected PEs which
should all remain at zero.

• rt0g : Router Open/Send And Fetch/Close Test — This test performs router
open/send and fetch operations. It disables all PEs except #0. The source and
destination is PE #0. It verifies that the correct data reaches the destination
and that the correct tflag, rflag and fflag is set after each operation. It

B–40 Data Parallel Unit Reference Pages

pe_macro(1)

also verifies that no data reaches disabled PEs, and none of their flags are
affected.

At each stage of the test, data and flags are checked. If an error occurs, the
test prints an error message.

This is the meaning of the expected and actual results mentioned in the
following error messages:

Message #1: The test attempts to open/send 0x8a using the rosend8
command. This word contains the low order bits of that operation.

Message #2: This is the higher order bits of the destination. All these bits
should remain zero.

Message #3: The test attempts to fetch/close 0x8b using the rfetchc8
command. This word contains the low order bits of that operation.

Message #4: This is the higher order bits of the destination. All these bits
should remain zero.

Message #5: Each cluster of 3 bits represents the state of the fflag, the
rflag and the tflag after each stage of the test.

0 0 f f ffr r rt t t0 0

Before rosend8
Unused
After rosend8
Unused
After rfetchc8

MPP_FIG_283

f c 9 6 3 0

Messages #6–9: These words are comparable to words #1–4, except
they are from the unselected PEs. Normally, no data reaches these
destinations, and they remain at zero.

Message #10: This displays the flag bits from the unselected PEs which
should all remain at zero.

Message #11: The test attempts to send 0x7a8a using the rsend16
command. This word contains the low order bits of that operation.

Message #12: This is the higher order bits of the destination. All these
bits should remain zero.

Message #13: The test attempts to fetch 0x7b8b using the rfetch16
command. This word contains the low order bits of that operation.

Message #14: This is the higher order bits of the destination. All these
bits should remain zero.

Message #15: Each cluster of 3 bits represents the state of the fflag, the
rflag and the tflag after each stage of the test.

Data Parallel Unit Reference Pages B–41

pe_macro(1)

f c 9 6 3 0

0 0 f f ffr r rt t t0 0

MPP_FIG_284

Before rosend16

After rosend16

rfetchc16After

Unused

Unused

Messages #16–19: These words are comparable to words #11–14, except
they are from the unselected PEs. Normally, no data reaches these
destinations, and they remain at zero.

Message #20: This displays the flag bits from the unselected PEs which
should all remain at zero.

Message #21: The test attempts to send 0x5a6a7a8a using the rsend32
command. This word contains the low order bits of that operation.

Message #22: This is the higher order bits of the destination. All these
bits should remain zero.

Message #23: The test attempts to fetch 0x5b6b7b8b using the rfetch32
command. This word contains the low order bits of that operation.

Message #24: This is the higher order bits of the destination. All these
bits should remain zero.

Message #25: Each cluster of 3 bits represents the state of the fflag, the
rflag and the tflag after each stage of the test.

f c 9 6 3 0

0 0 f f ffr r rt t t0 0

Before

After

After

Unused

Unused

rosend32

rosend32

rfetchc32
MPP_FIG_285

Messages #26–29: These words are comparable to words #21–24, except
they are from the unselected PEs. Normally, no data reaches these
destinations, and they remain at zero.

Message #30: This displays the flag bits from the unselected PEs which
should all remain at zero.

Message #31: The test attempts to send 0x5a6a7a8a using the rsend64
command. This word contains the low order bits of that operation.

Message #32: This is the higher order bits of the destination.

Message #33: The test attempts to fetch 0x5b6b7b8b using the rfetch64
command. This word contains the low order bits of that operation.

Message #34: This is the higher order bits of the destination.

B–42 Data Parallel Unit Reference Pages

pe_macro(1)

Message #35: Each cluster of 3 bits represents the state of the fflag, the
rflag and the tflag after each stage of the test.

0 0 f f ffr r rt t t0 0

Before

After

After

Unused

Unused

MPP_FIG_286

f c 9 6 3 0

rosend64

rosend64

rfetchc64

Messages #36–39: These words are comparable to words #31–34, except
they are from the unselected PEs. Normally, no data reaches these
destinations, and they remain at zero.

Message #40: This displays the flag bits from the unselected PEs which
should all remain at zero.

• rt1a : Single PE Per Cluster Router Send And Fetch Test — This test enables
one PE per cluster for router operation. It does a 16-bit router send and a
16-bit router fetch operation. Each PE has unique send data and unique fetch
data based on the PEs address. The state of the tflag, rflag, and fflag is saved
at each step in the test. When finished, the test checks for error and prints
an error message if any errors are found.

Following is an explanation of the expected and actual result printed in the
error message:

Error message #1:

0x11110000

Any bits set in this field are bits
that were erroneous in one or more
PEs after the rsend16 operation

Any bits which vary from that shown
are bits that were corrupted by the
rsend16 operation

MPP_FIG_287

Error message #2:

MPP_FIG_288

Any bits set in this field are bits
that were erroneous in one or more
PEs after the rsend16 operation

Any bits which vary from that shown
are bits that were corrupted by the
rsend16 operation

0x22220000

rfetch16 operation

rfetch16 operation

Error message #3: This record contains the flag bits which were saved
during the operation. This indicates that one or more PEs had erroneous
flag settings.

Data Parallel Unit Reference Pages B–43

pe_macro(1)

0 f f f f ffr r r r rt t t t t0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

After ropen

After rclose

rsend16
rfetch16

After
After

Before ropen

1

MPP_FIG_289

Error message #4: This record is an exclusive OR of the correct flag bits
with the flag bits as received in message #3. It makes it easier to see
which flags were in error. Any bit set here indicates a flag which was in
an unexpected state.

• rt2a : All PEs Send/Fetch To Self — In this test each PE uses the router to
send to and fetch from itself. With all PEs attempting to do this, it takes 16
tries before all the connections have been made and data transferred.

The test repeats this for 1-bit, 8-bit, 16-bit, 32-bit and 64-bit transfers.

If it detects an error, the test prints an error message giving the attempted
operation, the expected result and the actual result. This is an explanation of
the result:

Error message #1: This is the number of operations before all PEs had
completed their router transfer using the single-bit commands. Only 1/16
of the PEs can be connected at any one time, so it takes 16 operations to
complete.

Error message #2: This is the exclusive OR comparison of the data sent
over the router with the data received at the other end. 16 bits of data
were sent using 16 rsend1 commands. Any bit set in this word indicates
an erroneous bit in the data received.

Error message #3: This is the exclusive OR comparison of the data
fetched over the router with the data received. 16 bits of data were
fetched using 16 rfetch1 commands. Any bit set in this word indicates
an erroneous bit in the data received.

Error message #4: This is the exclusive OR comparison of the expected
flag bits with the actual flag bits set during the rsend and the rfetch
operations. The position of the bits in the word indicate which flag is in
question and when it was noted. This word does not show the actual state
of the flag bits, it only indicates which flags were in error.

0 f f f f ffr r r r rt t t t t0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

After ropen

After rclose

rsend16
rfetch16

After
After

Before ropen

0

MPP_FIG_290

f c 9 6 3 0

Error message #5: This is the number of operations before all PEs had
completed their router transfer using the 8-bit commands. Only 1/16 of

B–44 Data Parallel Unit Reference Pages

pe_macro(1)

the PEs can be connected at any one time, so it takes 16 operations to
complete.

Error message #6: This is the exclusive OR comparison of the data sent
over the router with the data received at the other end. 16 bits of data
were sent using two rsend8 commands. Any bit set in this word indicates
an erroneous bit in the data received.

Error message #7: This is the exclusive OR comparison of the data
fetched over the router with the data received. 16 bits of data were
fetched using two rfetch8 commands. Any bit set in this word indicates
an erroneous bit in the data received.

Error message #8: This is the exclusive OR comparison of the expected
flag bits with the actual flag bits set during the rsend and the rfetch
operations. The position of the bits in the word indicate which flag is in
question and when it was noted. This word does not show the actual state
of the flag bits, it only indicates which flags were in error.

0 f f f f ffr r r r rt t t t t0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

After ropen

After rclose

After
After

Before ropen

0

f c 9 6 3 0

rsend8
rfetch8

MPP_FIG_291

Error message #9: This is the number of operations before all PEs had
completed their router transfer using the 16-bit commands. Only 1/16 of
the PEs can be connected at any one time, so it takes 16 operations to
complete.

Error message #10: This is the exclusive OR comparison of the data sent
over the router with the data received at the other end. 16 bits of data
were sent using one rsend16 command. Any bit set in this word indicates
an erroneous bit in the data received.

Error message #11: This is the exclusive OR comparison of the data
fetched over the router with the data received. 16 bits of data were
fetched using one rfetch16 command. Any bit set in this word indicates
an erroneous bit in the data received.

Error message #12: This is the exclusive OR comparison of the expected
flag bits with the actual flag bits set during the rsend and the rfetch
operations. The position of the bits in the word indicate which flag is in
question and when it was noted. This word does not show the actual state
of the flag bits, it only indicates which flags were in error.

Data Parallel Unit Reference Pages B–45

pe_macro(1)

0 f f f f ffr r r r rt t t t t0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

After ropen

After rclose

After
After

Before ropen

0

f c 9 6 3 0

MPP_FIG_292

rsend16
rfetch16

Error message #13: This is the number of operations before all PEs had
completed their router transfer using the 32-bit commands. Only 1/16 of
the PEs can be connected at any one time, so it takes 16 operations to
complete.

Error message #14: This is the exclusive OR comparison of the data sent
over the router with the data received at the other end. 32 bits of data
were sent using one rsend32 command. Any bit set in this word indicates
an erroneous bit in the data received.

Error message #15: This is the exclusive OR comparison of the data
fetched over the router with the data received. 32 bits of data were
fetched using one rfetch32 command. Any bit set in this word indicates
an erroneous bit in the data received.

Error message #16: This is the exclusive OR comparison of the expected
flag bits with the actual flag bits set during the rsend and the rfetch
operations. The position of the bits in the word indicate which flag is in
question and when it was noted. This word does not show the actual state
of the flag bits, it only indicates which flags were in error.

0 f f f f ffr r r r rt t t t t0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

After ropen

After rclose

After
After

Before ropen

0

f c 9 6 3 0

rsend32
rfetch32

MPP_FIG_293

Error message #17: This is the number of operations before all PEs had
completed their router transfer using the 64-bit commands. Only 1/16 of
the PEs can be connected at any one time, so it takes 16 operations to
complete.

Error message #18: This is the exclusive OR comparison of the data sent
over the router with the data received at the other end. 64 bits of data
were sent using one rsend64 command. Any bit set in this word indicates
an erroneous bit in the data received. This word represents bits 0-31 of
the 64-bit word.

Error message #19: This word represents bits 32–63 of the 64-bit word
discussed in message #18.

B–46 Data Parallel Unit Reference Pages

pe_macro(1)

Error message #20: This is the exclusive OR comparison of the data
fetched over the router with the data received. 64 bits of data were
fetched using one rfetch64 command. Any bit set in this word indicates
an erroneous bit in the data received. This word represents bits 0-31 of
the 64-bit word.

Error message #21: This word represents bits 32–63 of the 64-bit word
discussed in message #20.

Error message #22: This is the exclusive OR comparison of the expected
flag bits with the actual flag bits set during the rsend and the rfetch
operations. The position of the bits in the word indicate which flag is in
question and when it was noted. This word does not show the actual state
of the flag bits, it only indicates which flags were in error.

0 f f f f ffr r r r rt t t t t0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

After ropen

After rclose

After
After

Before ropen

0

f c 9 6 3 0

MPP_FIG_294

rsend64
rfetch64

rt2b : All PEs ROSEND And RFETCHC To Self — This test uses the
combination command ROSEND to both open the router and send data,
and the combination command FETCHC to both fetch data via the router
and close the router connection.

In this test each PE uses the router to send to and fetch from itself. With
all PEs attempting to do this, it takes 16 tries before all the connections
have been made and data transferred.

The test repeats this for 8-bit, 16-bit, 32-bit and 64-bit transfers.

If it detects an error, the test prints an error message giving the
attempted operation, the expected result and the actual result. This
is an explanation of the result:

* Error message #1: This is the number of operations before all PEs
had completed their router transfer using the 8-bit commands. Only
1/16 of the PEs can be connected at any one time, so it takes 16
operations to complete.

* Error message #2: This is the exclusive OR comparison of the data
sent over the router with the data received at the other end. 16 bits
of data were sent using two rosend8 commands. Any bit set in this
word indicates an erroneous bit in the data received.

* Error message #3: This is the exclusive OR comparison of the data
fetched over the router with the data received. 16 bits of data were
fetched using two rfetchc8 commands. Any bit set in this word
indicates an erroneous bit in the data received.

* Error message #4: This is the exclusive OR comparison of the
expected flag bits with the actual flag bits set during the rosend and
the rfetchc operations. The position of the bits in the word indicate
which flag is in question and when it was noted. This word does not

Data Parallel Unit Reference Pages B–47

pe_macro(1)

show the actual state of the flag bits, it only indicates which flags
were in error.

0 0 f f ffr r rt t t0 0

Before rosend8
Unused
After rosend8
Unused
After rfetchc8

MPP_FIG_283

f c 9 6 3 0

* Error message #5: This is the number of operations before all PEs
had completed their router transfer using the 16-bit commands. Only
1/16 of the PEs can be connected at any one time, so it takes 16
operations to complete.

* Error message #6: This is the exclusive OR comparison of the data
sent over the router with the data received at the other end. 16 bits
of data were sent using one rosend16 command. Any bit set in this
word indicates an erroneous bit in the data received.

* Error message #7: This is the exclusive OR comparison of the data
fetched over the router with the data received. 16 bits of data were
fetched using one rfetch16 command. Any bit set in this word
indicates an erroneous bit in the data received.

* Error message #8: This is the exclusive OR comparison of the
expected flag bits with the actual flag bits set during the rsend and
the rfetch operations. The position of the bits in the word indicate
which flag is in question and when it was noted. This word does not
show the actual state of the flag bits, it only indicates which flags
were in error.

f c 9 6 3 0

0 0 f f ffr r rt t t0 0

MPP_FIG_284

Before rosend16

After rosend16

rfetchc16After

Unused

Unused

* Error message #9: This is the number of operations before all PEs
had completed their router transfer using the 32-bit commands. Only
1/16 of the PEs can be connected at any one time, so it takes 16
operations to complete.

* Error message #10: This is the exclusive OR comparison of the data
sent over the router with the data received at the other end. 32 bits
of data were sent using one rosend32 command. Any bit set in this
word indicates an erroneous bit in the data received.

B–48 Data Parallel Unit Reference Pages

pe_macro(1)

* Error message #11: This is the exclusive OR comparison of the data
fetched over the router with the data received. 32 bits of data were
fetched using one rfetchc32 command. Any bit set in this word
indicates an erroneous bit in the data received.

* Error message #12: This is the exclusive OR comparison of the
expected flag bits with the actual flag bits set during the rosend and
the rfetchc operations. The position of the bits in the word indicate
which flag is in question and when it was noted. This word does not
show the actual state of the flag bits, it only indicates which flags
were in error.

f c 9 6 3 0

0 0 f f ffr r rt t t0 0

Before

After

After

Unused

Unused

rosend32

rosend32

rfetchc32
MPP_FIG_285

* Error message #13: This is the number of operations before all PEs
had completed their router transfer using the 64-bit commands. Only
1/16 of the PEs can be connected at any one time, so it takes 16
operations to complete.

* Error message #14: This is the exclusive OR comparison of the data
sent over the router with the data received at the other end. 64 bits of
data were sent using one rosend64 command. Any bit set in this word
indicates an erroneous bit in the data received. This word represents
bits 0–31 of the 64-bit word.

* Error message #15: This word represents bits 32–63 of the 64-bit
word discussed in message #14.

* Error message #16: This is the exclusive OR comparison of the data
fetched over the router with the data received. 64 bits of data were
fetched using one rfetchc64 command. Any bit set in this word
indicates an erroneous bit in the data received. This word represents
bits 0–31 of the 64-bit word.

* Error message #17: This word represents bits 32–63 of the 64-bit
word discussed in message #16.

* Error message #18: This is the exclusive OR comparison of the
expected flag bits with the actual flag bits set during the rosend and
the rfetchc operations. The position of the bits in the word indicate
which flag is in question and when it was noted. This word does not
show the actual state of the flag bits, it only indicates which flags
were in error.

Data Parallel Unit Reference Pages B–49

pe_macro(1)

0 0 f f ffr r rt t t0 0

Before

After

After

Unused

Unused

MPP_FIG_286

f c 9 6 3 0

rosend64

rosend64

rfetchc64

rt2c : Forward Router Send Test — This test asks each PE to make a
router send transfer in the forward direction (to a PE whose address is
higher). This requires 16 operations before all the contentions have been
resolved.

The test starts with each PE making a send to itself (offset = 0). Then,
each PE successively sends data to the PE whose address is offset from
its own by a factor of +1 to +511.

If the test detects an error, it prints an error message giving the router
offset at which the error occurred, the nature of the error, the expected
and actual result.

rt2d : Forward Router Fetch Test — This test asks each PE to make a
router fetch transfer from the forward direction (from a PE whose address
is higher). This requires 16 operations before all the contentions have
been resolved.

The test starts with each PE making a fetch from itself (offset = 0). Then,
each PE successively fetches data from the PE whose address is offset
from its own by a factor of +1 to +511.

If the test detects an error, it prints an error message giving the router
offset at which the error occurred, the nature of the error, the expected
and actual result.

rt2e : Reverse Router Send Test — This test asks each PE to make a
router send transfer in the reverse direction (to a PE whose address is
lower). This requires 16 operations before all the contentions have been
resolved.

The test starts with each PE making a send to itself (offset = 0). Then,
each PE successively sends data to the PE whose address is offset from
its own by a factor of –1 to –511.

If the test detects an error, it prints an error message giving the router
offset at which the error occurred, the nature of the error, the expected
and actual result.

rt2f : Reverse Router Fetch Test — This test asks each PE to make a
router fetch transfer from the reverse direction (from a PE whose address
is lower). This requires 16 operations before all the contentions have been
resolved.

The test starts with each PE making a fetch from itself (offset = 0). Then,
each PE successively fetches data from the PE whose address is offset
from its own by a factor of –1 to –511.

B–50 Data Parallel Unit Reference Pages

pe_macro(1)

If the test detects an error, it prints an error message giving the router
offset at which the error occurred, the nature of the error, the expected
and actual result.

rt2g : All PEs Send/Fetch To Self (m-machine busy) — In this test each
PE uses the router to send to and fetch from itself at the same time
that the m-machine is moving data from PReg to PMem. With all PEs
attempting to do this, it takes 16 tries before all the connections have
been made and data transferred.

The test repeats this for 1-bit, 8-bit, 16-bit, 32-bit and 64-bit transfers.

If it detects an error, the test prints an error message giving the
attempted operation, the expected result and the actual result. This
is an explanation of the result:

* Error message #1: This is the number of operations before all PEs
had completed their router transfer using the single-bit commands.
Only 1/16 of the PEs can be connected at any one time, so it takes 16
operations to complete.

* Error message #2: This is the exclusive OR comparison of the data
sent over the router with the data received at the other end. 16 bits of
data were sent using 16 rsend1 commands. Any bit set in this word
indicates an erroneous bit in the data received.

* Error message #3: This is the exclusive OR comparison of the data
fetched over the router with the data received. 16 bits of data
were fetched using 16 rfetch1 commands. Any bit set in this word
indicates an erroneous bit in the data received.

* Error message #4: This is the exclusive OR comparison of the
expected flag bits with the actual flag bits set during the rsend and
the rfetch operations. The position of the bits in the word indicate
which flag is in question and when it was noted. This word does not
show the actual state of the flag bits, it only indicateswhich flags were
in error.

0 f f f f ffr r r r rt t t t t0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

After ropen

After rclose

rsend16
rfetch16

After
After

Before ropen

0

MPP_FIG_290

f c 9 6 3 0

* Error message #5: This is the number of operations before all PEs
had completed their router transfer using the 8-bit commands. Only
1/16 of the PEs can be connected at any one time, so it takes 16
operations to complete.

* Error message #6: This is the exclusive OR comparison of the data
sent over the router with the data received at the other end. 16 bits of
data were sent using two rsend8 commands. Any bit set in this word
indicates an erroneous bit in the data received.

Data Parallel Unit Reference Pages B–51

pe_macro(1)

* Error message #7: This is the exclusive OR comparison of the data
fetched over the router with the data received. 16 bits of data were
fetched using two rfetch8 commands. Any bit set in this word
indicates an erroneous bit in the data received.

* Error message #8: This is the exclusive OR comparison of the
expected flag bits with the actual flag bits set during the rsend and
the rfetch operations. The position of the bits in the word indicate
which flag is in question and when it was noted. This word does not
show the actual state of the flag bits, it only indicates which flags
were in error.

0 f f f f ffr r r r rt t t t t0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

After ropen

After rclose

After
After

Before ropen

0

f c 9 6 3 0

rsend8
rfetch8

MPP_FIG_291

* Error message #9: This is the number of operations before all PEs
had completed their router transfer using the 16-bit commands. Only
1/16 of the PEs can be connected at any one time, so it takes 16
operations to complete.

* Error message #10: This is the exclusive OR comparison of the data
sent over the router with the data received at the other end. 16 bits of
data were sent using one rsend16 command. Any bit set in this word
indicates an erroneous bit in the data received.

* Error message #11: This is the exclusive OR comparison of the data
fetched over the router with the data received. 16 bits of data were
fetched using one rfetch16 command. Any bit set in this word
indicates an erroneous bit in the data received.

* Error message #12: This is the exclusive OR comparison of the
expected flag bits with the actual flag bits set during the rsend and
the rfetch operations. The position of the bits in the word indicate
which flag is in question and when it was noted. This word does not
show the actual state of the flag bits, it only indicates which flags
were in error.

0 f f f f ffr r r r rt t t t t0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

After ropen

After rclose

After
After

Before ropen

0

f c 9 6 3 0

MPP_FIG_292

rsend16
rfetch16

* Error message #13: This is the number of operations before all PEs
had completed their router transfer using the 32-bit commands. Only

B–52 Data Parallel Unit Reference Pages

pe_macro(1)

1/16 of the PEs can be connected at any one time, so it takes 16
operations to complete.

* Error message #14: This is the exclusive OR comparison of the data
sent over the router with the data received at the other end. 32 bits of
data were sent using one rsend32 command. Any bit set in this word
indicates an erroneous bit in the data received.

* Error message #15: This is the exclusive OR comparison of the
data fetched over the router with the data received. 32 bits of data
were fetched using one rfetch32 command. Any bit set in this word
indicates an erroneous bit in the data received.

* Error message #16: This is the exclusive OR comparison of the
expected flag bits with the actual flag bits set during the rsend and
the rfetch operations. The position of the bits in the word indicate
which flag is in question and when it was noted. This word does not
show the actual state of the flag bits, it only indicates which flags
were in error.

0 f f f f ffr r r r rt t t t t0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

After ropen

After rclose

After
After

Before ropen

0

f c 9 6 3 0

rsend32
rfetch32

MPP_FIG_293

* Error message #17: This is the number of operations before all PEs
had completed their router transfer using the 64-bit commands. Only
1/16 of the PEs can be connected at any one time, so it takes 16
operations to complete.

* Error message #18: This is the exclusive OR comparison of the data
sent over the router with the data received at the other end. 64 bits of
data were sent using one rsend64 command. Any bit set in this word
indicates an erroneous bit in the data received. This word represents
bits 0–31 of the 64-bit word.

* Error message #19: This word represents bits 32–63 of the 64-bit
word discussed in message #18.

* Error message #20: This is the exclusive OR comparison of the
data fetched over the router with the data received. 64 bits of data
were fetched using one rfetch64 command. Any bit set in this word
indicates an erroneous bit in the data received. This word represents
bits 0–31 of the 64-bit word.

* Error message #21: This word represents bits 32–63 of the 64-bit
word discussed in message #20.

* Error message #22: This is the exclusive OR comparison of the
expected flag bits with the actual flag bits set during the rsend and
the rfetch operations. The position of the bits in the word indicate
which flag is in question and when it was noted. This word does not
show the actual state of the flag bits, it only indicates which flags
were in error.

Data Parallel Unit Reference Pages B–53

pe_macro(1)

0 f f f f ffr r r r rt t t t t0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

After ropen

After rclose

After
After

Before ropen

0

f c 9 6 3 0

MPP_FIG_294

rsend64
rfetch64

sadd1 : Short ADD Test — This test enables all PEs, then moves two 32-
bit numbers and their inverse into PRegs. It first adds the two numbers
and then adds the inverse of the two numbers.

If the test detects an error, it prints an error message giving the
attempted operation, the expected result and the actual result. The
results have the following meaning:

* Error message #1: First data word; if this is wrong, one or more
PEs could have a problem storing data in PReg 00[c0]. It could also
indicate a problem with the GOR32 operation.

* Error message #2: Second data word; if this is wrong, one or more
PEs could have a problem storing data in PReg 32[c0]. It could also
indicate a problem with the GOR32 operation.

* Error message #3: Inverse of first data word; if this is wrong, one or
more PEs could have a problem with the XOR32 operation, or trouble
storing data in PReg 64[c0].

* Error message #4: Inverse of second data word; if this is wrong, one
or more PEs could have a problem with the XOR32 operation, or
trouble storing data in PReg 96[c0].

* Error message #5: Sum of first and second data word; if messages
#1–2 were correct, then one or more PEs are not adding correctly.

* Error message #6: Sum of first inverse data word and second inverse
data word; if messages #3–4 were correct, then one or more PEs are
not adding correctly.

tagtest0 : Tag Stall Test (Many PRegs To Single PMem Location) —
Test of the PReg tag stall. The test performs the following sequence of
operations:

1. It initializes PReg location A with 0x0, and PReg location B with
0x5a.

2. It stores PReg loc B (0x5a) into a PMem location.

3. It immediately stores PReg loc A (0x0) into the same PMem location.

4. It immediately reloads PReg loc A with 0xff. If 0xff is loaded into
some of the PMem locations, an error is indicated.

5. It then attempts to load the PMem location into PReg B. If it gets
anything other than zero, it is an error.

The test repeats for many different PReg locations working into the same
PMem location.

B–54 Data Parallel Unit Reference Pages

pe_macro(1)

The values returned in the error messages may be interpreted as follows:

* Error message #1–#159: Each word is a global OR of the data
transferred to and from PMem by each PE. The sequence is:

step 1: 0x00 --> 0[c1]
step 2: 0x5a --> 8[c1]
step 3: 8[c1] --- st8 ---> PMem 0x5a
step 4: 0[c1] --- st8 ---> PMem 0x00
step 5: 0xff --> 0[c1]
step 6: 0xa5 --> 8[c1]
step 7: ? <-- 8[c1] <--- ld8 --- PMem

Each PE should get 0x00 back from PMem, but if the tag stall
mechanism is not working, some PEs may get 0x5a back instead:

• 0x5a: Tag stall mechanism is not working.

• 0xa5: The LD8 command in step #7 did not return data to
destination.

• 0xff: While the store command in step #4 is still working, step #5
changes the data in 0[c1]. The tag stall mechanism is supposed
to prevent this change from affecting the store command still in
progress.

* Error message #160: Same as the previous words, except a different
addressing mode is used for the PReg address.

* Error message #161: Sanity check to verify that the test can transmit
a number other than zero. If this word is zero, then the veracity of all
the previous words is suspect.

tagtest0f : Tag Stall Test (Many PRegs To Many PMem Locations) —
Fast test of the PReg tag stall. The test performs the following sequence
of operations:

1. It initializes PReg location A with 0x0, and PReg location B with
0x5a.

2. It stores PReg loc B (0x5a) into a PMem location.

3. It immediately stores PReg loc A (0x0) into the same PMem location.

4. It immediately re-loads PReg loc A with 0xff. If 0xff is loaded into
some of the PMem locations, an error is indicated.

5. It then attempts to load the PMem location into PReg B. If it gets
anything other than zero, it is an error.

The test repeats for many different offsets in both PReg and PMem.

If there is an error, the test ends immediately and prints an error message
giving the state of the zero flag, the base PMem address where the error
occurred, and the base PReg address where the error occurred. It gives no
clue as to which PE chip is faulty.

* Error word 1: Expected 0x00000000. This word represents the
inverse of the zero flag. Thus, this word is zero if the flag was set
(the normal case). This word will be 0x00000001 if the flag was not
set (indicating that one or more PEs read a nonzero number from its
PMem).

Data Parallel Unit Reference Pages B–55

pe_macro(1)

* Error word 2: Expected 0xffffffff. This number represents the last
PMem byte offset the test accessed before ending. During the course
of the test this number ranges between 0x3fff and 0x0.

* Error word 3: Expected 0x4f8. This number represents the last PReg
base address the test accessed before ending. During the course of the
test, this number ranges between 0x0 and 0x4f8.

• xnet1 : Shift Data From Odd To Even Columns And Back — This test enables
all odd columns to transmit. Each odd PE then transmits its own row/col
address as data to its even neighbor to the east a distance of 1. If this
operation is successful, all odd PEs have their t-bit set, and all even PEs have
their r-bit (received) set.

It then disables the odd rows and enables the even rows to transmit. Each
even row transmits the data received in the previous shift back to its neighbor
to the West. Each PE in the odd columns can then compare the data sent
with the data received. They should be the same.

If an error occurs, the test prints an error message containing expected and
actual data. This data may be interpreted as follows:

Error message #1: 0x00000001 is a flag to indicate that one or more
PEs either failed to transmit or receive; or that one or more PEs both
transmitted and received. Normally all the PEs in odd columns would
transmit, and all the PEs in even columns would receive.

Error message #2: 0x00000001 is a flag to indicate that one or more PEs
in odd columns did not receive back the same data they sent. Each PE
in an odd column sent its own address to its neighbor to the East (the
even columns). The neighbor to the East then sent the data back to the
original sender. The data should not have changed.

Error message #3: Sanity check to verify that the test can indeed handle
a number other than zero.

• xnetE : XNet Shift East Test — This test selects a single PE at a time and
shifts data east a distance which is a function of the PEs address. For each of
the 1024 PEs (in a single board system), the test checks the loop count.

This test is attempting to provoke a parity error. When one occurs, the front-
end program times out waiting for more data from the test and prints the
status of the HSR register which indicates why the test halted.

You can still glean some useful information because the front-end program
indicates which message record it was waiting for when it timed out. This
record number is the distance the test was attempting to shift data when the
error occurred. This record number is also the row/column address of the PE
which was attempting the shift.

• xnetN : XNet Shift North Test — This test selects a single PE at a time and
shifts data north a distance which is a function of the PEs address. For each
of the 1024 PEs (in a single board system), the test checks the loop count.

This test is attempting to provoke a parity error. When one occurs, the front-
end program times out waiting for more data from the test and prints the
status of the HSR register which indicates why the test halted.

B–56 Data Parallel Unit Reference Pages

pe_macro(1)

You can still glean some useful information because the front-end program
indicates which message record it was waiting for when it timed out. This
record number is the distance the test was attempting to shift data when the
error occurred. This record number is also the row/column address of the PE
which was attempting the shift.

• xnetNE : XNet Shift Northeast Test — This test selects a single PE at a time
and shifts data northeast a distance which is a function of the PEs address.
For each of the 1024 PEs (in a single board system), the test checks the loop
count.

This test is attempting to provoke a parity error. When one occurs, the front-
end program times out waiting for more data from the test and prints the
status of the HSR register which indicates why the test halted.

You can still glean some useful information because the front-end program
indicates which message record it was waiting for when it timed out. This
record number is the distance the test was attempting to shift data when the
error occurred. This record number is also the row/column address of the PE
which was attempting the shift.

• xnetNW: XNet Shift Northwest Test — This test selects a single PE at a time
and shifts data northwest a distance which is a function of the PEs address.
For each of the 1024 PEs (in a single board system), the test checks the loop
count.

This test is attempting to provoke a parity error. When one occurs, the front-
end program times out waiting for more data from the test and prints the
status of the HSR register which indicates why the test halted.

You can still glean some useful information because the front-end program
indicates which message record it was waiting for when it timed out. This
record number is the distance the test was attempting to shift data when the
error occurred. This record number is also the row/column address of the PE
which was attempting the shift.

• xnetS : XNet Shift South Test — This test selects a single PE at a time and
shifts data south a distance which is a function of the PEs address. For each
of the 1024 PEs (in a single board system), the test checks the loop count.

This test is attempting to provoke a parity error. When one occurs, the front-
end program times out waiting for more data from the test and prints the
status of the HSR register which indicates why the test halted.

You can still glean some useful information because the front-end program
indicates which message record it was waiting for when it timed out. This
record number is the distance the test was attempting to shift data when the
error occurred. This record number is also the row/column address of the PE
which was attempting the shift.

• xnetSE : XNet Shift Southeast Test — This test selects a single PE at a time
and shifts data SouthEast a distance which is a function of the PEs address.
For each of the 1024 PEs (in a single board system), the test checks the loop
count.

This test is attempting to provoke a parity error. When one occurs, the front-
end program times out waiting for more data from the test and prints the
status of the HSR register which indicates why the test halted.

Data Parallel Unit Reference Pages B–57

pe_macro(1)

You can still glean some useful information because the front-end program
indicates which message record it was waiting for when it timed out. This
record number is the distance the test was attempting to shift data when the
error occurred. This record number is also the row/column address of the PE
which was attempting the shift.

• xnetSW : XNet Shift Southwest Test — This test selects a single PE at a time
and shifts data southwest a distance which is a function of the PEs address.
For each of the 1024 PEs (in a single board system), the test checks the loop
count.

This test is attempting to provoke a parity error. When one occurs, the front-
end program times out waiting for more data from the test and prints the
status of the HSR register which indicates why the test halted.

You can still glean some useful information because the front-end program
indicates which message record it was waiting for when it timed out. This
record number is the distance the test was attempting to shift data when the
error occurred. This record number is also the row/column address of the PE
which was attempting the shift.

• xnetW : XNet Shift West Test — This test selects a single PE at a time and
shifts data west a distance which is a function of the PEs address. For each
of the 1024 PEs (in a single board system), the test checks the loop count.

This test is attempting to provoke a parity error. When one occurs, the front-
end program times out waiting for more data from the test and prints the
status of the HSR register which indicates why the test halted.

You can still glean some useful information because the front-end program
indicates which message record it was waiting for when it timed out. This
record number is the distance the test was attempting to shift data when the
error occurred. This record number is also the row/column address of the PE
which was attempting the shift.

Options

-b
Use this option to specify Burn-in test; runs the diagnostic repetitively, reporting
the error count at the end of each pass.

-q
Use this option to specify Quick test; selects a brief version of some of the tests.

-t
Use this option to specify Terse message style; the test prints only the most
essential messages.

Files

Executable file found in directory $MP_PATH/field/bin : pe_macro

See Also

pe_diag, pe_rtbp, pe_scan, pe_xnet

B–58 Data Parallel Unit Reference Pages

pe_memdiag(1)

pe_memdiag(1)

pe_memdiag — DECmpp Sx indirect load/store tests

Syntax

pe_memdiag [-bqt]

Description

The pe_memdiag command loads and runs a back-end program which does the
following operations:

1. Has each processor element (PE) do 1000 (hex) indirect stores followed by
1000 indirect loads; checks for error

2. Has each PE do 1000 direct loads of the same data; checks for error

3. Has each PE do 1000 indirect stores followed by 1000 inverted indirect loads;
checks for error

4. Has each PE do 1000 inverted direct loads of the the same data; checks for
error

If there are no errors, the program returns a success code and halts. If there are
errors, the program returns the following:

• Operation type (1–4 above)

• Direct address involved with the error

• GOR of indirect address involved with the error

• Operation type (Report on individual PE)

• PE number

• Indirect address

• Data received

• Data expected

The program checks all PEs and returns a separate report for each one found to
be in error.

Options

-b
Use this option to specify the burn-in test; runs the diagnostic repetitively,
reporting the error count at the end of each pass.

-t
Use this option to specify terse message style; prints only the most essential
messages.

Files

$DIAG_PATH/field/bin/pe_memdiag

Data Parallel Unit Reference Pages B–59

pe_rtbp(1)

pe_rtbp(1)

pe_rtbp — DECmpp Sx router backplane test

Syntax

pe_rtbp [-qtb] [1100]

Description

The pe_rtbp command tests various signal paths which pass between processor
element (PE), backplane and router cards. When the test detects a failing path, it
gives a complete report starting with the source board, chip and pin number, the
signal name as shown on the schematic, the backplane connector and pin number,
the destination board, backplane connector and pin number, and the destination
chip and pin number.

The verbose message format is self-explanatory. The terse format for experienced
users is shown in the following example:

BD04 U02RS1-127 MQ20 P0114E-12 -- Bp_S1_0400_2 -- BD00 U02RS2-28 MD14 P0114E-7

• BD04: Source board slot number.

• U02RS1-127 : Source chip and pin number.

• MQ20: Source pin name.

• P0114E-12 : Source backplane connector and pin number.

• Bp_S1_0400_2 : Backplane signal name.

• BD00: Destination board slot number.

• U02RS2-28 : Destination chip and pin number.

• MD14: Destination pin name.

• P0114E-7 : Destination backplane connector and pin number.

Options

1100
Use this option to adjust the test for a DECmpp 12000–LC model (4 card slots).
The default machine is the DECmpp 12000 (16 card slots).

-b
Use this option to specify the burn-in test; runs the diagnostic repetitively,
reporting the error count at the end of each pass.

-q
Use this option to specify quick test. This selects a brief version of some of the
tests.

-t
Use this option to specify terse message style. The test prints only the most
essential messages.

B–60 Data Parallel Unit Reference Pages

pe_rtbp(1)

Files

Executable binary: $MP_PATH/field/bin/pe_rtbp

Data Parallel Unit Reference Pages B–61

pe_rtdiag(1)

pe_rtdiag(1)

pe_rtdiag — DECmpp Sx processor element (PE) router diagnostic

Syntax

pe_rtdiag [-t]

Description

The pe_rtdiag command uses a back-end program controlled by an HDB script.
It performs three test routines:

• Identity pattern: Using the router, each PE shifts data to itself

• Multiplex pattern: Using the router, PE #0 shifts data to all PEs one at a
time

• Demultiplex pattern: Using the router, all PEs shift data to PE #0 one at a
time

After each shift, the back-end program checks that the source T-bit is no longer
set, that the destination R-bit is set and that the correct data was received at the
destination.

If an error occurs, the HDB script prints the board, chip and cluster information
of the offending PE. It also prints the state of the applicable error bits in the HSR
and PPSW registers.

Options

-t
Use this option to specify terse message style; prints only the most essential
messages.

Files

Binary executable file: $DIAG_PATH/field/bin/pe_rtdiag

B–62 Data Parallel Unit Reference Pages

pe_rtr(1)

pe_rtr(1)

pe_rtr — DECmpp Sx processor element (PE) router diagnostic

Syntax

pe_rtr [-t]

Description

The pe_rtr command uses a back-end program controlled by an HDB script. It
shifts data and checks whether it is received. It has each PE keep its own error
counter, which it polls at the end of the test (by peek/poking from HDB).

Options

-t
Use this option to specify terse message style. The test prints only the most
essential messages.

Files

Binary executable file: $DIAG_PATH/field/bin/pe_rtr

Data Parallel Unit Reference Pages B–63

pe_scan(1)

pe_scan(1)

pe_scan — DECmpp Sx serial scan test

Syntax

pe_scan [-qtb]

Description

The pe_scan command tests the serial scan chains on the array control unit
(ACU) board, the processor element (PE) board and the router boards:

• ACU board

Main scan chain

EEPROM scan chain

• PE and Router boards

Router shift chain S1, S2 and S3

EEPROM scan chain

GOR scan chain

PREG scan chain

Parity:

* Preg address parity

* PE instruction parity

* RT instruction parity

* M-machine instruction parity

Options

-b
Use this option to specify burn-in test; runs the diagnostic repetitively, reporting
the error count at the end of each pass.

-q
Use this option to specify the quick test. This selects a brief version of some of
the tests.

-t
Use this option to specify terse message style. The test prints only the most
essential messages.

Files

$MP_PATH/field/bin/pe_scan

B–64 Data Parallel Unit Reference Pages

dpumanager(8)

dpumanager(8)

dpumanager — DECmpp Sx data parallel unit (DPU) job manager daemon,
Version 1.1

Syntax

etc/dpumanager [options...]

Description

The DECmpp Sx job manager daemon, dpumanager , maintains the queue for data
parallel unit (DPU) jobs, determines which job has access to the DPU at any
particular time, and ensures that the DPU state is properly initialized between
jobs. It uses a privileged access mode to the array control unit (ACU) driver in
order to monitor calls to open(2) and close(2) and certain calls to ioctl(2) .
This allows it to determine which processes need access to the DPU.

When started, dpumanager puts itself in the background by forking a child process
and exiting the parent. This behavior may be suppressed by using the -nodaemon
option.

Jobs are queued in order of priority and the time when the DPU was requested.
The job manager assigns a queue priority based primarily on the job’s processor
element (PE) memory requirement (refer to mplimit(1)). In addition, jobs with
a time limit of one minute or less get a small boost in priority. The priority is an
integer from 0 to 100, where a lower number is a higher priority (refer to mpq(1)).
A job is queued in front of the first job that has a lower priority. A job’s priority
increases every time another (higher priority) job skips in front of it, so it is not
possible for small jobs to permanently block execution of a large job.

The first n jobs on the queue are loaded in DPU memory and share the machine
in a round-robin fashion. The number n varies according to job requirements
and memory availability. The maximum value for n is determined by the -jobs
command line option.

The round-robin scheduling involves cooperation between the job manager and
the mppehook or mppeback process. The mppehook/mppeback process informs
the job manager of program requirements. The job manager informs mppehook
/mppeback when a job’s time slice is over. The mppehook/mppeback process
informs the job manager when the job is in a quiescent state and can be safely
swapped out. Jobs that do not run under mppehook or mppeback are not able
to share the DPU. Note that all user jobs normally run under mppehook or
mppeback. They run under mppeback if the user explicitly invokes the DECmpp
Sx Parallel Programming Environment (MPPE) using the mppe command and
then invokes the program from within that user interface; otherwise, they run
under mppehook until they fault. If you use the ps command, you see the
user’s executable listed twice: the mppehook or mppeback process is the lower
numbered of the two user processes of the job, and this process number is the
same as the number reported by mpq. The child process, which is executing the
user’s code, has a higher process number.

The number of jobs in memory is greater than one only when multiple jobs at the
front of the queue are able to share the machine. A job cannot share the machine
if it needs all of memory or it is not running under mppehook or mppeback (user
jobs normally run under one of these two processes). If a job cannot share the

Data Parallel Unit Reference Pages B–65

dpumanager(8)

machine, it must wait until it reaches the head of the queue before it is loaded
into memory, and then it has exclusive access until it terminates.

To get on the queue, it is necessary to make an ioctl(2) call, DPUIOACCESS, to
the ACU driver. This is normally done transparently by program startup routines
in the DECmpp Sx-provided libraries. This ioctl(2) call does not return until
the program is granted access.

When access to the DPU is granted, the job manager assigns one or more
partitions of PE memory. The amount assigned is normally determined by fields
in the object file header, which are set using the mplimit(1) command. The
memory allocation cannot be dynamically increased, so it is important that the
job request an adequate quantity. The default is determined by the -pmem option.

The job manager attempts to assure that an appropriate version of DPU
microcode (and opcode map) is loaded for each job. When started, it loads
the default microcode version from $MP_PATH/etc/mp*ucode.wo . At the beginning
of each job it reloads the microcode if the wrong version is known to be loaded or
if the machine does not respond as expected.

The job manager is also responsible for loading and starting up the ACU
kernel program. The ACU kernel is reloaded whenever microcode is reloaded
or whenever the kernel does not appear to be operating correctly.

Jobs may have a time limit set. A system maximum time limit is set
by the -maxtime command line option, by the privileged ioctl(2) call,
DPUIOSYSTIMELIMIT, or using the command mptimelimit(8) . The default
is no time limit. When a time limit is exceeded, the job manager sends the
offending process a SIGXCPU signal, which normally causes mppehook/mppeback
and the user process to exit.

The job manager accounting file (/usr/adm/dpuacct) contains an entry for the
beginning and end of every job. This binary file is read by mpstat(1) .

The job manager maintains a shared memory segment containing the job queue
structures. This may be examined using the mpq(1) command.

The job manager also maintains a DPU configuration file (/usr/tmp/.dpuconfig).
This is used by mpi(1) and mpd(8) to determine the configuration of DPU systems
on the local network.

The terminate (15) signal causes the job manager to send a hangup signal to all
the jobs and then exit. The hangup (1) signal tells it to send a hangup signal to
all the jobs but not exit. The quit (3) signal tells it to send a hangup signal just
to the current active job.

Environment

The job manager uses the environment variable $MP_PATH to find the
default microcode image ($MP_PATH/etc/mp*ucode.wo) and the ACU kernel
($MP_PATH/etc/acuk).

Options

-jobs n
Use this option to specify the maximum number of jobs in memory and the
number of memory partitions. The valid range is 1 to 16. The default is 1,
which disables job swapping. A value of 4 is recommended when job swapping is
desired.

B–66 Data Parallel Unit Reference Pages

dpumanager(8)

-maxtime t
Use this option to specify a system maximum time limit (t), in seconds, for all
jobs.

-nodaemon
Use this option to prevent the job manager from putting itself in background.

-pmem k
Use this option to specify the default amount of PE memory (in KB) that each job
is assigned. The default is one partition, determined by the -jobs option.

-slice t
Use this option to specify the amount of time allocated to a time slice, in
milliseconds. The default is 10000 (10 seconds). Warning: a value of less than
3000 (3 seconds) will most likely result in thrashing.

-Zq
Use this option to suppress printing of the copyright notice.

Restrictions

Pending jobs hang if the job manager terminates abnormally. In this instance, it
is necessary to kill all such jobs manually; they will never be granted access to
the DPU even when the job manager is restarted.

The job manager must always be executed with root privileges.

Diagnostics

The job manager log (/usr/adm/dpujobmgr.log) is a plain-text file containing
a time-stamped entry for each significant event detected by the job manager.
All faults detected by the job manager or the background diagnostic process are
reported in this log file. In addition, an entry is made when the job manager
starts up, shuts down, or loads microcode.

When a fault is detected that requires termination of a job, the job manager sends
an IOT (6) signal to the mppehook or mppeback process that is controlling that
job. If there is no mppehook/mppeback process, a hangup (1) signal is used.

Files

/usr/adm/dpujobmgr.log — Log file
/usr/adm/dpuacct — Job accounting file
/usr/tmp/.dpuconfig — DPU configuration file
$MP_PATH/etc/acuk — ACU kernel
$MP_PATH/etc/mp11ucode.wo — Default microcode image for DECmpp 12000–LC
$MP_PATH/etc/mp12ucode.wo — Default microcode image for DECmpp 12000
$MP_PATH/etc/startup.wo — Dummy microcode used during initialization

See Also

mpi(1), mpq(1), mplimit(1), mpstat(1), dpuDevice(3), acu(4), mpd(8),
mptimelimit(8)

Data Parallel Unit Reference Pages B–67

mpshutdown(8)

mpshutdown(8)

mpshutdown — Terminates the DECmpp Sx data parallel unit (DPU) job manager,
Version 1.1

Syntax

etc/mpshutdown

Description

The mpshutdown command sends a termination signal to the data parallel unit
(DPU) job manager daemon, dpumanager(8) . When the job manager receives this
signal, it should send a hangup signal to all pending DPU jobs and then exit.

This is a shell script which should be run as root.

Diagnostics

The mpshutdown command exits with a nonzero code if:

• It is unable to kill the job manager.

• The job manager is not present.

• It finds multiple instances of the job manager.

See Also

dpumanager(8)

B–68 Data Parallel Unit Reference Pages

Index

A
ACU slot, 6–4
acu_bound, 5–4
acu_clim, 5–4
acu_diag, 5–4
acu_int, 5–4
acu_macro, 5–4
acu_micro, 5–4
acu_pgtbl, 5–4
acu_ppdma command, B–2
acu_pptest, 5–4
acu_prof, 5–4
acu_reg1, 5–4
acu_reg2, 5–4
acu_sup, 5–4
Array control unit, 1–1

indicators, 2–5, 2–10
interrupt level, 6–7
jumpers, 6–7, 7–4
PCB, 6–4
replacing PCBs, 6–6
testing the ACU PCB, 5–3
VMEbus address, 6–7
VMEbus interrupt level, 6–7

Auxiliary PCBs, 4–2

B
Backplane

testing, 5–3
Backplane jumpers, 7–1
Booting

server, 1–6

C
Cables, 4–1
Card cage, 6–1

slots, 7–1
Chassis ground circuit, 2–10
Circuit breaker

1 A, 2–6
15 A, 2–6
30 A, 2–6

Circuit breakers
DPU, 2–6

Commands
acu_ppdma , B–2
dpumanager , B–65
mpconfig , B–3
mpi , B–4
mpq, B–5
mpshutdown , B–68
mpstat , B–6
pe_arith , B–8
pe_ckonet , B–9
pe_diag , B–10
pe_func , B–12
pe_macro , B–13
pe_memdiag , B–59
pe_rtbp , B–60
pe_rtdiag , B–62
pe_rtr , B–63
pe_scan , B–64

Control switches, 2–1
Customer environment, 5–2

D
Data cables, 4–1
Data parallel unit, 1–1

accessing, 1–6
backplane, 7–1
card cage access, 6–1
circuit breakers, 2–6
control switches, 2–1
front panel indicators, 2–7
heat sensor, 2–6
indicators, 2–1
interconnect PCB, 4–2
keyswitch, 1–4, 2–5
mpconfig , B–3
mpi , B–4
power selector, 1–4, 2–5
power status, 2–6
power status indicator, 2–6
power supply adjustment, 3–1
power system, 2–5
powerup sequencer, 2–6
reconnecting, 1–6
regions, 7–1
replacing ACU PCB, 6–6
replacing fan tray, 6–18, 6–19

Index–1

Data parallel unit (cont’d)
replacing front-end VME interface PCB, 6–9
replacing PCBs, 6–6
replacing PE array PCBs, 6–10
replacing power tray, 6–11
replacing router PCBs, 6–10

Data parallel unit (-LC)
inner door, 7–3

DECmpp 12000
processor element array slots, 1–1

DECmpp 12000–LC, 1–1
Diagnostic tests, 5–4
Diagnostics

aborting, 5–1
acu_ppdma , B–2
environment, 5–2
for ACU PCB, 5–3
log files, 5–7
pe_arith , B–8
pe_ckonet , B–9
pe_diag , B–10
pe_func , B–12
pe_macro , B–13
pe_memdiag , B–59
pe_rtbp , B–60
pe_rtdiag , B–62
pe_rtr , B–63
pe_scan , B–64
running, 5–2
suspending, 5–2
test backplane, 5–3
testing PE array PCBs, 5–3

dpujobmgr.log, 5–10
dpumanager command, B–65

E
Ejector levers, 6–6
Error messages, 5–9

F
Fan tray

replacing, 6–18
replacing (-LC), 6–19

Fault code word, 5–7
Field environment, 5–2
FLTCOD values, 5–7
Front-end VME interface, 6–4
Front-end VME interface PCB, 6–9

H
Heat sensor, 2–6

I
I/O jumpers, 7–4
I/O PCB slots

DECmpp 12000, 1–1
DECmpp 12000–LC, 1–1

I/O PCBs, 6–4
jumpers, 7–4

I/O slots, 6–4
Indicator

power status, 2–6
Indicators

DPU, 2–1
Interrupt level

ACU, 6–7

J
Job accounting

mpstat , B–6
Jumpers, 6–7

ACU, 7–4
backplane, 7–1
I/O, 7–4
MPVMEbus, 7–4
X-Net, 7–5

K
Keyswitch, 1–4, 2–5

DPU, 1–4

L
Lightpipe

PCB, 4–2
replacing PCB, 6–20

Log files, 5–7
dpujobmgr, 5–10
interpreting, 5–8
location, 5–8
LOG, 5–8
uerf, 5–12

Loop on error, 5–2

M
Manufacturing environment, 5–2
Menu mode, 5–2
met diagnostic, 5–5
MODEM

disconnect switch, 2–5
mpconfig command, B–3
mpi command, B–4
mpq command, B–5
mpshutdown command, B–68

Index–2

mpstat command, B–6
MPVMEbus jumpers, 7–4
MVIB

indicator, 2–5
slot, 6–4

P
PCBs

auxiliary, 4–2
ejector levers, 6–6
replacing, 6–6
replacing lightpipe PCB, 6–20

PE array
combinations, 7–7
indicators, 2–12
number, 1–1
replacing, 6–10
upgrade, 7–7, 7–8

PE array size, 1–1
effect on code, 7–7

pe_arith, 5–5
pe_arith command, B–8
pe_ckonet, 5–5
pe_ckonet command, B–9
pe_ckxnet, 5–5
pe_diag, 5–6
pe_diag command, B–10
pe_func, 5–6
pe_func command, B–12
pe_macro, 5–6
pe_macro command, B–13
pe_memdiag, 5–6
pe_memdiag command, B–59
pe_rtbp, 5–6
pe_rtbp command, B–60
pe_rtdiag, 5–6
pe_rtdiag command, B–62
pe_rtr, 5–6
pe_rtr command, B–63
pe_scan, 5–6
pe_scan command, B–64
pe_xnet, 5–6
POWER

keyswitch, 2–5
Power cable, 4–1
Power selector, 2–5
Power status indicator, 2–6
Power supply

cable, 4–1
connector, 4–1

Power supply controller PCB, 4–2
Power switch

data parallel unit, 1–4
LOCAL, 1–4
OVERRIDE, 1–4
REMOTE, 1–4
server, 1–4

Power system
replacing fan tray, 6–18
replacing fan tray (-LC), 6–19
replacing power tray, 6–11

Power tray, 6–11
indicators, 2–9

Powerdown sequence, 1–6
Powerup sequence, 1–6
Powerup sequencer, 2–6
Processor element array, 1–1
Processor element array PCBs, 6–4

replacing, 6–10
Processor element array slots, 6–4

DECmpp 12000, 1–1
DECmpp 12000–LC, 1–1

Processor elements, 1–1
indicators, 2–5
testing array PCBs, 5–3

PVME
indicator, 2–5

Q
Queues

mpq, B–5
Quick mode, 5–2

R
Router PCBs, 6–4

indicators, 2–5, 2–12
removing for upgrade, 7–8
replacing, 6–10

RS-232 Cable, 4–1
rts , 5–6
rts13 , 5–6
rts2 , 5–6

S
Sequencer

powerup, 2–6
Server

booting, 1–6
power switch, 1–4

SIMD, 1–1
Single-instruction, multiple data, 1–1
Static discharge precautions, 6–6
Stop on error, 5–2
System powerdown sequence, 1–6
System powerup sequence, 1–6

T
T6000

indicator, 2–5
T6000 slot, 6–4

Index–3

Telephone connection cable, 4–1
Terse mode, 5–2

U
uerf , 5–12

V
VME

front-end interface, 6–4

replacing front-end VME interface PCB, 6–9
VME interface

PCBs, 6–4
VMEbus address

ACU, 6–7
VMEbus RESET, 2–5
Voltage measurement, 3–1

X
X-Net jumpers, 7–5

Index–4

