This manual describes the general operation of Compaq
AlphaServer DS10, AlphaServer DS10L and AlphaStation DS10
systems. It presents the SRM console (the command-line
interface for Tru64 UNIX and OpenVMS operating systems),
AlphaBIOS (the graphics interface for Linux), and remote
console management.
The information in this publication is subject to change without notice and is provided "AS IS" WITHOUT WARRANTY OF ANY KIND. THE ENTIRE RISK ARISING OUT OF THE USE OF THIS INFORMATION REMAINS WITH RECIPIENT. IN NO EVENT SHALL COMPAQ BE LIABLE FOR ANY DIRECT, CONSEQUENTIAL, INCIDENTAL, SPECIAL, PUNITIVE OR OTHER DAMAGES WHATSOEVER (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION OR LOSS OF BUSINESS INFORMATION), EVEN IF COMPAQ HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE FOREGOING SHALL APPLY REGARDLESS OF THE NEGLIGENCE OR OTHER FAULT OF EITHER PARTY AND REGARDLESS OF WHETHER SUCH LIABILITY SOUNDS IN CONTRACT, NEGLIGENCE, TORT, OR ANY OTHER THEORY OF LEGAL LIABILITY, AND NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY.

The limited warranties for Compaq products are exclusively set forth in the documentation accompanying such products. Nothing herein should be construed as constituting a further or additional warranty.

FCC Notice: See Appendix - "Regulatory Compliance Notices".
Contents

Preface ... xi

Chapter 1 Operations

1.1 Powering Up the System ... 1-2
1.2 Power-Up Display ... 1-5
1.3 Booting Tru64 UNIX ... 1-9
1.3.1 Booting from a Local Disk .. 1-9
1.3.2 Booting from a Remote Disk ... 1-11
1.4 Installing Tru64 UNIX .. 1-13
1.5 Booting OpenVMS .. 1-15
1.5.1 Booting OpenVMS from a Local Disk .. 1-15
1.5.2 Booting OpenVMS from a Disk on a Cluster ... 1-17
1.5.3 Booting OpenVMS from a Remote Disk ... 1-19
1.6 Installing OpenVMS .. 1-21
1.7 Switching Between Operating Systems ... 1-23
1.7.1 Switching to Tru64 UNIX or OpenVMS ... 1-23
1.8 Updating Firmware .. 1-24
1.8.1 Updating Firmware from Floppy Disks .. 1-27
1.8.2 Performing the Update from Floppy Disks ... 1-28
1.8.3 Updating Firmware from a Network Device ... 1-30
1.1.4 LFU Commands .. 1-33
1.9 Using the Halt Button .. 1-36
1.9.1 Using Halt to Shut Down the Operating System ... 1-37
1.9.2 Using Halt to Clear the Console Password .. 1-37
1.10 Halt Assertion .. 1-38
1.10.1 Halt Assertion with Halt Button or RMC Halt Command .. 1-38
1.10.2 Halt Assertion with RMC Haltin Command ... 1-39
1.10.3 Clearing a Halt Assertion .. 1-39
1.10.4 Disabling Autoboot .. 1-39
1.10.5 Disabling the SRM Power-Up Script .. 1-40
Chapter 2 SRM and AlphaBIOS Consoles

2.1 Invoking the SRM Console... 2-2
2.2 Commands ... 2-3
2.2.1 Command Summary ... 2-3
2.2.2 Commands: Syntax ... 2-5
2.2.3 Commands: Special Keystrokes and Characters 2-6
2.3 Show Commands... 2-8
2.3.1 Show Config .. 2-8
2.3.2 Show Device .. 2-10
2.3.3 Show Memory ... 2-13
2.3.4 Show PAL ... 2-13
2.3.5 Show Power .. 2-14
2.3.6 Show Version ... 2-15
2.4 Creating a Power-Up Script .. 2-16
2.5 Booting the Operating System .. 2-18
2.6 Configuring a PCI NVRAM Module .. 2-20
2.7 Testing the System ... 2-21
2.8 Set Commands .. 2-24
2.8.1 Set Password .. 2-24
2.8.2 Set Secure .. 2-25
2.9 Secure Mode .. 2-26
2.9.1 Login Command and Secure Mode 2-26
2.9.2 Clear Password .. 2-27
2.9.3 Resetting the Password .. 2-28
2.10 Stopping and Starting CPU .. 2-29
2.11 Updating Firmware ... 2-29
2.12 Forcing a System Crash Dump .. 2-31
2.13 Using Environment Variables .. 2-32
2.13.1 set envvar ... 2-32
2.13.2 show envvar ... 2-33
2.14 Depositing and Examining Data ... 2-34
2.15 Reading a File ... 2-37
2.16 Initializing the System .. 2-38
2.17 Finding Help ... 2-39
2.18 Environment Variable Summary ... 2-40
2.18.1 auto_action ... 2-42
2.18.2 bootdef_dev ... 2-42
2.18.3 boot_osflags ... 2-43
2.18.4 com1_baud ... 2-45
2.18.5 com1_mode .. 2-45
2.18.6 console .. 2-46
Chapter 3 Remote Management Console

3.1 RMC Components ... 3-2
3.2 Terminal Setup ... 3-4
3.3 Operating Modes ... 3-6
3.3.1 Snoop Mode (Default Mode) 3-7
3.3.2 Bypass Modes .. 3-7
3.4 Entering the RMC ... 3-8
3.5 SRM Environment Variables for COM1 3-9
3.6 Status Monitoring ... 3-10
3.7 Remote Power (On/Off) .. 3-12
3.8 Remote Halt (In/Out) .. 3-14
3.9 Configuring Remote Dial-In .. 3-16
3.10 Configuring Dial-Out Alert ... 3-18
3.11 Dialing In ... 3-21
3.12 Resetting the RMC to Factory Defaults 3-22
3.13 Troubleshooting Tips .. 3-24
3.14 RMC Commands .. 3-26
3.14.1 clear alert ... 3-28
3.14.2 clear port ... 3-28
3.14.3 disable alert .. 3-29
3.14.4 disable remote .. 3-29
3.14.5 enable alert .. 3-30
3.14.6 enable remote .. 3-31
3.14.7 halt (in/out) .. 3-32
3.14.8 hangup ... 3-33
3.14.9 help or ? .. 3-33
3.14.10 power off ... 3-34
3.14.11 power on ... 3-34
3.14.12 quit ... 3-35
3.14.13 reset ... 3-36
3.14.14 send alert .. 3-36
3.14.15 set alert .. 3-37
3.14.16 set com1_mode ... 3-38
3.14.17 set dial ... 3-39
3.14.18 set escape ... 3-40
3.14.19 set init ... 3-41
3.14.20 set logout .. 3-42
3.14.21 set password .. 3-42
3.14.22 set user ... 3-42
3.14.23 set wdt ... 3-43
3.14.24 status ... 3-43

Appendix A Setting Jumpers
A.1 Warnings and Cautions ... A-2
A.2 Remove Power from the System A-3
A.3 Open the System ... A-5
A.4 Remove the Floppy Disk Enclosure (DS10 Only) A-9
A.5 Set Jumpers .. A-10
A.6 Restore Power .. A-12

Appendix B Regulatory Compliance Notices
B.1 Class A and Class B Ratings B-1
B.1.1 Class A Device Notices .. B-2
B.1.2 Class B Device Notices .. B-5

Index

Examples
1–1 Power-Up Display – DS10 ... 1-5
1–2 Power-Up Display - DS10L Serial and Graphics Consoles 1-7
1–3 Booting Tru64 UNIX from a Local Disk 1-9
1–4 Booting Tru64 UNIX from a Remote Disk 1-11
1–5 Installing Tru64 UNIX .. 1-13
1–6 Booting OpenVMS from a Local Disk 1-15
1–7 Booting OpenVMS from a Disk on a Cluster .. 1-17
1–8 Booting OpenVMS from a Remote Disk ... 1-19
1–9 Installing OpenVMS ... 1-21
1–10 Starting LFU from the SRM Console .. 1-24
1–11 Booting LFU from the CD-ROM .. 1-26
1–12 Updating Firmware from the Floppy Disk ... 1-28
1–13 Updating Firmware from a Network Device 1-30
2–1 Show Config Command ... 2-8
2–2 Show Device Command ... 2-10
2–3 Show Memory Command .. 2-13
2–4 Show PAL Command .. 2-13
2–5 Show Power Command .. 2-14
2–6 Show Version Command .. 2-15
2–7 Editing the nvram Script .. 2-17
2–8 Clearing the nvram Script ... 2-17
2–9 Boot Command .. 2-19
2–10 Prcache Command ... 2-20
2–11 Test Command .. 2-21
2–12 Set Password Command ... 2-24
2–13 Set Secure Command ... 2-25
2–14 Secure Mode and Login Command ... 2-27
2–15 Clear Password Command .. 2-27
2–16 Lfu Command ... 2-29
2–17 Crash Command .. 2-31
2–18 Setting and Showing Environment Variables 2-33
2–19 Creating a User-Defined Environment Variable 2-33
2–20 Deposit Command .. 2-35
2–21 Examine Command .. 2-36
2–22 More Command .. 2-37
2–23 Initialize Command ... 2-38
2–24 Help Command .. 2-39
2–25 Changing Baud Rate .. 2-45
3–1 Dial-In Configuration .. 3-16
3–2 Dial-Out Alert Configuration ... 3-18

Figures
1–1 Check Power Setting – DS10 .. 1-2
1–2 Location of DS10 Control Panel and On/Off Button 1-3
1–3 Location of DS10L Control Panel and On/Off Button 1-4
1–4 Physical Numbering for DS10 PCI Slots .. 1-6
1–5 Halt/Reset Button – DS10... 1-36
1–6 Halt/Reset Button - DS10L ... 1-37
2–1 AlphaBIOS Boot Screen... 2-54
2–2 AlphaBIOS No Selections Found Screen 2-55
2–3 AlphaBIOS Setup Screen ... 2-56
2–4 AlphaBIOS Setup Screen ... 2-57
2–5 Run Maintenance Program Dialogue Box 2-58
3–1 Location of RMC Components on Motherboard – DS10 3-2
3–2 Location of RMC Components on Motherboard - DS10L 3-3
3–3 Setups for RMC Mode – DS10.. 3-4
3–4 Setups for RMC Mode - DS10L .. 3-5
3–5 Bypass Mode .. 3-6
3–6 Power Button – DS10... 3-12
3–7 Power Button - DS10L ... 3-13
3–8 Halt/Reset Button - DS10 .. 3-14
3–9 Halt/Reset Button - DS10L .. 3-15
3–10 RMC Jumpers (Default Positions) – DS10................................. 3-22
3–11 RMC Jumpers (Default Positions) – DS10L 3-23
A–1 Removing Power - DS10 System .. A-3
A–2 Removing Power - DS10L System .. A-4
A–3 Opening the DS10 System Cabinet ... A-5
A–4 Opening the DS10L System Cabinet ... A-7
A–5 Removing the DS10 Floppy Disk ... A-9
A–6 Setting Jumpers on the Motherboard .. A-10

Tables

1–1 Control Panel Functions – DS10... 1-3
1–2 Control Panel Functions - DS10L ... 1-4
1–3 File Locations for Creating Update Diskettes on a PC 1-27
1–4 LFU Command Summary .. 1-33
2–1 Summary of SRM Console Commands 2-3
2–2 Syntax for SRM Console Commands .. 2-5
2–3 Special Characters for SRM Console .. 2-6
2–4 Device Naming Convention .. 2-11
2–5 PCI Address Assignments – DS10 ... 2-12
2–6 PCI Address Assignment - DS10L ... 2-12
2–7 Environment Variable Summary .. 2-40
2–8 Settings for boot_osflags Bootflags (OpenVMS) 2-44
3–1 SRM Environment Variables for COM1 3-9
3–2 Status Command Fields ... 3-10
3–3 Elements of Dial String and Alert String 3-20
3–4 RMC Troubleshooting ... 3-24
A-1 Factory Default Switch Settings ... A-11
A-2 Jumpers and Factory Default Positions A-11
Preface

Intended Audience
This manual is for service providers, managers and operators of Compaq AlphaServer DS10, AlphaServer DS10L, and AlphaStation DS10 systems.

Document Structure
This manual uses a structured documentation design. Topics are organized into small sections, usually consisting of two facing pages. Most topics begin with an abstract that provides an overview of the section, followed by an illustration or example. The facing page contains descriptions, procedures, and syntax definitions.

This manual has three chapters, two appendices, and an index:

- **Chapter 1, Operations**, provides basic operating instructions, including powering up the system, booting, and operating system installation.

- **Chapter 2, SRM and AlphaBIOS Consoles**, presents the command-line interface that supports the Tru64 UNIX and OpenVMS operating systems and the graphical interface that supports some utility programs. The SRM console is used to bootstrap the operating system, configure and test the system hardware, examine system options for errors, and set or change environment variables. AlphaBIOS is used to run utilities.

- **Chapter 3, Remote Management Console**, describes how to manage the system from a remote location.

- **Appendix A, Setting System Jumpers**, describes how to check and reset if necessary the Halt/Reset select jumper and remote management console jumper.

- **Appendix B, Regulatory Compliance Notices**, contains regulatory compliance notices for this computer system.
Conventions

In examples of SRM console output, commands the user enters are presented in **boldface type**, while the system’s output is in regular type. Comments on the examples are either called out with circled numbers (①②③) or are preceded by a pound sign (#) and are given in **boldface italics**.

Revision levels, dates and devices listed in examples are for example only; your results may vary according to the configuration of your system.

NOTE: In many ways DS10 and DS10L systems are identical. This manual uses DS10 systems for most illustrations and examples; DS10 screen examples may have more devices shown than equivalent DS10L screens, and other minor differences may appear. Where significant differences exist, an illustration or example of a DS10L is presented separately.

Documentation Titles

This following DS10/DS10L documentation is available.

<table>
<thead>
<tr>
<th>Title</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS10 / DS10L Console Reference</td>
<td>EK-DS10S-CR</td>
</tr>
<tr>
<td>Safety Booklet</td>
<td>296382-021</td>
</tr>
<tr>
<td>DS10 Quick Setup Poster</td>
<td>EK-DS10S-CP</td>
</tr>
<tr>
<td>DS10 User Reference Card</td>
<td>EK-DS10S-UR</td>
</tr>
<tr>
<td>DS10 Rackmount Guide</td>
<td>EK-DS10S-RM</td>
</tr>
<tr>
<td>DS10 User Information CD</td>
<td>AG-RHD8B-BE</td>
</tr>
<tr>
<td>DS10L Quick Setup Poster</td>
<td>EK-DS10L-CP</td>
</tr>
<tr>
<td>DS10L User Reference Card</td>
<td>EK-DS10L-UR</td>
</tr>
<tr>
<td>DS10L User Information CD</td>
<td>AG-RLD4A-BE</td>
</tr>
</tbody>
</table>

Information on the Internet

Visit the Compaq Web site at www.compaq.com for service tools and more information about the AlphaServer DS10 / DS10L, AlphaStation DS10 systems.
Chapter 1
Operations

This chapter provides basic operating instructions, including powering up the system, booting, and operating system installation. Note that your choice of operating system has already been installed at the factory; this information is provided so that should you decide to change operating systems, you may. It also provides information about updating firmware.

Sections in this chapter are:
- Powering Up the System
- Power-Up Display
- Booting Tru64 UNIX
- Installing Tru64 UNIX
- Booting OpenVMS
- Installing OpenVMS
- Switching Between Operating Systems
- Updating Firmware
- Using the Halt Button
- Halt Assertion

NOTE: In many ways the DS10 and DS10L systems are identical. This manual uses DS10 systems for most illustrations and examples. Where significant differences exist, an illustration or example of a DS10L is presented separately.
1.1 Powering Up the System

To power up the system, check your power setting (DS10 only), then press the On/Off button to the On position. Check the control panel LEDs. See Figure 1–1 and Figure 1–2 for the DS10, and Figure 1–3 for the DS10L.

Figure 1–1 Check Power Setting – DS10
Figure 1–2 Location of DS10 Control Panel and On/Off Button

Table 1–1 Control Panel Functions – DS10

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>✅️</td>
<td>Halt button. Under OpenVMS and Tru64 UNIX, suspends the operating system and returns control to the SRM console.</td>
</tr>
<tr>
<td>🌋️</td>
<td>Environmental amber LED. On indicates Temperature or Fan LEDs are on. Flashes when operating system invokes it as an alert.</td>
</tr>
<tr>
<td>🎈</td>
<td>Temperature amber LED. On indicates internal temperature exceeds operating conditions. The system shuts down 30 seconds after this LED lights.</td>
</tr>
<tr>
<td>💙</td>
<td>Fan amber LED. On indicates that at least one of the three fans in the system has failed. The system shuts down 30 seconds after this LED lights.</td>
</tr>
<tr>
<td>💙</td>
<td>Disk Activity green LED. Flashes when internal system disks are accessed.</td>
</tr>
<tr>
<td>✅️</td>
<td>Power Present green LED. On when power is present in the system.</td>
</tr>
<tr>
<td>🕳️</td>
<td>Power button. Push in to start the system and connect power. Push again to remove power and stop the system.</td>
</tr>
</tbody>
</table>
Table 1-2 Control Panel Functions - DS10L

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Halt button. Under OpenVMS and Tru64 UNIX, suspends the operating system and returns control to the SRM console.</td>
</tr>
<tr>
<td></td>
<td>Environmental amber LED. On indicates Temperature or Fan LEDs are on. Flashes when operating system invokes it as an alert.</td>
</tr>
<tr>
<td></td>
<td>Temperature amber LED. On indicates internal temperature exceeds operating conditions. The system shuts down 30 seconds after this LED lights.</td>
</tr>
<tr>
<td></td>
<td>Fan amber LED. On indicates that at least one of the three fans in the system has failed. The system shuts down 30 seconds after this LED lights.</td>
</tr>
<tr>
<td></td>
<td>Disk Activity green LED. Flashes when internal system disks are accessed.</td>
</tr>
<tr>
<td></td>
<td>Power Present green LED. On when power is present in the system.</td>
</tr>
<tr>
<td></td>
<td>Power button. Push in to start the system and connect power. Push again to remove power and stop the system.</td>
</tr>
</tbody>
</table>
1.2 Power-Up Display

DS10 systems have four physical PCI slots; the DS10L system has one, hence the different power-up displays shown below.

Testing begins after pressing the On/Off button, and screen text similar to that in Example 1–1 displays (if the console terminal is a serial terminal connected to the COM1 port), along with status messages in the control panel display. If the console terminal is a graphics monitor, only the last few lines of the power-up display print.

Example 1–1 Power-Up Display – DS10

256 Meg of system memory
probing hose 0, PCI
probing PCI-to-ISA bridge, bus 1
probing PCI-to-PCI bridge, bus 2
bus 0, slot 9 -- ewa -- DE500-BA Network Controller
bus 0, slot 11 -- ewb -- DE500-BA Network Controller
bus 0, slot 13 -- dqa -- Acer Labs M1543C IDE
bus 0, slot 13 -- dqb -- Acer Labs M1543C IDE
bus 0, slot 14 -- vga -- DEC PowerStorm
bus 2, slot 0 -- pka -- NCR 53C875
bus 2, slot 1 -- pkb -- NCR 53C875
bus 2, slot 2 -- ewc -- DE500-AA Network Controller
bus 0, slot 16 -- pkc -- QLogic ISP1020
bus 0, slot 17 -- dra -- Mylex DAC960
Testing the System
Testing the Disks (read only)
>>>
Memory size is determined.

The PCI bridges and attendant buses (indicated as IODn by the console) are probed and the devices are reported. I/O adapters are configured.

Power-up slot 14 corresponds to the bottom physical slot, slot 1.

<table>
<thead>
<tr>
<th>Slot Location</th>
<th>Physical Slot Number</th>
<th>Logical Slot Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top</td>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td>Second from top</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>Second from bottom</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>Bottom</td>
<td>1</td>
<td>14</td>
</tr>
</tbody>
</table>

These devices are behind bridge of the card in logical slot 15, physical slot 2, second from the bottom.

This device in is logical slot 16, physical slot 3.

Logical slot 17 is physical slot 4, the top slot.

The SRM console banner and prompt (>>>) are printed. The SRM console is a command-line interface you use to set or read system parameters.

If the auto_action environment variable is set to boot or restart and the os_type environment variable is set to unix or openvms, the Tru64 UNIX or OpenVMS operating system boots. See Section 2.18 for information on environment variables.
Example 1-2 Power-Up Display - DS10L Serial and Graphics Consoles

Note: There is only one PCI slot on the DS10L; its logical slot number is 17.

Serial Console

256 Meg of system memory
probing hose 0, PCI
probing PCI-to-ISA bridge, bus 1
bus 0, slot 9 -- ewa -- DE500-BA Network Controller
bus 0, slot 11 -- ewb -- DE500-BA Network Controller
bus 0, slot 13 -- dqa -- Acer Labs M1543C IDE
bus 0, slot 13 -- dqb -- Acer Labs M1543C IDE
bus 0, slot 17 -- dra -- Mylex DAC960
Testing the System
Testing the disks (read only)
Testing the Network
System Temperature is 36 degrees C
Initializing GCT/FRU at 1f6000

COMPAQ AlphaServer DS10L 466 MHz Console V5.7-0 Jan 14 2000 09:59:58

>>> ④

① Memory size is determined.

② The PCI bridges and attendant buses (indicated as IODn by the console) are probed and the devices are reported. I/O adapters are configured.

③ The power-up logical slot is always 17 on the DS10L.

④ The SRM console banner and prompt (>>>) are printed.
The SRM console is a command-line interface you use to set or read system parameters.

If the auto_action environment variable is set to boot or restart and the os_type environment variable is set to unix or openvms, the Tru64 UNIX or OpenVMS operating system boots.

See Section 2.18 for information on environment variables. See Chapter 2 for SRM console and AlphaBIOS information.
Graphics Console
Os_type UNIX-console CIPCA drive not started
Testing the System
Testing the disks (read only)
Testing the Network
System Temperature is 36 degrees C
Initializing GCT/FRU at 1f6000

COMPAQ AlphaServer DS10L 466 MHz Console V5.7-0 Jan 13 2000 09:59:58
1.3 Booting Tru64 UNIX

Tru64 UNIX® can be booted from a local disk or a remote disk through an Ethernet connection. Refer to the documentation shipped with the operating system for booting instructions.

1.3.1 Booting from a Local Disk

Example 1–3 Booting Tru64 UNIX from a Local Disk

```bash
>>> sho device

<table>
<thead>
<tr>
<th>Device</th>
<th>Name</th>
<th>Device Type</th>
<th>Vendor</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>dka100.1.0.2000.0</td>
<td>DKA100</td>
<td>DKA</td>
<td>RZ1CB-CA</td>
<td>LYJ0</td>
</tr>
<tr>
<td>dka300.3.0.2000.0</td>
<td>DKA300</td>
<td>DKA</td>
<td>RZ1CB-CA</td>
<td>LYJ0</td>
</tr>
<tr>
<td>dka500.5.0.2000.0</td>
<td>DKA500</td>
<td>DKA</td>
<td>RZ1EF-AB</td>
<td>0370</td>
</tr>
<tr>
<td>dbk0.0.0.2001.0</td>
<td>DKB0</td>
<td>DKB</td>
<td>RZ1CB-CA</td>
<td>LYJ0</td>
</tr>
<tr>
<td>dbk200.2.0.2001.0</td>
<td>DKB200</td>
<td>DKB</td>
<td>RZ1DB-CS</td>
<td>0307</td>
</tr>
<tr>
<td>dbk400.4.0.2001.0</td>
<td>DKB400</td>
<td>DKB</td>
<td>RZ1CB-CA</td>
<td>LYJ0</td>
</tr>
<tr>
<td>dkc0.0.0.16.0</td>
<td>DKC0</td>
<td>DKB</td>
<td>RZ1CB-BA</td>
<td>LYG0</td>
</tr>
<tr>
<td>dkc200.2.0.16.0</td>
<td>DKC200</td>
<td>DKB</td>
<td>RZ1CB-BA</td>
<td>LYG0</td>
</tr>
<tr>
<td>dqal.1.0.13.0</td>
<td>DQA1</td>
<td>CD-532E</td>
<td>1.0A</td>
<td></td>
</tr>
<tr>
<td>dra1.0.0.17.0</td>
<td>DRA1</td>
<td>1 Member JBOD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dra2.0.0.17.0</td>
<td>DRA2</td>
<td>1 Member JBOD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dva0.0.0.0.0</td>
<td>DVA0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ewa0.0.0.9.0</td>
<td>EWA0</td>
<td>08-00-2B-86-1B-BA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ewb0.0.0.11.0</td>
<td>EWB0</td>
<td>08-00-2B-86-1B-BB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ewc0.0.0.2002.0</td>
<td>EWC0</td>
<td>00-06-2B-00-26-1C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pka0.7.0.2000.0</td>
<td>PKA0</td>
<td>SCSI Bus ID</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

>>> boot -file vmunix -flags a dkc0

(boot dkc0.0.0.9.0 -file vmunix -flags a)
block 0 of dkc0.0.0.9.0 is a valid boot block
reading 16 blocks from dkc0.0.0.9.0
bootstrap code read in
base = 1ee000, image_start = 0, image_bytes = 2000
initializing HWRPB at 2000
initializing page table at 1fff0000
initializing machine state
setting affinity to the primary CPU
jumping to bootstrap code

Tru64 UNIX boot - Fri Aug 7 20:30:19 EDT 1999
Loading vmunix ...
... The system is ready.
Tru64 UNIX Version V4.0E (sabl28.eng.pko.dec.com) console login: *********************************************************************************
* Starting Desktop Login on display :0...
* Wait for the Desktop Login screen before logging in. *********************************************************************************
The **show device** command displays device information, including name and type of connection to the system. See Section 2.3.2 for a description of the **show device** command and the device naming convention.

The operating system is on the third disk connected to the system through the controller in slot 3 of the PCI. The name of this device, dkc0, is used as an argument to the **boot** command.

This command loads Tru64 UNIX from the disk dkc0, using the boot file vmunix and autobooting to multiuser mode. See Section 2.5 for a description of the **boot** command.

The **boot** command accepts the name of a boot device, a boot file name through the `-file` option, and boot flags through the `-flags` option. The environment variables **bootdef_dev**, **boot_file**, and **boot_osflags** can also be used to specify the default boot device or device list, the default boot file, and flag information. When an option and the corresponding environment variable are both in a command string, the option overrides the environment variable. The value of the environment variable, however, is not changed. See Section 2.18 for information about environment variables.

The operating system banner displays.
1.3.2 Booting from a Remote Disk

Example 1–4 Booting Tru64 UNIX from a Remote Disk

```bash
>>> show device
 . .
ewa0.0.0.8.0 EWA0 08-00-2B-E2-9C-60

>>> boot -flags an -protocols bootp ewa
 (boot ewa0.0.0.4.1 -flags an)
Building FRU table

Trying BOOTP boot.

Broadcasting BOOTP Request...
Received BOOTP Packet File Name: /var/adm/ris/ris0.alpha/hvmunix
local inet address: 16.122.128.26
remote inet address: 16.122.128.59
TFTP Read File Name: /var/adm/ris/ris0.alpha/hvmunix
..........................bootstrap code read in
base = 200000, image_start = 0, image_bytes = 9a0fa0
initializing HWRPB at 2000
initializing page table at 1f2000
initializing machine state
setting affinity to the primary CPU
jumping to bootstrap code

Secondary boot program - Thu Aug 1 22:33:13 EST 1999

Loading vmunix ...
 .
 .
The system is ready.

Tru64 UNIX Version V4.0E (sabl28.eng.pko.dec.com) console
```
1. The **show device** command displays device information, including name and type of connection to the system. See Section 2.3.2 for a description of the **show device** command and the device naming convention.

2. The operating system is on a remote disk accessed through the Ethernet controller in slot 4 of the PCI. The name of this device, ewa0, is used as an argument to the **boot** command.

3. This command loads Tru64 UNIX from ewa0, autobooting to multiuser mode. See Section 2.5 for a description of the **boot** command.

   The **boot** command accepts the name of a boot device, a boot file name through the **-file** option, and boot flags through the **-flags** option. The environment variables **bootdef_dev**, **boot_file**, and **boot_osflags** can also be used to specify the default boot device or device list, the default boot file, and flag information. When an option and the corresponding environment variable are both in a command string, the option overrides the environment variable. The value of the environment variable, however, is not changed. See Section 2.18 for information about environment variables.

4. The operating system banner displays.
1.4 Installing Tru64 UNIX

Tru64 UNIX is installed from the CD-ROM. Refer to the documentation shipped with the CD-ROM for installation instructions.

Example 1–5 Installing Tru64 UNIX

```plaintext
>>> show device
... dka500.5.0.7.1 DKA500 RRD47 1337
...

>>> boot dka500
(boot dka500.5.0.7.1 -flags A)
block 0 of dka500.5.0.7.1 is a valid boot block
reading 16 blocks from dka500.5.0.7.1
bootstrap code read in
base = lee000; image_start = 0; image_bytes = 2000
initializing HWRPB at 2000
initializing page table at 1fff0000
initializing machine state
setting affinity to the primary CPU
jumping to bootstrap code

Tru64 UNIX boot - Thu Jul 16 16:59:31 EDT 1999
Loading vmunix ...
... INIT: SINGLE-USER MODE
Initializing system for Tru64 UNIX installation. Please wait...

*** Performing CDROM Installation
Loading installation process and scanning system hardware.

[The “Welcome to the Tru64 UNIX Installation Procedure” appears.]
1. Use the **boot** command to install the operating system from the CD-ROM, which is either dka500 or dqa0.

2. See your operating system documentation for further installation instructions.
1.5 Booting OpenVMS

OpenVMS can be booted from a local disk, a disk connected through a cluster, or a remote disk through an Ethernet connection. Refer to the documentation shipped with the operating system for booting instructions.

1.5.1 Booting OpenVMS from a Local Disk

Example 1–6 Booting OpenVMS from a Local Disk

>>> show device
 dka200.2.0.7.1 DKA200 RZ1CB-CA LYJ0

>>> show boot_reset
 boot_reset ON

>>> show bootdef_dev
 bootdef_dev dka200.2.0.7.1

>>> boot
 (boot dka200.2.0.7.1 -flags 0,0)
 block 0 of dka200.2.0.7.1 is a valid boot block
 reading 893 blocks from dka200.2.0.7.1
 bootstrap code read in
 base = 1fa000, image_start = 0, image_bytes = 6fa00
 initializing HWRPB at 2000
 initializing page table at 1ff0000
 initializing machine state
 setting affinity to the primary CPU
 jumping to bootstrap code

 $!Copyright(c) 1999 Digital Equipment Corporation. All rights reserved.
 $MSCLOAD-I-CONFIGSCAN, enabled automatic disk serving

Continued on next page
Example 1–6 Booting OpenVMS from a Local Disk (Continued)

The OpenVMS system is now executing the site-specific startup commands.

Welcome to OpenVMS (TM) Alpha Operating System, Version V7.1-2 ❄

Username:

1 The show device command displays device information. See Section 2.3.2 for a description of the show device command and the device naming convention.

2 The boot_reset environment variable was previously set to “on,” causing the power-up trace to display when the system initializes (see Section 1.2). See Section 2.18 for commands used with environment variables.

3 The bootdev_dev environment variable specifies the default boot device. In this example, the default boot device was previously set to dka200.2.0.7.1.

4 No boot device is specified in the boot command; the default boot device was set with the environment variable. See Section 2.5 for a description of the boot command.

The boot command accepts the name of a boot device, a boot file name through the -file option, and boot flags through the -flags option. The environment variables bootdef_dev, boot_file, and boot_osflags can also be used to specify the default boot device or device list, the default boot file, and flag information. When an option and the corresponding environment variable are both in a command string, the option overrides the environment variable. The value of the environment variable, however, is not changed. See Section 2.18 for information about environment variables.

5 The operating system banner displays.
1.5.2 Booting OpenVMS from a Disk on a Cluster

Example 1-7 Booting OpenVMS from a Disk on a Cluster

```
>>> show bootdef_dev
bootdef_dev   dua110.0.0.8.0

>>> show device

  dua110.0.0.8.0        $1$DIA110 (DENVER)          RF74

>>> boot
(boot dua110.0.0.8.0 -flags 0)
Building FRU table
.
.
Welcome to OpenVMS Alpha (TM) Operating System, Version V7.1-2
```
The `bootdef_dev` environment variable specifies the default boot device.

The `show device` command displays device information, including name and type of connection to the system. See Section 2.3.2 for a description of the `show device` command and the device naming convention.

The disk dua110.0.0.8.0 is on the cluster that includes this system.

No boot device is specified in the `boot` command; the default boot device was set with the environment variable. See Section 2.5 for a description of the `boot` command.

The `boot` command accepts the name of a boot device, a boot file name through the `-file` option, and boot flags through the `-flags` option. The environment variables `bootdef_dev`, `boot_file`, and `boot_osflags` can also be used to specify the default boot device or device list, the default boot file, and flag information. When an option and the corresponding environment variable are both in a command string, the option overrides the environment variable. The value of the environment variable, however, is not changed. See Section 2.18 for information about environment variables.

The operating system banner prints.
1.5.3 Booting OpenVMS from a Remote Disk

Example 1–8 Booting OpenVMS from a Remote Disk

>>> show device
 . . .
 ewa0.0.0.8.0 EWA0 08-00-2B-E2-9C-60
 . . .

>>> boot ewa0 -flags 0
 (boot ewa0.0.0.2.0 -flags 0)
Building FRU table
Trying MOP boot............
Network load complete.
 . . .
Welcome to OpenVMS Alpha (TM) Operating System, Version V7.1-2
1. The `show device` command displays device information, including name and type of connection to the system. In this example the Ethernet connection is ewa0. See Section 2.3.2 for a description of the `show device` command and the device naming convention.

2. The `boot` command specifies ewa0 as the boot device. See Section 2.5 for a description of the `boot` command.

 The `boot` command accepts the name of a boot device, a boot file name through the `-file` option, and boot flags through the `-flags` option. The environment variables `bootdef_dev`, `boot_file`, and `boot_osflags` can also be used to specify the default boot device or device list, the default boot file, and flag information. When an option and the corresponding environment variable are both in a command string, the option overrides the environment variable. The value of the environment variable, however, is not changed. See Section 2.18 for information about environment variables.

3. The operating system banner prints.
1.6 Installing OpenVMS

OpenVMS is installed from the CD-ROM. Refer to the documentation shipped with the OpenVMS kit for complete installation instructions.

Example 1–9 Installing OpenVMS

```plaintext
>>> boot -flags 0,0 dka500
Initializing...
SRM V3.0 on cpu0

... [The initialization display prints. See Section 1.2.]

CPU 0 booting

(boot dka500.5.0.1.1 -flags 0,0)
Building FRU table
block 0 of dka500.5.0.1.1 is a valid boot block
reading 1002 blocks from dka500.5.0.1.1
bootstrap code read in
base = 200000, image_start = 0, image_bytes = 7d400
initializing HWRPB at 2000
initializing page table at 1f2000
initializing machine state
setting affinity to the primary CPU
jumping to bootstrap code

OpenVMS (TM) Alpha Operating System, Version 7.1x

%SMP-I-SECMSG, CPU #01 message: P01>>>START
%SMP-I-CPUBOOTED, CPU #01 has joined the PRIMARY CPU in multiprocessor operation
Installing required known files...

Configuring devices...

********************************************************************************
You can install or upgrade the OpenVMS Alpha operating system
or you can install or upgrade layered products that are included
on the OpenVMS Alpha operating system CD-ROM.

You can also execute DCL commands and procedures to perform
"standalone" tasks, such as backing up the system disk.

Continued on next page
Example 1-9  Installing OpenVMS (Continued)

Please choose one of the following:

1)  Install or upgrade OpenVMS Alpha Version 7.1x
2)  List layered product kits that this procedure can install
3)  Install or upgrade layered product(s)
4)  Execute DCL commands and procedures
5)  Shut down this system

Enter CHOICE or ? to repeat menu: (1/2/3/4/5/?)

1 Use the boot command to install the operating system from the CD-ROM, which is either dka500 or dqa0.

2 See your operating system documentation for installation instructions.
1.7 Switching Between Operating Systems

The system supports multiple operating systems on different system and data disks not in the machine at the same time. That is, you can have a set of disks for each operating system.

CAUTION: This operation is not for the faint hearted especially if you have a shadow system disk and shadow arrays. The file structures of the operating systems are incompatible and therefore all disks must be removed from the system and upon reinstallation must be replaced in exactly the same physical locations. It is therefore necessary to keep track of the location of each disk in the system.

1.7.1 Switching to Tru64 UNIX or OpenVMS

Use the following procedure:

1. Shut down the operating system and power off the system.
2. Remove and mark the physical location of each disk in the system.
3. Either place blank disks or your Tru64 UNIX or OpenVMS disk set into the system. No matter which disk set you are placing into the system, be sure that each disk is placed in the same physical location from which it was removed.
4. Power on the system.
5. Set the operating system at the console prompt (see Section 2.18.11).
6. Press the Halt/Reset button to reset the system.
7. Either install Tru64 UNIX (see Section 1.4) or OpenVMS (see Section 1.6) or boot the operating system.
1.8 Updating Firmware

Start the Loadable Firmware Update (LFU) utility by issuing the lfu command at the SRM console prompt, booting it from the CD-ROM while in the SRM console.

Example 1-10 Starting LFU from the SRM Console

Revision levels and devices listed are for example only; your results may vary.

>>> lfu

Checking dqa0.0.0.13.0 for the option firmware files. . .
Checking dva0 for the option firmware files. . .

Option firmware files were not found on CD or floppy.
If you want to load the options firmware, please enter the device on which the files are located(ewa0), or just hit <return> to proceed with a standard console update: dva0

Please enter the name of the options firmware files list, or Hit <return> to use the default filename (ds10fw.txt) :

Copying ds10fw.txt from dva0. . .
Copying PC264NT.ROM from dva0. . .
Copying DS10SRM.ROM from dva0. . .
### ***** Loadable Firmware Update Utility *****

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display</td>
<td>Displays the system’s configuration table.</td>
</tr>
<tr>
<td>Exit</td>
<td>Done exit LFU (reset).</td>
</tr>
<tr>
<td>List</td>
<td>Lists the device, revision, firmware name, and update revision.</td>
</tr>
<tr>
<td>Readme</td>
<td>Lists important release information.</td>
</tr>
<tr>
<td>Update</td>
<td>Replaces current firmware with loadable data image.</td>
</tr>
<tr>
<td>Verify</td>
<td>Compares loadable and hardware images.</td>
</tr>
<tr>
<td>? or Help</td>
<td>Scrolls this function table.</td>
</tr>
</tbody>
</table>

```
UPD> update *
Confirm update on:
nt
srm
[Y/(N)]y

WARNING: updates may take several minutes to complete for each device.

 DO NOT ABORT!

nt Updating to 5.70... Verifying 5.70... PASSED.
srm Updating to 5.7-0... Verifying 5.7-0... PASSED.

UPD> exit
```

---

**NOTE:** If the system has been shut down from a booted program (most commonly, the operating system) or in some other way halted back to the SRM console, the system must be reset before running LFU.

Use the Loadable Firmware Update (LFU) utility to update system firmware.

From the SRM console, start LFU by issuing the `lfu` command (see Example 1–10). Also from the SRM console, LFU can be booted from the Alpha CD-ROM (V5.4 or later), as shown in Example 1–11.

A typical update procedure is:

1. Start LFU.
2. Use the LFU `list` command to show the revisions of modules that LFU can update and the revisions of update firmware.
3. Use the LFU `update` command to write the new firmware.
4. Use the LFU `exit` command to go back to the console.

The sections that follow show examples of updating firmware from the local CD-ROM, the local floppy, and a network device.

**Example 1-11  Booting LFU from the CD-ROM**

Revision levels and devices listed are for example only; your results may vary.

```plaintext
>>> show device . . .
dka500.5.0.7.1 DKA500 RRD47 1645

>>> boot dka500
(boot dka500.5.0.7.1 -flags 0,0)
block 0 of dka500.5.0.7.1 is a valid boot block

jumping to bootstrap code
The default bootfile for this platform is
[DS10]DS10_LFU.EXE
Hit <RETURN> at the prompt to use the default bootfile.
Bootfile: <CR>
Starting Firmware Update Utility

***** Loadable Firmware Update Utility *****

UPD>
```
1.8.1 Updating Firmware from Floppy Disks

Create two update diskettes before starting LFU: one for console updates and one for I/O. See Section 1.8.2 for an example of the update procedure.

Table 1–3 File Locations for Creating Update Diskettes on a PC

<table>
<thead>
<tr>
<th>Console Update Diskette</th>
<th>I/O Update Diskette</th>
</tr>
</thead>
<tbody>
<tr>
<td>ds10fw.txt</td>
<td>ds10fw.txt</td>
</tr>
<tr>
<td>pc264nt.rom</td>
<td>ccmab022.sys</td>
</tr>
<tr>
<td>ds10srn.rom</td>
<td>dfxaa310.sys</td>
</tr>
<tr>
<td></td>
<td>kzpsaa12.sys</td>
</tr>
<tr>
<td></td>
<td>cipca420.sys</td>
</tr>
</tbody>
</table>

NOTE: The filenames above are for example only, and may vary according to where you obtained the update files.

1. Download the update files from the Internet.
2. On a PC, copy files onto two FAT-formatted diskettes as shown in Table 1–3.
1.8.2 Performing the Update from Floppy Disks

Insert an update diskette (see Section 1.8.1) into the floppy drive. Start LFU and select dva0 as the load device.

-----

Example 1-12 Updating Firmware from the Floppy Disk

Revision levels and devices listed are for example only; your results may vary.

>>> lfu

Checking dqa0.0.0.13.0 for the option firmware files. . .
Checking dva0 for the option firmware files. . .

Option firmware files were not found on CD or floppy.
If you want to load the options firmware,
please enter the device on which the files are located(ewa0),
or just hit <return> to proceed with a standard console update: dva0

Please enter the name of the options firmware files list, or
Hit <return> to use the default filename (ds10fw.txt) :

Copying ds10fw.txt from dva0. . .
Copying PC264NT.ROM from dva0. . .
Copying DS10SRM.ROM from dva0. . .
***** Loadable Firmware Update Utility *****

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display</td>
<td>Displays the system's configuration table.</td>
</tr>
<tr>
<td>Exit</td>
<td>Done exit LFU (reset).</td>
</tr>
<tr>
<td>List</td>
<td>Lists the device, revision, firmware name, and update revision.</td>
</tr>
<tr>
<td>Readme</td>
<td>Lists important release information.</td>
</tr>
<tr>
<td>Update</td>
<td>Replaces current firmware with loadable data image.</td>
</tr>
<tr>
<td>? or Help</td>
<td>Scrolls this function table.</td>
</tr>
</tbody>
</table>

```
UPD> update *
Confirm update on:
nt
srm
[Y/(N)]y
WARNING: updates may take several minutes to complete for each device.

DO NOT ABORT!

nt Updating to 5.70... Verifying 5.70... PASSED.
srm Updating to 5.7-0... Verifying 5.7-0... PASSED.

UPD> exit
```

**NOTE:** If the system has been shut down from a booted program (most commonly, the operating system) or in some other way halted back to the SRM console, the system must be reset before running LFU.
1.8.3 Updating Firmware from a Network Device

Copy files to the local MOP server’s MOP load area, start LFU, and select ewa0 as the load device.

Example 1–13 Updating Firmware from a Network Device

Revision levels and devices listed are for example only; your results may vary.

***** Loadable Firmware Update Utility *****

Select firmware load device (cda0, dva0, ewa0), or
Press <return> to bypass loading and proceed to LFU: ewa0 ①

Please enter the name of the options firmware files list, or
Press <return> to use the default filename [DS10FW]: ②

Copying DS10FW from EWA0.
Copying CCMAB022 from EWA0.
Copying DFXAA310 from EWA0 ...........................
Copying K2PSAA12 from EWA0 ............
Copying CIPCA420 from EWA0 .
.
.
.
UPD> list ③

<table>
<thead>
<tr>
<th>Device</th>
<th>Current Revision</th>
<th>Filename</th>
<th>Update Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nt</td>
<td>5.69</td>
<td>nt_fw</td>
<td>5.70</td>
</tr>
<tr>
<td>Srm</td>
<td>5.6-2</td>
<td>srm_fw</td>
<td>5.7-0</td>
</tr>
</tbody>
</table>

Continued on next page
Before starting LFU, download the update files from the Internet. You will need the files with the extension .SYS. Copy these files to your local MOP server’s MOP load area.

1. Select the device from which firmware will be loaded. The choices are the CD-ROM, the internal floppy disk, or a network device. In this example, a network device is selected.

2. For the SRM console, AlphaBIOS console, and I/O adapter firmware, select the file that has the firmware update, (ds10fw.txt ), or press Enter.

   In this example the default file, which has both console firmware (AlphaBIOS and SRM) and I/O adapter firmware, is selected.

3. Use the LFU list command to determine the revision of firmware in a device and the most recent revision of that firmware available in the selected file. In this example, the resident firmware for each console (SRM and AlphaBIOS) and I/O adapter is at an earlier revision than the firmware in the update file.

   Continued on next page
Example 1-13  Updating Firmware from a Network Device  
(Continued)

UPD> **update * -all**  \(^4\)
WARNING: updates may take several minutes to complete for each device.

DO NOT ABORT!
AlphaBIOS  Updating to V6.40-1... Verifying V6.40-1... PASSED.
DO NOT ABORT!
kzpsa0  Updating to A11 ... Verifying A11... PASSED.
DO NOT ABORT!
kzpsal  Updating to A11 ... Verifying A11... PASSED.

UPD> **exit** \(^5\)

\(^4\) The **update** command updates the device specified or all devices. In this example, the wildcard indicates that all devices supported by the selected update file will be updated. Typically LFU requests confirmation before updating each console’s or device’s firmware. The **-all** option eliminates the update confirmation requests.

\(^5\) The **exit** command returns you to the console from which you entered LFU (either SRM or AlphaBIOS).
1.8.4 LFU Commands

The commands summarized in Table 1–4 are used to update system firmware.

Table 1–4 LFU Command Summary

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>display</td>
<td>Shows the physical configuration of the system.</td>
</tr>
<tr>
<td>exit</td>
<td>Terminates the LFU program.</td>
</tr>
<tr>
<td>help</td>
<td>Displays the LFU command list.</td>
</tr>
<tr>
<td>lfu</td>
<td>Restarts the LFU program.</td>
</tr>
<tr>
<td>list</td>
<td>Displays the inventory of update firmware on the selected device.</td>
</tr>
<tr>
<td>readme</td>
<td>Lists release notes for the LFU program.</td>
</tr>
<tr>
<td>update</td>
<td>Writes new firmware to the module.</td>
</tr>
<tr>
<td>verify</td>
<td>Reads the firmware from the module into memory and compares it with the update firmware.</td>
</tr>
</tbody>
</table>

display

The display command shows the physical configuration of the system. Display is equivalent to issuing the SRM console command show configuration. Because it shows the slot for each module, display can help you identify the location of a device.

exit

The exit command terminates the LFU program, causes system initialization and testing, and returns the system to the console from which LFU was called.
help

The help (or ?) command displays the LFU command list, shown below.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display</td>
<td>Displays the system’s configuration table.</td>
</tr>
<tr>
<td>Exit</td>
<td>Done exit LFU (reset).</td>
</tr>
<tr>
<td>List</td>
<td>Lists the device, revision, firmware name, and update revision.</td>
</tr>
<tr>
<td>Lfu</td>
<td>Restarts LFU.</td>
</tr>
<tr>
<td>Readme</td>
<td>Lists important release information.</td>
</tr>
<tr>
<td>Update</td>
<td>Replaces current firmware with loadable data image.</td>
</tr>
<tr>
<td>Verify</td>
<td>Compares loadable and hardware images.</td>
</tr>
<tr>
<td>? or Help</td>
<td>Scrolls this function table.</td>
</tr>
</tbody>
</table>

lfu

The lfu command restarts the LFU program. This command is used when the update files are on a floppy disk. The files for updating both console firmware and I/O firmware are too large to fit on a 1.44 MB disk, so only one type of firmware can be updated at a time. Restarting LFU enables you to specify another update file.

list

The list command displays the inventory of update firmware on the CD-ROM, network, or floppy. Only the devices listed at your terminal are supported for firmware updates.

The list command shows three pieces of information for each device:

- Current Revision — The revision of the device’s current firmware
- Filename — The name of the file used to update that firmware
- Update Revision — The revision of the firmware update image

readme

The readme command lists release notes for the LFU program.
update

The **update** command writes new firmware to the module. Then LFU automatically verifies the update by reading the new firmware image from the module into memory and comparing it with the source image.

To update more than one device, you may use a wildcard but not a list. For example, **update k* updates all devices with names beginning with k, and update * updates all devices. When you do not specify a device name, LFU tries to update all devices; it lists the selected devices to update and prompts before devices are updated. (The default is no.) The **-all** option eliminates the update confirmation requests, enabling the update to proceed without operator intervention.

---

**CAUTION:** Never abort an update operation.  
Aborting corrupts the firmware on the module.

verify

The **verify** command reads the firmware from the module into memory and compares it with the update firmware. If a module already verified successfully when you updated it, but later failed tests, you can use **verify** to tell whether the firmware has become corrupted.
1.9 Using the Halt Button

Under OpenVMS and Tru64 UNIX, the halt button pauses the operating system.

Use the Halt button to halt the Tru64 UNIX or OpenVMS operating system when it hangs, clear the SRM console password (see Section 2.9.2), or force a halt assertion (see Section 1.10). The Halt button operates like issuing an SRM halt command.

Figure 1–5 Halt/Reset Button – DS10
1.9.1 Using Halt to Shut Down the Operating System

You can use the Halt button if the Tru64 UNIX or OpenVMS operating system hangs. Pressing the Halt button halts the operating system back to the SRM console firmware. From the console, you can use the \texttt{crash} command to force a crash dump at the operating system level. See Section 2.12 for an example.

1.9.2 Using Halt to Clear the Console Password

The SRM console firmware allows you to set a password to prevent unauthorized access to the console. If you forget the password, the Halt button, with the \texttt{login} command, lets you clear the password and regain control of the console. Section 2.9.2 describes the procedure.
1.10 Halt Assertion

A halt assertion allows you to disable automatic boots of the operating system so that you can perform tasks from the SRM console.

Under certain conditions, you might want to force a “halt assertion.” A halt assertion differs from a simple halt in that the SRM console “remembers” the halt. The next time you power up, the system ignores the SRM power-up script (nvram) and ignores any environment variables that you have set to cause an automatic boot of the operating system. The SRM console displays this message:

```
Halt assertion detected
NVRAM power-up script not executed
AUTO_ACTION=BOOT/RESTART and OS_TYPE=NT ignored, if applicable
```

Halt assertion is useful for disabling automatic boots of the operating system when you want to perform tasks from the SRM console. It is also useful for disabling the SRM power-up script if you have accidentally inserted a command in the script that will cause a system problem. These conditions are described in the sections “Disabling Autoboot” and “Disabling the SRM Power-Up Script.”

You can force a halt assertion using the Halt button, the RMC `halt` command, or the RMC `haltin` command. Observe the following guidelines for forcing a halt assertion.

1.10.1 Halt Assertion with Halt Button or RMC Halt Command

Press the Halt button on the local system (or enter the RMC `halt` command from a remote system) approximately five seconds after starting power up or when the SRM console is running. The system halts at the SRM console, and the halt status is saved. The next time the system powers up, the saved halt status is checked.

**NOTE:** Wait 5 seconds after the system begins powering up before pressing the Halt button or remotely entering the RMC `halt` command. Press the button for several seconds.
1.10.2 Halt Assertion with RMC Haltin Command

Enter the RMC `haltin` command at any time except during power-up. For example, enter `haltin` during an operating system session or when the AlphaBIOS console is running.

If you enter the RMC `haltin` command during a Tru64 UNIX or OpenVMS session, the system halts back to the SRM console, and the halt status is saved. The next time the system powers up, the saved halt status is checked.

If you enter the RMC `haltin` command when AlphaBIOS is running, the interrupt is ignored. However, you can enter the RMC `haltin` command followed by the RMC `reset` command to force a halt assertion. Upon reset, the system powers up to the SRM console, but the SRM console does not load the AlphaBIOS console.

The `haltin` command should always be followed by the `haltout` command.

1.10.3 Clearing a Halt Assertion

Clear a halt assertion as follows:

- If the halt assertion was caused by pressing the Halt button or remotely entering the RMC `halt` command, the console uses the halt assertion once, then clears it.

- If entering the RMC `haltin` command caused the halt assertion, enter the RMC `haltout` command or cycle power on the local system.

1.10.4 Disabling Autoboot

The system automatically boots the selected operating system at power-up or reset if the following environment variables are set:

- For Tru64 UNIX and OpenVMS, the SRM environment variables `os_type`, `auto_action`, `bootdef_dev`, `boot_file`, and `boot_osflags`

You might want to prevent the system from autobooting so you can perform tasks from the SRM console. Use one of the methods described previously to force a halt assertion. When the SRM console prompt is displayed, you can enter commands to configure or test the system. Chapter 2 describes the SRM console commands and environment variables.
1.10.5 Disabling the SRM Power-Up Script

The system has a power-up script (file) named “nvram” that runs every time the system powers up. If you accidentally insert a command in the script that will cause a system problem, disable the script by using one of the methods described previously to force a halt assertion. When the SRM console prompt is displayed, edit the script to delete the offending command. See Section 2.4 for more information on editing the nvram script.
Chapter 2
SRM and AlphaBIOS Consoles

The SRM console is the command-line interface that supports the Tru64 UNIX and OpenVMS operating systems. The SRM console is used to bootstrap the operating system, configure and test the system hardware, examine system options for errors, and set or change environment variables. The AlphaBIOS console is used to run certain utilities.

This chapter describes the SRM and AlphaBIOS console commands and environment variables. Sections in this chapter are:

- Invoking the SRM Console
- Commands
- Show Commands
- Creating a Power-Up Script
- Booting the Operating System
- Configuring a PCI NVRAM Module
- Testing the System
- Set Commands
- Secure Mode
- Stopping and Starting CPU
- Updating Firmware
- Forcing a System Crash Dump
- Using Environment Variables
- Depositing and Examining Data
- Reading a File
- Initializing the System
- Finding Help
- Environment Variable Summary
- Switching from SRM to AlphaBIOS Console
- Running the AlphaBIOS Console

**NOTE:** In many ways the DS10 and DS10L systems are identical. This manual uses DS10 systems for most illustrations and examples. Where significant differences exist, an illustration or example of a DS10L is presented separately.
2.1 Invoking the SRM Console

When a system is powered up, the SRM console runs and either remains running or passes control to another console or an operating system. If the system is already running, invoke the SRM console by shutting down the operating system or by pressing the Halt button on the control panel.

If you are running Tru64 UNIX or OpenVMS Alpha operating system

• The preferred method to invoke the SRM console is to shut down the operating system according to the procedure described in your operating system documentation.

• An alternative method is to press the Halt button on the control panel.

Following one of these steps, the console prompt, >>>, will be displayed. You are now at the SRM console.

If you are running AlphaBIOS

To switch to the SRM console, power cycle the system. The SRM console will boot.

After you have performed tasks in the console mode, you must boot the operating system with the boot command to go back to the operating mode.
2.2 Commands

This section presents a command summary (Table 2-1), gives the syntax for the console commands (Table 2-2), and explains the special keystrokes and characters available in SRM console mode (Table 2-3).

2.2.1 Command Summary

Table 2-1 Summary of SRM Console Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alphabios</td>
<td>Loads and starts the AlphaBIOS console.</td>
</tr>
<tr>
<td>boot</td>
<td>Loads and starts the operating system.</td>
</tr>
<tr>
<td>clear</td>
<td>Resets an environment variable to its default value.</td>
</tr>
<tr>
<td>password</td>
<td>Sets the password to zero.</td>
</tr>
<tr>
<td>continue</td>
<td>Resumes program execution.</td>
</tr>
<tr>
<td>crash</td>
<td>Forces a crash dump at the operating system level.</td>
</tr>
<tr>
<td>deposit</td>
<td>Writes data to the specified address.</td>
</tr>
<tr>
<td>edit</td>
<td>Invokes the console line editor on a RAM file or on the nvram file.</td>
</tr>
<tr>
<td>examine</td>
<td>Displays the contents of a memory location, register, or device.</td>
</tr>
<tr>
<td>halt</td>
<td>Halts the specified processor. (Same as stop.)</td>
</tr>
<tr>
<td>help</td>
<td>Displays information about the specified console command.</td>
</tr>
<tr>
<td>initialize</td>
<td>Resets the system to a known state.</td>
</tr>
<tr>
<td>Ifu</td>
<td>Runs the Loadable Firmware Update Utility.</td>
</tr>
<tr>
<td>login</td>
<td>Turns off secure mode, enabling access to all SRM console commands.</td>
</tr>
</tbody>
</table>
Continued on next page.

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>more</strong></td>
<td>Displays a file one screen at a time.</td>
</tr>
<tr>
<td><strong>prcache</strong></td>
<td>Utility that initializes and displays status of the optional PCI NVRAM device.</td>
</tr>
<tr>
<td><strong>set envar</strong></td>
<td>Sets or modifies the value of an environment variable.</td>
</tr>
<tr>
<td><strong>set host</strong></td>
<td>Connects to an MSCP DUP server on a DSSI device.</td>
</tr>
<tr>
<td><strong>set password</strong></td>
<td>Sets the console password for the first time or changes an existing password.</td>
</tr>
<tr>
<td><strong>set secure</strong></td>
<td>Enables secure mode without requiring a restart of the console.</td>
</tr>
<tr>
<td><strong>show envar</strong></td>
<td>Displays the state of the specified environment variable.</td>
</tr>
<tr>
<td><strong>show config</strong></td>
<td>Displays the configuration at the last system initialization.</td>
</tr>
<tr>
<td><strong>show cpu</strong></td>
<td>Displays the state of each processor in the system.</td>
</tr>
<tr>
<td><strong>show device</strong></td>
<td>Displays a list of controllers and their devices in the system.</td>
</tr>
<tr>
<td><strong>show memory</strong></td>
<td>Displays memory module information.</td>
</tr>
<tr>
<td><strong>show pal</strong></td>
<td>Displays the version of the privileged architecture library code (PALcode).</td>
</tr>
<tr>
<td><strong>show power</strong></td>
<td>Displays information about the power supply, system and PCI fans, CPU fan, and temperature.</td>
</tr>
<tr>
<td><strong>show version</strong></td>
<td>Displays the version of the console program.</td>
</tr>
<tr>
<td><strong>stop</strong></td>
<td>Halts the processor. (Same as <strong>halt</strong>.)</td>
</tr>
<tr>
<td><strong>test</strong></td>
<td>Runs firmware diagnostics for the system.</td>
</tr>
</tbody>
</table>
### 2.2.2 Commands: Syntax

#### Table 2–2 Syntax for SRM Console Commands

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Attribute or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Length</strong></td>
<td>Up to 255 characters, not including the terminating carriage return or any characters deleted as the command is entered. A command longer than 80 characters and without the backslash character (see Table 2–3) causes display of an error message.</td>
</tr>
<tr>
<td><strong>Case</strong></td>
<td>Upper- or lowercase characters can be used for input. Characters are displayed in the case in which they are entered.</td>
</tr>
<tr>
<td><strong>Abbreviation</strong></td>
<td>Only by dropping characters from the end of words. You must enter the minimum number of characters to identify the keyword unambiguously. Abbreviation of environment variables is allowed with the show command.</td>
</tr>
<tr>
<td><strong>Options</strong></td>
<td>You can use command options, to modify the environment, after the command keyword or after any symbol or number in the command. See individual command descriptions for examples.</td>
</tr>
<tr>
<td><strong>Numbers</strong></td>
<td>Most numbers in console commands are in decimal notation. Two exceptions, both of which use hexadecimal notation, are addresses and numbers used in the deposit command. The default radix can be overridden by inserting %d before numbers you want to express in decimal, %b before binary, %o before octal, or %x before hexadecimal. Register names (for example, R0) are not considered numbers and use decimal notation.</td>
</tr>
<tr>
<td><strong>No characters</strong></td>
<td>A command line with no characters is a null command. The console program takes no action and does not issue an error message; it returns the console prompt. The console supports command line recall and editing.</td>
</tr>
<tr>
<td><strong>Spaces or tabs</strong></td>
<td>Multiple adjacent spaces and tabs are compressed and treated as a single space. The console program ignores leading and trailing spaces.</td>
</tr>
</tbody>
</table>
## 2.2.3 Commands: Special Keystrokes and Characters

### Table 2–3 Special Characters for SRM Console

<table>
<thead>
<tr>
<th>Character</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Return or Enter</strong></td>
<td>Terminates a command line. No action is taken on a command until it is terminated. If no characters are entered and this key is pressed, the console just redispies the prompt.</td>
</tr>
<tr>
<td>*<em>Backslash *</em></td>
<td>Continues a command on the next line. Must be the last character on the line to be continued.</td>
</tr>
<tr>
<td><strong>← Backspace</strong></td>
<td>Moves the cursor left one position, deleting one character.</td>
</tr>
<tr>
<td><strong>Delete</strong></td>
<td>Deletes the previous character.</td>
</tr>
<tr>
<td><strong>Help</strong></td>
<td>Entered at the console prompt without arguments, it displays first-level help. When pressed after part of a command, displays options available.</td>
</tr>
<tr>
<td><strong>Ctrl/A or F14</strong></td>
<td>Toggles between insert and overstrike modes. The default is overstrike.</td>
</tr>
<tr>
<td><strong>Ctrl/B or ↑</strong></td>
<td>Recalls previous command or commands. The last 16 commands are stored in the recall buffer.</td>
</tr>
<tr>
<td><strong>Ctrl/C</strong></td>
<td>Terminates the process that is running. Clears Ctrl/S; resumes output suspended by Ctrl/O. When entered as part of a command line, deletes the current line. Ctrl/C has no effect as part of a binary data stream.</td>
</tr>
<tr>
<td><strong>Ctrl/E</strong></td>
<td>Moves the cursor to the end of the line.</td>
</tr>
<tr>
<td><strong>Ctrl/F or →</strong></td>
<td>Moves the cursor right one position.</td>
</tr>
<tr>
<td><strong>Ctrl/H</strong></td>
<td>Moves the cursor to the beginning of the line.</td>
</tr>
<tr>
<td><strong>Ctrl/J</strong></td>
<td>Deletes the previous word.</td>
</tr>
</tbody>
</table>

Continued next page.
<table>
<thead>
<tr>
<th>Character</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl/O</td>
<td>Stops output to the console terminal for the current command. Toggles between enable and disable. The output can be re-enabled by other means as well: when the console prompts for a command, issues an error message, or enters program mode, or when Ctrl/P is entered.</td>
</tr>
<tr>
<td>Ctrl/P</td>
<td>Halts the machine.</td>
</tr>
<tr>
<td>Ctrl/Q</td>
<td>Resumes output to the console terminal that was suspended by Ctrl/S.</td>
</tr>
<tr>
<td>Ctrl/R</td>
<td>Redisplays the current line. Deleted characters are omitted. This command is useful for hardcopy terminals.</td>
</tr>
<tr>
<td>Ctrl/S</td>
<td>Suspends output to the console terminal until Ctrl/Q is entered. Cleared by Ctrl/C.</td>
</tr>
<tr>
<td>Ctrl/U</td>
<td>Deletes the current line.</td>
</tr>
<tr>
<td>*</td>
<td>Wildcarding for commands such as <code>show</code>.</td>
</tr>
<tr>
<td>&quot; . . &quot;</td>
<td>Double quotes enable you to denote a string for environment variable assignment.</td>
</tr>
<tr>
<td>#</td>
<td>Specifies that all text between it and the end of the line is a comment. Control characters are not considered part of a comment.</td>
</tr>
</tbody>
</table>
2.3 Show Commands

Several commands are used to display the system configuration:
- show config
- show cpu
- show device
- show memory
- show network
- show pal
- show power
- show version

2.3.1 Show Config

The `show config` command displays a list of devices found on the system interconnect and I/O buses. This is the configuration at the most recent initialization.

Syntax: `show config`

**Example 2-1 Show Config Command**

```plaintext
>>> show config
AlphaServer DS10 466 MHz

SRM Console: V5.7-0
PALcode: OpenVMS PALcode V1.73-65, Tru64 UNIX PALcode V1.66-58
Processors
CPU 0 Alpha 21264-4 466 MHz SROM Revision: V1.14.208
 Bcache size: 2 MB
Core Logic
 Cchip DECchip 21272-CA Rev 2
 Dchip DECchip 21272-DA Rev 2
 Pchip 0 DECchip 21272-EA Rev 2
TIG Rev 2.1
Arbiter Rev 3.30 (0x7E)

MEMORY
Array # Size Base Addr
------- --------- ---------
0 256 MB 000000000

Total Bad Pages = 0
Total Good Memory = 256 MBytes

PCI Hose 00
Bus 00 Slot 01: Acer Labs M1543C USB
Bus 00 Slot 03: Acer Labs M1543C PMU
Bus 00 Slot 07: Acer Labs M1543C
Bus 00 Slot 09: DE500-BA Network Controller Bridge to Bus 1, ISA
ewa0.0.0.9.0 00-00-2B-86-1B-BA
```
Bus 00 Slot 11: DE500-BA Network Controller  ewb0.0.0.11.0  08-00-2B-86-1B-BB
Bus 00 Slot 13: Acer Labs M1543C IDE  dqa.0.0.13.0  CD-532E
dqa1.1.0.13.0
Bus 00 Slot 14: DEC PowerStorm
Bus 00 Slot 15: DECchip 21152-AA  Bridge to Bus 2, PCI
Bus 00 Slot 16: QLogic ISP1020  pkc0.6.0.16.0  SCSI Bus ID 6
dkc0.0.0.16.0  RZICB-BA
dkc200.2.0.16.0  RZICB-BA
Bus 00 Slot 17: Mylex DAC960  dra.0.0.17.0  1 Member JBOD
dra0.0.0.17.0
dra1.0.0.17.0  1 Member JBOD
dra2.0.0.17.0  1 Member JBOD
dra3.0.0.17.0
Bus 02 Slot 00: NCR 53C875  pka0.7.0.2000.0  SCSI Bus ID 7
dka100.1.0.2000.0  RZICB-CA
dka300.3.0.2000.0  RZICB-CA
dka500.5.0.2000.0  RZIEF-AB
Bus 02 Slot 01: NCR 53C875  pkb0.7.0.2001.0  SCSI Bus ID 7
dkb0.0.0.2001.0  RZICB-CA
dkb200.2.0.2001.0  RZIDB-CS
dkb400.4.0.2001.0  RZICB-CA
Bus 02 Slot 02: DE500-AA Network Controller  ewc0.0.0.2002.0  00-06-2B-00-26-1C

ISA
Slot Device Name Type Enabled BaseAddr IRQ DMA
0  MOUSE Embedded Yes 60 12
1  KBD Embedded Yes 60 1
2  COM1 Embedded Yes 3f8 4
3  COM2 Embedded Yes 2f8 3
4  LPT1 Embedded Yes 3bc 7
5  FLOPPY Embedded Yes 3f0 6 2

>>>
2.3.2 Show Device

The `show device` command displays status for devices and controllers in the system: SCSI and MSCP devices, the internal floppy drive, and the network.

Syntax: `show device (controller_name)`

- **controller_name**: The controller name or abbreviation. When abbreviations or wildcards are used, all controllers that match the type are displayed. If no name is given, the display is a list of all devices and controllers in the system.

Example 2-2 Show Device Command

```
>>> sho device
DKA0.0.0.14.0 DKA0 RZ2CA-KA N1H1
DKA100.0.0.14.0 DKA100 RZ2CA-KA N1H1
DQA0.0.0.13.0 DQA0 CD-532E 1.0A
DVA0.0.0.0.0 DVA0
EWA0.0.0.0.9.0 EWA0 08-00-2B-86-1F-71
EWB0.0.0.11.0 EWB0 08-00-2B-86-1F-70
PKA0.7.0.14.0 PKA0 SCSI Bus ID 7 5.57
```  

An example of a device name is `dka200.2.0.7.1`. Table 2-4 shows the interpretation of this device name.
<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>dk</strong></td>
<td>Driver ID Two-letter designator of port or class driver</td>
</tr>
<tr>
<td><strong>dq</strong></td>
<td>ATAPI CD-ROM or IDE disk</td>
</tr>
<tr>
<td><strong>dr</strong></td>
<td>RAID set device</td>
</tr>
<tr>
<td><strong>du</strong></td>
<td>DSSI disk</td>
</tr>
<tr>
<td><strong>dv</strong></td>
<td>Diskette drive</td>
</tr>
<tr>
<td><strong>ew</strong></td>
<td>Ethernet port</td>
</tr>
<tr>
<td><strong>a</strong></td>
<td>Storage adapter ID One-letter designator of storage adapter (a, b, c...).</td>
</tr>
<tr>
<td><strong>200</strong></td>
<td>Device unit number Unique number (MSCP unit number). SCSI unit numbers are forced to 100 X node ID.</td>
</tr>
<tr>
<td><strong>2</strong></td>
<td>Bus node number Bus node ID.</td>
</tr>
<tr>
<td><strong>0</strong></td>
<td>Channel number Used for multi-channel devices.</td>
</tr>
<tr>
<td><strong>7</strong></td>
<td>Logical slot number Corresponds to PCI slot number, as shown in Table 2–5.</td>
</tr>
<tr>
<td><strong>1</strong></td>
<td>Hose number 0 — PCI 0 1 — PCI 1</td>
</tr>
</tbody>
</table>
### Table 2-5  PCI Address Assignments – DS10

<table>
<thead>
<tr>
<th>Physical Slot #</th>
<th>Logical Slot #</th>
<th>PCI ID_SEL</th>
<th>Description/Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>17</td>
<td>AD 28</td>
<td>64-bit slot (top slot)</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>AD 27</td>
<td>64-bit slot (second from top)</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>AD 26</td>
<td>64-bit slot (second from bottom)</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>AD 25</td>
<td>32-bit slot (bottom slot)</td>
</tr>
</tbody>
</table>

### Table 2-6  PCI Address Assignment - DS10L

<table>
<thead>
<tr>
<th>Physical Slot #</th>
<th>Logical Slot #</th>
<th>PCI ID_SEL</th>
<th>Description/Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17</td>
<td>AD 28</td>
<td>64-bit slot</td>
</tr>
</tbody>
</table>
2.3.3 Show Memory

The `show memory` command displays information about each memory bank: slot number, size in megabytes, and the starting address.

Syntax: `show memory`

Example 2-3 Show Memory Command

```> show memory
Array # Size Base Addr
------- ---------- ---------
 0 128 MB 000000000
 1 128 MB 008000000
 2 128 MB 010000000
 3 128 MB 018000000

Total Bad Pages = 0
Total Good Memory = 512 MBytes
```

2.3.4 Show PAL

The `show pal` command displays the versions of Tru64 UNIX and OpenVMS PALcode. PALcode is the Alpha Privileged Architecture Library code, written to support Alpha processors. It implements architecturally defined processor behavior.

Syntax: `show pal`

Example 2-4 Show PAL Command

```> show pal
pal OpenVMS PALcode V1.73-65, Tru64 UNIX PALcode V1.66-58
```
2.3.5 Show Power

The show power command displays status information about the power supply, the system, PCI and CPU fans, and temperature. This command is useful for displaying the error state of a Tru64 UNIX or OpenVMS system that shuts down because of a fan, temperature, or power supply failure.

Syntax: show power

Use this command to display information if the system can be restarted after a shut down. (If it cannot, use the RMC status command. See Chapter 3.)

Example 2–5 Show Power Command

>>> show power

<table>
<thead>
<tr>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply</td>
</tr>
<tr>
<td>System Fan</td>
</tr>
<tr>
<td>PCI Fan</td>
</tr>
<tr>
<td>CPU Fan</td>
</tr>
<tr>
<td>Temperature</td>
</tr>
</tbody>
</table>

Current ambient temperature is 34 degrees C
System shutdown temperature is set to 55 degrees C

2 Environmental events are logged in nvram
Do you want to view the events? (Y/<N>) y

Total Environmental Events: 2 (2 logged)

1 000 0 0:00 Temperature, Fans, Power Supplies Normal
2 000 0 0:00 Temperature, Fans, Power Supplies Normal

Do you want to clear all events from nvram? (Y/<N>) y

>>>
2.3.6 Show Version

The show version command displays the version of the SRM console program that is installed on the system.

Syntax: show version

Example 2-6 Show Version Command

```python
>>> show version
version V5.7-0 Jan 13 2000 14:24:16
>>>```

SRM and AlphaBIOS Consoles 2-15
2.4 Creating a Power-Up Script

A special nonvolatile file named “nvram” is stored in EEROM, and is always invoked during the power-up sequence. You can create an nvram script to include any commands you want the system to execute at power-up. You alter, create and edit the nvram script using the SRM edit command. With edit, lines can be added, overwritten, or deleted.

Syntax: edit file
where file is the name of the file to be edited.

The editing commands are:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Help</td>
<td>Displays the brief help file.</td>
</tr>
<tr>
<td>List</td>
<td>Lists the current file prefixed with line numbers.</td>
</tr>
<tr>
<td>Renumber</td>
<td>Renumbers the lines of the file in increments of 10.</td>
</tr>
<tr>
<td>Exit</td>
<td>Leaves the editor and closes the file, saving all changes.</td>
</tr>
<tr>
<td>Quit</td>
<td>Leaves the editor and closes the file without saving changes.</td>
</tr>
<tr>
<td>Nn</td>
<td>Deletes line number nn.</td>
</tr>
<tr>
<td>Nn text</td>
<td>Adds or overwrites line number nn with text.</td>
</tr>
</tbody>
</table>
NOTE: It is possible to disable the system by editing the nvram script. For example, if you include the initialize command in the script, the system will go into an endless loop. To fix this, press the Halt button while the system is powering up. You can then edit the script to delete the offending command.

Example 2–7 shows how to modify the user-created power-up script, “nvram.” The pound sign (#) indicates explanatory comments. In this example the script is edited to include a command that allows you to boot the Tru64 UNIX operating system over the network.

Example 2–7 Editing the nvram Script

```plaintext
>>> edit nvram #Modify user power-up script, nvram.
editing 'nvram'
0 bytes read in
*10 set ewa0_protocols bootp
*list
10 set ewa0_protocols bootp #List current file with line numbers.
*exit
27 bytes written out to nvram
>>> nvram #Execute the script.
```

To clear the script, enter line numbers without any text. This deletes the lines. See Example 2–8.

Example 2–8 Clearing the nvram Script

```plaintext
>>> edit nvram
editing 'nvram'
20 bytes read in
*10
*exit
0 bytes written out to nvram
```
2.5 Booting the Operating System

The boot command is used to boot the operating system. The boot command initializes the processor, loads a program image from the specified boot device, and transfers control to that image.

Syntax: `boot [-file filename] [-flags (value)] (-halt) (-protocols enet_protocol) (boot_dev)`

- `-file filename` The boot file.
- `-flags [value]` Specifies additional information to the loaded image or operating system. In Tru64 UNIX, specifies boot flags. In OpenVMS, specifies system root number and boot flags. This qualifier overrides the setting of the `boot_osflags` environment variable. See the `boot_osflags` environment variable for a list of settings and their meanings.
- `-halt` Forces the bootstrap operation to halt and invoke the console program once the bootstrap image is loaded and page tables and other data structures are set up. Console device drivers are not shut down. Transfer control to the image by entering the `continue` command.
- `-protocols enet_protocol` Either `mop` (default) or `bootp`. This qualifier overrides the setting of the `ew*0_protocols` environment variable.
- `boot_dev` A device path or list of devices from which the console program attempts to boot, or a saved boot specification in the form of an environment variable. This qualifier overrides the setting of the `bootdef_dev` environment variable. Use the `bootdef_dev` environment variable to define the default boot device string.
Example 2–9 Boot Command

>>> b dkc0
(boot dkc0.0.0.16.0 -flags 0)
block 0 of dkc0.0.0.16.0 is a valid boot block
reading 898 blocks from dkc0.0.0.16.0
bootstrap code read in
base = 200000, image_start = 0, image_bytes = 70400
initializing HWRPB at 2000
initializing page table at ffb6000
initializing machine state
setting affinity to the primary CPU
jumping to bootstrap code

%SYSINIT-I- waiting to form or join an OpenVMS Cluster
%VMSCluster-I-LOADSECDB, loading the cluster security database
%EWA0, Fast (100baseTX) mode set by console
%EWB0, Fast (100baseTX) mode set by console

%CNXMAN, Completing VMScluster state transition
%! Copyright (c) 1998 Digital Equipment Corporation. All rights reserved.
%MSCLOAD-I-CONFIGSCAN, enabled automatic disk serving

The OpenVMS system is now executing the site-specific startup commands.

Welcome to OpenVMS (TM) Alpha Operating System, Version V7.1-2

Username:
2.6 Configuring a PCI NVRAM Module

The prcache command is used for system configuration to check PCI NVRAM configuration information and battery status, to clear data from the NVRAM module, and to set the date of the next battery replacement. The command is used only with Tru64 UNIX systems.

Syntax: prcache –{f,z,b}

- **f** Checks configuration information and battery status.

- **z** Clears valid data; writes zeros to memory.

- **b** Sets the date (month and year) for battery replacement.

Example 2-10 Prcache Command

```bash
>>> prcache –f
PCI NVRAM Disk Cache: passed
Size: 2MB
PCI Memory Address: 40000000
System ID: 12000000
State: - not valid
Battery Status: good (Charging)
Battery Disconnect Circuit Status: enabled

>>> prcache –z
This command will zero the PCI NVRAM Disk Cache
Do you really want to continue [Y/N] ? : y
clearing disk cache

>>>```
2.7 Testing the System

The test command runs console-based exercisers for devices in the system. Ctrl/C can abort testing.

Syntax: \texttt{test \{-t time\} \{-q\} \{option\}}

- \texttt{-t time} Specifies the run time in seconds. The default for system test is 120 seconds (2 minutes).
- \texttt{-q} Disables the display of status messages as exerciser processes are started and stopped during testing. Sets the environment variable \texttt{d_verbose} to zero.

Example 2-11 Test Command

```text
>>> test
environment variable t_cnt created
System test, runtime 150 seconds

Type ^C if you wish to abort testing once it has started

Default zone extended at the expense of memzone.
Use INIT before booting

Testing Ethernet device(s)
Testing VGA
Testing Memory
Testing IDE/ATAPI disks (read-only)
Testing SCSI disks (read-only)
Testing DKA* devices (read-only). . .
No other SCSI disks to test

Testing floppy drive (dva0, read-only)
No diskette present, skipping floppy test
```
<table>
<thead>
<tr>
<th>ID</th>
<th>Program</th>
<th>Device</th>
<th>Pass</th>
<th>Hard/Soft</th>
<th>Bytes Written</th>
<th>Bytes Read</th>
</tr>
</thead>
<tbody>
<tr>
<td>00001ae5</td>
<td>memtest memory</td>
<td>4 / 0 / 0</td>
<td></td>
<td>310378496</td>
<td>310378496</td>
<td></td>
</tr>
<tr>
<td>00001a6a</td>
<td>memtest memory</td>
<td>4 / 0 / 0</td>
<td></td>
<td>306184192</td>
<td>306184192</td>
<td></td>
</tr>
<tr>
<td>00001b07</td>
<td>memtest memory</td>
<td>3 / 0 / 0</td>
<td></td>
<td>310378496</td>
<td>310378496</td>
<td></td>
</tr>
<tr>
<td>00001b54</td>
<td>exer_kid dqa0.0.0.13</td>
<td>0 / 0 / 0</td>
<td></td>
<td>0</td>
<td>215040</td>
<td></td>
</tr>
<tr>
<td>00001b74</td>
<td>exer_kid dka0.0.0.14</td>
<td>0 / 0 / 0</td>
<td></td>
<td>0</td>
<td>8732672</td>
<td></td>
</tr>
<tr>
<td>00001b7b</td>
<td>exer_kid dka100.1.0.1</td>
<td>0 / 0 / 0</td>
<td></td>
<td>0</td>
<td>8732672</td>
<td></td>
</tr>
<tr>
<td>00001ae5</td>
<td>memtest memory</td>
<td>6 / 0 / 0</td>
<td></td>
<td>549453824</td>
<td>549453824</td>
<td></td>
</tr>
<tr>
<td>00001a6a</td>
<td>memtest memory</td>
<td>6 / 0 / 0</td>
<td></td>
<td>545259520</td>
<td>545259520</td>
<td></td>
</tr>
<tr>
<td>00001b07</td>
<td>memtest memory</td>
<td>6 / 0 / 0</td>
<td></td>
<td>545259520</td>
<td>545259520</td>
<td></td>
</tr>
<tr>
<td>00001b54</td>
<td>exer_kid dqa0.0.0.13</td>
<td>0 / 0 / 0</td>
<td></td>
<td>0</td>
<td>421888</td>
<td></td>
</tr>
<tr>
<td>00001b74</td>
<td>exer_kid dka0.0.0.14</td>
<td>0 / 0 / 0</td>
<td></td>
<td>0</td>
<td>14434304</td>
<td></td>
</tr>
<tr>
<td>00001b7b</td>
<td>exer_kid dka100.1.0.1</td>
<td>0 / 0 / 0</td>
<td></td>
<td>0</td>
<td>14434304</td>
<td></td>
</tr>
<tr>
<td>00001ae5</td>
<td>memtest memory</td>
<td>8 / 0 / 0</td>
<td></td>
<td>780140544</td>
<td>780140544</td>
<td></td>
</tr>
<tr>
<td>00001a6a</td>
<td>memtest memory</td>
<td>8 / 0 / 0</td>
<td></td>
<td>780140544</td>
<td>780140544</td>
<td></td>
</tr>
<tr>
<td>00001b07</td>
<td>memtest memory</td>
<td>8 / 0 / 0</td>
<td></td>
<td>780140544</td>
<td>780140544</td>
<td></td>
</tr>
<tr>
<td>00001b54</td>
<td>exer_kid dqa0.0.0.13</td>
<td>0 / 0 / 0</td>
<td></td>
<td>0</td>
<td>631808</td>
<td></td>
</tr>
<tr>
<td>00001b74</td>
<td>exer_kid dka0.0.0.14</td>
<td>0 / 0 / 0</td>
<td></td>
<td>0</td>
<td>20168704</td>
<td></td>
</tr>
<tr>
<td>00001b7b</td>
<td>exer_kid dka100.1.0.1</td>
<td>0 / 0 / 0</td>
<td></td>
<td>0</td>
<td>20168704</td>
<td></td>
</tr>
<tr>
<td>00001ae5</td>
<td>memtest memory</td>
<td>11 / 0 / 0</td>
<td></td>
<td>1019215872</td>
<td>1019215872</td>
<td></td>
</tr>
<tr>
<td>00001a6a</td>
<td>memtest memory</td>
<td>10 / 0 / 0</td>
<td></td>
<td>1019215872</td>
<td>1019215872</td>
<td></td>
</tr>
<tr>
<td>00001b07</td>
<td>memtest memory</td>
<td>10 / 0 / 0</td>
<td></td>
<td>1019215872</td>
<td>1019215872</td>
<td></td>
</tr>
<tr>
<td>00001b54</td>
<td>exer_kid dqa0.0.0.13</td>
<td>0 / 0 / 0</td>
<td></td>
<td>0</td>
<td>835584</td>
<td></td>
</tr>
<tr>
<td>00001b74</td>
<td>exer_kid dka0.0.0.14</td>
<td>0 / 0 / 0</td>
<td></td>
<td>0</td>
<td>27066368</td>
<td></td>
</tr>
<tr>
<td>00001b7b</td>
<td>exer_kid dka100.1.0.1</td>
<td>0 / 0 / 0</td>
<td></td>
<td>0</td>
<td>27066368</td>
<td></td>
</tr>
<tr>
<td>00001ae5</td>
<td>memtest memory</td>
<td>13 / 0 / 0</td>
<td></td>
<td>1254096896</td>
<td>1254096896</td>
<td></td>
</tr>
<tr>
<td>00001a6a</td>
<td>memtest memory</td>
<td>13 / 0 / 0</td>
<td></td>
<td>1249902592</td>
<td>1249902592</td>
<td></td>
</tr>
<tr>
<td>00001b07</td>
<td>memtest memory</td>
<td>12 / 0 / 0</td>
<td></td>
<td>1254096896</td>
<td>1254096896</td>
<td></td>
</tr>
<tr>
<td>00001b54</td>
<td>exer_kid dqa0.0.0.13</td>
<td>0 / 0 / 0</td>
<td></td>
<td>0</td>
<td>1043456</td>
<td></td>
</tr>
<tr>
<td>00001b74</td>
<td>exer_kid dka0.0.0.14</td>
<td>0 / 0 / 0</td>
<td></td>
<td>0</td>
<td>32800768</td>
<td></td>
</tr>
<tr>
<td>00001b7b</td>
<td>exer_kid dka100.1.0.1</td>
<td>0 / 0 / 0</td>
<td></td>
<td>0</td>
<td>32784384</td>
<td></td>
</tr>
<tr>
<td>00001ae5</td>
<td>memtest memory</td>
<td>15 / 0 / 0</td>
<td></td>
<td>1488977920</td>
<td>1488977920</td>
<td></td>
</tr>
<tr>
<td>00001a6a</td>
<td>memtest memory</td>
<td>15 / 0 / 0</td>
<td></td>
<td>1484783616</td>
<td>1484783616</td>
<td></td>
</tr>
<tr>
<td>00001b07</td>
<td>memtest memory</td>
<td>14 / 0 / 0</td>
<td></td>
<td>1488977920</td>
<td>1488977920</td>
<td></td>
</tr>
<tr>
<td>00001b54</td>
<td>exer_kid dqa0.0.0.13</td>
<td>0 / 0 / 0</td>
<td></td>
<td>0</td>
<td>1241088</td>
<td></td>
</tr>
<tr>
<td>00001b74</td>
<td>exer_kid dka0.0.0.14</td>
<td>0 / 0 / 0</td>
<td></td>
<td>0</td>
<td>39665664</td>
<td></td>
</tr>
<tr>
<td>00001b7b</td>
<td>exer_kid dka100.1.0.1</td>
<td>0 / 0 / 0</td>
<td></td>
<td>0</td>
<td>39649280</td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>Program</td>
<td>Device</td>
<td>Pass</td>
<td>Hard/Soft</td>
<td>Bytes Written</td>
<td>Bytes Read</td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
<td>--------------</td>
<td>------</td>
<td>-----------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>00001ae5</td>
<td>memtest</td>
<td>memory</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>1723858944</td>
</tr>
<tr>
<td>00001aea</td>
<td>memtest</td>
<td>memory</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>1723858944</td>
</tr>
<tr>
<td>00001b07</td>
<td>memtest</td>
<td>memory</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>1723858944</td>
</tr>
<tr>
<td>00001b54</td>
<td>exer_kid</td>
<td>dqa0.0.0.13.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1445888</td>
</tr>
<tr>
<td>00001b74</td>
<td>exer_kid</td>
<td>dka0.0.0.14.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>45350912</td>
</tr>
<tr>
<td>00001b7b</td>
<td>exer_kid</td>
<td>dka100.1.0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>45350912</td>
</tr>
</tbody>
</table>

Test time has expired...

System test complete

>>> Type \texttt{cat el} to show the log if you wish.
2.8  Set Commands

2.8.1  Set Password

The set password command sets the console password for the first time or changes an existing password. It is necessary to set the password only if the system is going to operate in secure mode.

Syntax:  set password

The password length must be between 15 and 30 alphanumeric characters.

If a password has not been set and the set password command is issued, the console prompts for a password and verification.

If a password has been set and the set password command is issued, the console prompts for the new password and verification, then prompts for the old password. The password is unchanged if the validation password entered does not match the existing password in the NVRAM.

Example 2-12  Set Password Command

```plaintext
>>> set password
Please enter the password: # Password is not echoed.
Please enter the password again: # Validation is not echoed.

>>> set password
Changing a password.
Please enter the password:
Please enter the password again:
Now enter the old password:

>>> set password
Password entered is too short.
Please enter the password: # too short.
Password length must be between 15 and 30 characters
```
2.8.2 Set Secure

The set secure command enables secure mode without requiring a restart of the console. If the password has been set, the console will be secured and only a small subset of commands can be performed. If a password has not been set, you are prompted to do so.

Syntax: set secure

Example 2-13 Set Secure Command

```bash
>>> set secure # In this example a password has been set.
Console is secure. Please login.
>>> b dkb0
Console is secure - parameters are not allowed.
>>> login
Please enter the password: # Password is not echoed.
```

```bash
>>> b dkb0
(boot dkb0.0.0.3.1)
.
.
```

```bash
>>> set secure # Password has not been set.
Secure not set. Please set the password.
>>>
```

2.9 Secure Mode

When the console is in secure mode, the only commands recognized are boot, login, continue, and start. Placing the console in secure mode ensures that unauthorized persons cannot gain access to the system. The commands for console security are set password, clear password, and set secure. The login command turns off security features during the current console session.

The boot command does not accept command line parameters in secure mode. The console boots using the environment variables stored in NVRAM (boot_file, bootdef_dev, boot_flags). After a successful boot, the console is secured if there is a valid password.

The start and continue commands are valid on a secure console. After either command is executed, the console is secured if there is a valid password. This prevents an intruder from accessing the system.

2.9.1 Login Command and Secure Mode

The login command turns off the security features, enabling access to all SRM console commands during the current session. The system automatically returns to secure mode as soon as the boot, continue, or start command is entered or when the system is initialized.

When the login command is entered, the user is prompted for the current system password. If a password has not been set, a message is displayed indicating that there is no password in NVRAM. If a password has been set, this prompt is displayed:

Please enter the password:

If the password entered matches the password in NVRAM when the prompt is redisplayed, the console is no longer in secure mode and all console commands can be performed.

NOTE: If you enter the login command when a halt assertion exists, the command fails, even if you enter the correct password. See Section 1.10 for information on halt assertion.
Example 2-14  Secure Mode and Login Command

```bash
>>> login
System is not in secure mode.
```
```
>>> Secure not set. Please set the password.
```
```
>>> login
System is in secure mode.
```
```
>>> Please enter the password: # Password is not echoed.
```
```
>>> Invalid password
```
```
```bash
>>> clear password
# Password is not echoed.
```
```
>>> Password successfully cleared.
```
```
>>> clear password
# Invalid password entered.
```
```
>>> Console is secure
```
```

2.9.2  Clear Password

The clear password command clears the password environment variable, setting it to zero. This command is used when you want access to all the SRM console commands, but the system is in secure mode. In order to use clear password, you must know the current password.

Example 2-15  Clear Password Command

```bash
>>> clear password
```
```
>>> Please enter the password: # Password is not echoed.
```
```
>>> Password successfully cleared.
```
```
>>> clear password
Invalid password entered.
```
```
2.9.3 Resetting the Password

If you have forgotten the current password, clear the password as follows:

From the Local Console Terminal

1. Enter the `login` command: `>>> login`
2. At the Enter Password: prompt, press the Halt button, then press the Return key.
 The password is now cleared and the console cannot be put into secure mode unless a new password is set.

From the RMC

1. Enter the `login` command: `>>> login`
2. At the Enter Password: prompt, enter the RMC escape sequence.
3. At the RMC>>> prompt, enter the `halt` command and then the `quit` command:

 `RMC>>> halt`
 `RMC>>> quit`

4. At the SRM console, clear the password:

 `>>> clear password`
2.10 Stopping and Starting CPU

The `halt` (or `stop`) command stops program execution on a CPU that is still running a booted program.

Syntax: `halt (or stop) 0`
where 0 is the number of the CPU to halt.
For the DS10 system, this command has no effect because the single CPU is halted when the system is at the console prompt.

2.11 Updating Firmware

The `lfu` command is used to update firmware from the SRM console prompt. The `lfu` command starts the Loadable Firmware Update (LFU) Utility.

The syntax is: `lfu`

Example 2-16 Lfu Command

```plaintext
>>> lfu

Checking dqa0.0.0.13.0 for the option firmware files. . .
Checking dva0 for the option firmware files. . .

Option firmware files were not found on CD or floppy.
If you want to load the options firmware, please enter the device on which the files are located (ewa0), or just hit <return> to proceed with a standard console update: dva0

Please enter the name of the options firmware files list, or Hit <return> to use the default filename (ds10fw.txt) :

Copying ds10fw.txt from dva0. . .
Copying PC264NT.ROM from dva0. . .
Copying DS10SRM.ROM from dva0. . .
```
***** Loadable Firmware Update Utility *****

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display</td>
<td>Displays the system's configuration table.</td>
</tr>
<tr>
<td>Exit</td>
<td>Done exit LFU (reset).</td>
</tr>
<tr>
<td>List</td>
<td>Lists the device, revision, firmware name, and update revision.</td>
</tr>
<tr>
<td>Readme</td>
<td>Lists important release information.</td>
</tr>
<tr>
<td>Update</td>
<td>Replaces current firmware with loadable data image.</td>
</tr>
<tr>
<td>? or Help</td>
<td>Scrolls this function table.</td>
</tr>
</tbody>
</table>

UPD> update *

Confirm update on:
nt
srm
[Y/(N)] y

WARNING: updates may take several minutes to complete for each device.

DO NOT ABORT!

nt Updating to 5.70... Verifying 5.70... PASSED.
srm Updating to 5.7-0... Verifying 5.7-0... PASSED.

UPD> exit

NOTE: If the system has been shut down from a booted program (most commonly, the operating system) or in some other way halted back to the SRM console, the system must be reset before running LFU.

See Chapter 1 for more information about LFU.
2.12 Forcing a System Crash Dump

The crash command forces a crash dump at the operating system level. This command is used when an error has caused the system to hang and can be halted with the Halt button or the RMC halt command. This command restarts the operating system and forces a crash dump to the selected device.

Syntax: \texttt{crash (device)}

where \texttt{device} is the name of the device to which the crash dump is written.

Example 2–17 Crash Command

```
>>> crash
CPU 0 restarting

DUMP: 401408 blocks available for dumping.
DUMP: 38535 required for a partial dump.
DUMP: 0x805001 is the primary swap with 401407, start our last 38534 : of dump at 362873, going to end (real end is one more, for header)
DUMP.prom: dev SCSI 1 3 0 4 400 0 0, block 131072
DUMP: Header to 0x805001 at 401407 (0x61fff)
DUMP.prom: dev SCSI 1 3 0 4 400 0 0, block 131072
DUMP: Dump to 0x805001: ..................: End 0x805001
DUMP.prom: dev SCSI 1 3 0 4 400 0 0, block 131072
DUMP: Header to 0x805001 at 401407 (0x61fff)
succeeded

halted CPU 0

halt code = 5
HALT instruction executed
PC = fffffc00004e2d64

>>>```

2.13 Using Environment Variables

Environment variables pass configuration information between the console and the operating system. Their settings determine how the system powers up, boots the operating system, and operates. You issue an init command to activate a new environment variable.

Environment variables are set or changed with the set envar command (where envar is a placeholder for the environment to be changed) and set to default values with the set -default envar command. Their values are viewed with the show envar command. User-defined nonvolatile environment variables are created with the edit command described in Section 2.4. Section 2-18 describes the predefined SRM console environment variables in detail.

2.13.1 set envar

The set command sets or modifies the value of an environment variable. It can also be used to create a new environment variable if the name used is unique. Environment variables are used to pass configuration information between the console and the operating system. The setting of these variables determines how the system powers up, boots the operating system, and operates.

Syntax: 

```
set [-default] envar value
```

- **-default**  Restores an environment variable to its default setting.
- **envar**  The name of the environment variable to be displayed. The wildcard * displays all environment variables, which are: console, kbd_hardware_type, language, ocp_text and os_type
- **value**  The new value of the environment variable.

Whenever you modify the value of any environment variables, the new value takes effect only after you reset the system by pressing the Halt/Reset button or issuing the initialize command.
2.13.2 show envar

The show envar command displays the current value (or setting) of an environment variable.

Syntax: show envar

envar The name of the environment variable to be displayed. The wildcard * displays all environment variables, which are: console, kbd_hardware_type, language, ocp_text and os_type.

Example 2-18 Setting and Showing Environment Variables

```bash
>>> show console
console : graphics
>>> set console serial
>>> show console
console : serial
>>> init
The system must be init'ed for
 the new parameters to take effect
```

Example 2-19 Creating a User-Defined Environment Variable

```bash
>>> edit nvram
editing 'nvram'
0 bytes read in
*10 set mopv3_boot 1
*exit
17 bytes written out to nvram
>>>
```

In Example 2-19 the nvram script is edited so that an environment variable called “mopv3_boot” is created and set to 1 on each power-up. By default, MOP boot sends four MOP V4 requests before defaulting to MOP V3. This user-created environment variable forces the SRM console to bypass MOP V4 requests. This speeds up MOP booting on networks with MOP V3 software.
2.14 Depositing and Examining Data

The **deposit** command stores data in a specified location. The **examine** command displays the contents of a memory location, a register, or a device.

**Syntax:**

- **deposit** (-b,w,l,q,o,h) (-n value, s value) (space:) address data
- **examine** (-b,w,l,q,o,h) (-n value, s value) (space:) address

- **-b** Defines data size as byte.
- **-w** Defines data size as word.
- **-l (default)** Defines data size as longword.
- **-q** Defines data size as quadword.
- **-o** Defines data size as octaword.
- **-h** Defines data size as hexword.
- **-d** Instruction decode (**examine** command only)
- **-n value** The number of consecutive locations to modify.
- **-s value** The address increment size. The default is the data size.
- **space** Device name (or address space) of the device to access.
- **address** Offset within a device to which data is deposited. Can be:
  - **dev_name** A device name.
  - **fpr- name** The floating-point register set; name is F0 to F31.
  - **gpr- name** The general register set; name is R0 to R31.
  - **ipr- name** The internal processor registers.
  - **pt- name** The PALtemp register set; name is PT0 to PT23.
  - **pmem** Physical memory (default).
  - **vmem** Virtual memory.
data  Data to be deposited.

Symbolic forms can be used for the address. They are:

- **pc**  The program counter. The address space is set to GPR.
- +  The location immediately following the last location referenced in a **deposit** or **examine** command. For physical and virtual memory, the referenced location is the last location plus the size of the reference (1 for byte, 2 for word, 4 for longword). For other address spaces, the address is the last referenced address plus 1.
- -  The location immediately preceding the last location referenced in a **deposit** or **examine** command. Memory and other address spaces are handled as above.
- *  The last location referenced in a **deposit** or **examine** command.
- @  The location addressed by the last location referenced in a **deposit** or **examine** command.

The **deposit** command stores data in the location specified. If no options are given with a **deposit** command, the system uses the options from the preceding **deposit** command.

If the specified value is too large to fit in the data size listed, the console ignores the command and issues an error response. If the data is smaller than the data size, the higher order bits are filled with zeros. The syntax is shown below.

The **examine** command displays the contents of a memory location, a register, or a device.

If no options are given with an **examine** command, the system uses the options from the preceding **examine** command. If conflicting address space or data sizes are specified, the console ignores the command and issues an error.

For data lengths longer than a longword, each longword of data should be separated by a space.

**Example 2–20  Deposit Command**

```bash
>>> dep -b -n 1ff pmem:0 0 # Clear 1st 512 bytes of physical mem.
```
d -l -n 3 vmem:1234 5  # Deposit 5 into four longwords starting
# at virtual memory address 1234.

d -n 8 r0 ffffffff  # Load GPRs R0 through R8 with -1.
d -l -n 10 -s 200 pmem:0 8  # Deposit 8 in the 1st longword of the
# first 17 pages in physical memory.
d -l pmem:0 0  # Deposit 0 to physical mem address 0.
d + ff  # Deposit FF to physical mem address 4.
d scbb 820000  # Deposit 820000 to SCBB.

Example 2-21  Examine Command

examine pc  # Examine the program counter.
PC psr: 0 ( PC) 00000000000001170

examine sp  # Examine the stack pointer.
gpr: F0 ( R30) 0000000000072A60

e -n 6 r4  # Examine register R4 & the next 6 registers.
grp: 20 ( R4) 00000000000005000
grp: 28 ( R5) 000000000FFFE000
grp: 30 ( R6) 000000000F8000C00
grp: 38 ( R7) 00000000053F761AE
grp: 40 ( R8) 000000010000000000
grp: 48 ( R9) 000000000F7800100
grp: 50 ( R10) 00000000000C7FFC

examine pmem:400EC  # Examine physical memory.
pmem: 400EC A49D00078A47D0070
2.15 Reading a File

The more command displays a file one screen at a time.

Syntax: more (file...)

where file is the name of the file to be displayed.

The more command is similar to that used in the MS-DOS and UNIX operating systems. It is useful for displaying output that scrolls too quickly to be viewed. For example, when you power up the system, the system startup messages scroll, and the messages are logged to an event log.

When the >>> prompt displays, you can use the more command to display the contents of the event log file.

Example 2-22 More Command

```bash
>>> more el # Display SRM console's event log one screen at a time
.
--More-- (SPACE - next page, ENTER - next line, Q - quit)

>>> help * | more # Display online help one screen at a time
.
--More-- (SPACE - next page, ENTER - next line, Q - quit)
```
2.16 Initializing the System

The initialize command resets the system and executes power-up tests.

Syntax: initialize

After self-tests are executed, the system autoboots unless:

- A halt assertion condition exists (see Section 1.10) – or –
- The auto_action environment variable is set to halt (see Section 2.18.1).

If the auto_action environment variable is set to boot or restart and no halt assertion condition exists, the system autoboots. In all other cases, the system stops in console mode and does not attempt to boot.

Example 2-23 Initialize Command

```plaintext
>>> init
Initializing...
256 Meg of system memory
probing hose 0, PCI
probing PCI-to-ISA bridge, bus 1
probing PCI-to-PCI bridge, bus 2
bus 0, slot 9 -- ewa -- DE500-BA Network Controller
bus 0, slot 11 -- ewb -- DE500-BA Network Controller
bus 0, slot 13 -- dqa -- Acer Labs M1543C IDE
bus 0, slot 13 -- dqb -- Acer Labs M1543C IDE
bus 0, slot 14 -- vga -- DEC PowerStorm
bus 2, slot 0 -- pka -- NCR 53C875
bus 2, slot 1 -- skb -- NCR 53C875
bus 2, slot 2 -- ewc -- DE500-AA Network Controller
bus 0, slot 16 -- pkc -- QLogic ISP1020
bus 0, slot 17 -- dra -- Mylex DAC960
Testing the System
Testing the Disks (read only)
Testing the Network
System Temperature is 34 degrees C
CPU 0 Alpha 21264-4 466 MHz SROM Revision: V1.8.208
TIG Rev 2.1
Arbiter Rev 3.30 (0x7E)
Array # Size Base Addr
------- -------- ---------
 0 512 MB 000000000
 1 512 MB 020000000
 2 128 MB 050000000
 3 256 MB 040000000
Total Bad Pages = 0
Total Good Memory = 1408 MBytes
AlphaServer DS10 466 MHz Console V5.7-2 Jan 13 2000 14:24:16
>>>
```
2.17 Finding Help

The `help` command displays basic information about the use of console commands when the system is in console mode.

<table>
<thead>
<tr>
<th>Syntax:</th>
<th>help <em>(command...)</em></th>
</tr>
</thead>
</table>

**Command...** Command or topic for which help is requested. The options are:

- **None** Displays the complete list of commands for which you can receive help.
- **Command_name** Displays information about the console command.
- **Argument_string** (such as "sh") Displays information about all commands that begin with that string.

### Example 2-24 Help Command

```plaintext
>>> help set
NAME
set
FUNCTION
Set an option or modify the value of an environment variable.
SYNOPSIS
set <option> <value> or <envar> [-] <value>
 where <option>={host,mode}
 where <envar>={auto_action,bootdef_dev,boot_osflags,...}
[-default]
```
2.18 Environment Variable Summary

Environment variables pass configuration information between the console and the operating system. Their settings determine how the system powers up, boots the operating system, and operates. Environment variables are set or changed with the `set env` command and returned to their default values with the `clear env` command. Their values are viewed with the `show env` command.

Table 2–7 lists the environment variables. Detailed descriptions follow. The environment variables are specific to the SRM console.

<table>
<thead>
<tr>
<th>Environment Variable</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto_action</td>
<td>Specifies the console's action at power-up, a failure, or a reset.</td>
</tr>
<tr>
<td>bootdef_dev</td>
<td>Specifies the default boot device string.</td>
</tr>
<tr>
<td>boot_osflags</td>
<td>Specifies the default operating system boot flags.</td>
</tr>
<tr>
<td>com*_baud</td>
<td>Changes the default baud rate of the COM1 or COM2 serial port.</td>
</tr>
<tr>
<td>console</td>
<td>Specifies the device on which power-up output is displayed (serial terminal or graphics monitor).</td>
</tr>
<tr>
<td>cpu_enabled</td>
<td>Enables or disables a specific secondary CPU.</td>
</tr>
<tr>
<td>ew*0_mode</td>
<td>Specifies the connection type of the default Ethernet controller.</td>
</tr>
<tr>
<td>ew*0_protocols</td>
<td>Specifies network protocols for booting over the Ethernet controller.</td>
</tr>
<tr>
<td>kbd_hardware_type</td>
<td>Specifies the default console keyboard type.</td>
</tr>
<tr>
<td>language</td>
<td>Specifies the console keyboard layout.</td>
</tr>
</tbody>
</table>
### Table 2-7  Environment Variable Summary (Continued)

<table>
<thead>
<tr>
<th>Environment Variable</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>ocp_text</td>
<td>Overrides the default OCP display text with specified text.</td>
</tr>
<tr>
<td>os_type</td>
<td>Specifies the operating system. Valid entries are: openvms, and unix.</td>
</tr>
<tr>
<td>password</td>
<td>A password stored in the NVRAM used to secure the console.</td>
</tr>
<tr>
<td>pci_parity</td>
<td>Disables or enables parity checking on the PCI bus.</td>
</tr>
<tr>
<td>pk*0_fast</td>
<td>Enables fast SCSI mode.</td>
</tr>
<tr>
<td>pk*0_host_id</td>
<td>Specifies the default value for a controller host bus node ID.</td>
</tr>
<tr>
<td>pk*0_soft_term</td>
<td>Enables or disables SCSI terminators on systems that use the QLogic ISP1040 SCSI controller.</td>
</tr>
<tr>
<td>tt_allow_login</td>
<td>Enables or disables login to the SRM console firmware on other console ports.</td>
</tr>
</tbody>
</table>
2.18.1 auto_action

Specifies the action the console takes any time the system powers up, fails, or resets. When the setting involves autobooy, the system boots from the default boot device specified by the value of the bootdef_dev environment variable.

Syntax: set auto_action value

where value can be:

- **halt**: The system remains in console mode after power-up or a system crash.
- **boot**: The system boots automatically when it is turned on and halts after a system failure.
- **restart**: The system boots automatically when it is turned on or after it fails.

**NOTE**: If a halt assertion exists, the console ignores the auto_action setting and halts at the SRM console. See Section 1.10 for information on halt assertion.

2.18.2 bootdef_dev

The bootdef_dev environment variable specifies one or more devices for booting the operating system. When more than one device is listed, the system searches in the order listed and boots from the first device with operating system software.

Syntax: set bootdef_dev boot_device

Where boot_device is the name of the device on which the system software has been loaded. To specify more than one device, separate the names with commas. Enter the command show bootdef_dev to display the current default boot device. Enter the command show device for a list of all devices in the system.
2.18.3 boot_osflags

The boot_osflags environment variable passes information to the boot command. That information is dependent on the operating system to be booted.

Syntax for Tru64 UNIX: 

\[ \text{set boot_osflags flags_value} \]

where flags_value can be:

- **a**: Load operating system software from the specified boot device (autoboot). Boot to multi-user mode.
- **i**: Prompt for the name of a file to load and other options (boot interactively). Boot to single-user mode.
- **s**: Stop in single-user mode. Boots /vmunix to single-user mode and stops at the # (root) prompt.
- **D**: Full dump; implies “s” as well. By default, if Tru64 UNIX crashes, it completes a partial memory dump. Specifying “D” forces a full dump if the system crashes.

Syntax for OpenVMS: 

\[ \text{set boot_osflags root_number, boot_flags} \]

Where root_number is the directory number of the system disk on which OpenVMS files are located. For example:

<table>
<thead>
<tr>
<th>root_number</th>
<th>Root Directory</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (default)</td>
<td>[SYS0.SYSEXE]</td>
</tr>
<tr>
<td>1</td>
<td>[SYS1.SYSEXE]</td>
</tr>
<tr>
<td>2</td>
<td>[SYS2.SYSEXE]</td>
</tr>
<tr>
<td>3</td>
<td>[SYS3.SYSEXE]</td>
</tr>
</tbody>
</table>

And boot_flags are the hexadecimal value of the bit number or numbers set. To specify multiple boot flags, add the flag values (logical OR). See Table 2–8.
Table 2-8  Settings for boot_osflags Bootflags (OpenVMS)

<table>
<thead>
<tr>
<th>Flags Value</th>
<th>Bit Number</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>Bootstrap conversationally (enables you to modify SYSGEN parameters in SYSBOOT).</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Map XDELTA to running system.</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>Stop at initial system breakpoint.</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>Perform diagnostic bootstrap.</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>Stop at the bootstrap breakpoints.</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
<td>Omit header from secondary bootstrap image.</td>
</tr>
<tr>
<td>80</td>
<td>7</td>
<td>Prompt for the name of the secondary bootstrap file.</td>
</tr>
<tr>
<td>100</td>
<td>8</td>
<td>Halt before secondary bootstrap.</td>
</tr>
<tr>
<td>10000</td>
<td>16</td>
<td>Display debug messages during booting.</td>
</tr>
<tr>
<td>20000</td>
<td>17</td>
<td>Display user messages during booting.</td>
</tr>
</tbody>
</table>
2.18.4 com1_baud

The default baud rate for the system is 9600. With the com1_baud environment variable, you can set the baud rate to match that of the device connected to the port.

Syntax: set com1_baud baud_value

where baud_value is the new baud rate. A list of possible values is displayed by attempting to set this environment variable to an unacceptable value (for example, set com2_baud xxx).

NOTE: Disable the RMC to select a baud rate other than 9600. See Chapter 3.

You will be asked to confirm the change, as shown in Example 2–25.

Example 2–25 Changing Baud Rate

>>> set com1_baud 19200
Embedded Remote Console only supports 9600 baud. Continue? (Y/[N]) n bad value - com1_baud not modified >>>

2.18.5 com1_mode

The set com1_mode command sets the bypass modes of the remote management console (see Chapter 3)

For modem connections, you can set the com1_mode variable to allow data to partially or completely bypass the RMC. The bypass modes are snoop mode, soft bypass mode, and firm bypass mode.

- In snoop mode, you can type an escape sequence to enter RMC mode. RMC mode provides a command-line interface for issuing commands to monitor and control the system.

- In soft bypass mode, you cannot enter RMC mode. But if an alert condition or loss of carrier occurs, the RMC switches into snoop mode. From snoop mode you can enter RMC mode.
• In firm bypass mode, you cannot enter RMC mode. To enter RMC mode from firm bypass mode, reset the `com1_mode` variable from the SRM console.

Syntax:  
```
set com1_mode value
```
where value can be:

- **snoop** Data partially bypasses RMC, but RMC taps into the data lines and listens passively for the RMC escape sequence.
- **soft_bypass** Data bypasses RMC, but RMC switches automatically into snoop mode if an alert condition or loss of carrier occurs.
- **firm_bypass** Data bypasses RMC. RMC is effectively disabled.

Example:
```
>>> set com1_mode
COM1_MODE (SNOOP, SOFT_BYPASS, FIRM_BYPASS)
```

2.18.6 console

The console terminal can be either a graphics monitor or a serial terminal. The `console` environment variable specifies which is used. Whenever you change the value of `console`, you must reset the system by pressing the Halt/Reset button or issuing the `initialize` command.

Syntax:  
```
set console output_device
```
where output_device can be:

- **graphics** (default) The console terminal is a graphics monitor or a device connected to the VGA or TGA module.
- **serial** The console terminal is the device connected to the COM1 port.
2.18.7  ew*0_mode

Sets an Ethernet controller to run an AUI, ThinWire, or twisted-pair Ethernet network. The default is auto-sense. For the fast setting, the device defaults to fast.

Syntax:        set ew*0_mode value

where value can be:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aui</td>
<td>Device type is AUI.</td>
</tr>
<tr>
<td>auto-sense</td>
<td>Device type is sensed by the console.</td>
</tr>
<tr>
<td>twisted-pair</td>
<td>Device type is 10BaseT (twisted pair).</td>
</tr>
<tr>
<td>fast duplex, twisted-pair</td>
<td>Device type is duplex 10BaseT.</td>
</tr>
<tr>
<td>fast</td>
<td>Device type is fast SCSI.</td>
</tr>
<tr>
<td>fast FD</td>
<td>Device type is fast full duplex SCSI.</td>
</tr>
<tr>
<td>BNC</td>
<td>Device type is BNC.</td>
</tr>
<tr>
<td>auto-negotiate</td>
<td>DE500-BA</td>
</tr>
</tbody>
</table>

2.18.8  ew*0_protocols

Enables network protocols for booting and other functions.

Syntax:        set ew*0_protocols protocol_value

where protocol_value can be:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mop</td>
<td>(default) Sets the network protocol to mop (Maintenance Operations Protocol), the setting typically used with the OpenVMS operating system.</td>
</tr>
<tr>
<td>bootp</td>
<td>Sets the network protocol to bootp, the setting typically used with the Tru64 UNIX operating system.</td>
</tr>
<tr>
<td>bootp,mop</td>
<td>When both are listed, the system attempts to use the mop protocol first, regardless of which is listed first. If not successful, it then attempts the bootp protocol.</td>
</tr>
</tbody>
</table>
2.18.9 kbd_hardware_type

Used only on systems with the language variant 3C (Français), this environment variable sets the keyboard hardware type as either PCXAL or LK411 and enables the system to interpret the terminal keyboard layout correctly.

Syntax: set kbd_hardware_type keyboard_type

where keyboard_type can be:

- **pcxal** (default) Selects the default keyboard hardware type.
- **lk411** Selects the LK411 keyboard layout for use with language variant 3C (Français).

Whenever you change the value of kbd_hardware_type, you must reset the system by pressing the Halt/Reset button or issuing the initialize command.

2.18.10 language

Specifies the keyboard layout, which is language dependent. The setting of the language environment variable must match the language of the keyboard variant. Whenever you change the value of language, you must reset the system by pressing the Halt/Reset button or issuing the initialize command.

Syntax: set language language_code

where language_code can be:

<table>
<thead>
<tr>
<th>Code</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No language (cryptic)</td>
</tr>
<tr>
<td>30</td>
<td>Dansk (Danish)</td>
</tr>
<tr>
<td>32</td>
<td>Deutsch (German)</td>
</tr>
<tr>
<td>34</td>
<td>Deutsch (Schweiz) (Swiss)</td>
</tr>
<tr>
<td>36</td>
<td>English (American)</td>
</tr>
<tr>
<td>38</td>
<td>English (British/Irish)</td>
</tr>
<tr>
<td>3A</td>
<td>Español (Spanish)</td>
</tr>
<tr>
<td>3C</td>
<td>Français (French)</td>
</tr>
<tr>
<td>3E</td>
<td>Français (Canadian)</td>
</tr>
<tr>
<td>40</td>
<td>Français (Suisse Romande)</td>
</tr>
<tr>
<td>42</td>
<td>Italiano (Italian)</td>
</tr>
<tr>
<td>44</td>
<td>Nederlands (Netherlands)</td>
</tr>
<tr>
<td>46</td>
<td>Norsk (Norwegian)</td>
</tr>
<tr>
<td>48</td>
<td>Português (Portuguese)</td>
</tr>
<tr>
<td>4A</td>
<td>Suomi (Finnish)</td>
</tr>
<tr>
<td>4C</td>
<td>Svenska (Swedish)</td>
</tr>
<tr>
<td>4E</td>
<td>Belgisch-Nederlands (Dutch)</td>
</tr>
</tbody>
</table>
2.18.11 os_type

The os_type environment variable specifies the default operating system. This variable is set at the factory to the setting for the operating system purchased. Use this command to change the factory default setting. Whenever you change the value of os_type, you must reset the system by pressing the Halt/Reset button or issuing the initialize command.

Syntax: set os_type os_type

where os_type can be:

- **unix**: Tru64 UNIX is the default operating system, and the SRM firmware is started during power-up or reset.
- **openvms**: OpenVMS is the default operating system, and the SRM firmware is started during power-up or reset.

2.18.12 password

Sets or clears the console password stored in NVRAM.

Syntax: set password

where the password is not an argument to the set password command; the console prompts the user for the string, which must be between 15 and 30 characters.
2.18.13  pci_parity

Disables or enables parity checking on the PCI bus.

Syntax:

```
set pci_parity value
```

where `value` can be:

- **(default) on**: Enables PCI parity checking.
- **off**: Disables PCI parity checking.

Some PCI devices do not implement PCI parity checking, and some have a parity-generating scheme in which the parity is sometimes incorrect or is not fully compliant with the PCI specification. A side effect of this is that superfluous PCI parity errors are reported by the host PCI bridge. In such cases, the device can be used as long as parity is not checked; disabling PCI parity checking prevents false parity errors that can cause system problems.

2.18.14  pk*0_fast

Enables fast SCSI to perform in either standard or fast mode.

Syntax:

```
set pk*0_fast scsi_speed
```

where `scsi_speed` can be:

- **(default) 1**: The controller is in fast SCSI mode.
- **0**: The controller is in standard SCSI mode.

If the system has at least one fast SCSI device, set the default controller speed to fast SCSI (1). Devices on a controller that connects to both standard and fast SCSI devices will perform at the appropriate rate for the device. If the system has no fast SCSI devices, set the default controller speed to standard SCSI (0). If a fast SCSI device is on a controller set to standard, it will perform in standard mode.
2.18.15 pk*0_host_id

Sets the controller host bus node ID to a value between 0 and 7.

Syntax: 

```
set pk*_host_id scsi_node_id
```

where `scsi_node_id` is the bus node ID, a number from 0 to 7.

Each SCSI bus in the system requires a controller. Buses can theoretically support up to eight devices; however, the eighth device must always be a controller. Each device on the bus, including the controller, must have a unique ID, which is a number between 0 and 7. This is the bus node ID number.

On each bus, the default bus node ID for the controller is set to 7. You do not need to change the controller bus node ID unless you place two or more controllers on the same bus.

To list the controllers on your system, enter the command `show device`. SCSI devices begin with the letters “pk” (for example, pka0). The third letter is the adapter ID for the controller. When entering the command `set pk*0_host_id`, replace the asterisk with the adapter ID letter.

2.18.16 pk*0_soft_term

Enables or disables SCSI terminators. This command applies to systems that use the QLogic ISP1040 SCSI controller. The QLogic ISP1040 SCSI controller implements the 16-bit wide SCSI bus. The QLogic module has two terminators, one for the low eight bits and one for the high eight bits.

Syntax: 

```
set pk*0_soft_term value
```

where `value` can be:

- **Off** Disables termination of all 16 bits.
- **(default) low** Enables low eight bits and disables high eight bits.
- **High** Enables high eight bits and disables low eight bits.
- **On** Enables all 16 bits.
- **Diff** Places the bus in differential mode.
2.18.17  tt_allow_login

Enables or disables login to the SRM console firmware on alternate console ports. If the environment variable console is set to serial, the primary console device is the terminal connected through the COM1 port. The command set tt_allow_login 1 enables logins through either the COM2 port or a graphics monitor.

Syntax: set tt_allow_login value

where value can be:

(default) 1  Enables login through the COM2 port or a graphics monitor.

0  Disables login through the COM2 port or a graphics monitor.
2.19 Switching from SRM to AlphaBIOS Console

The alphabios command loads and starts the AlphaBIOS console. This is necessary for running AlphaBIOS-based utilities (such as the RAID configuration utility). To switch from SRM to AlphaBIOS, issue the alphabios command.

Syntax: alphabios

Type alphabios at the SRM prompt.

>>> alphabios

The AlphaBIOS console appears.
2.20 Running the AlphaBIOS Console

AlphaBIOS is the graphical interface that supports utility programs.

NOTE: AlphaBIOS contains features and menus that support multiple operating systems. The Windows NT operating system is not supported on Compaq AlphaServer DS10/DS10L and AlphaStation DS10 systems. Only the AlphaBIOS features applicable to the Tru64 UNIX and OpenVMS operating systems are discussed in this section.

After switching to AlphaBIOS, you will see the following screens.

Figure 2–1 AlphaBIOS Boot Screen

<table>
<thead>
<tr>
<th>AlphaBIOS 5.70 (DS10 Beta 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha Processor and System Information:</td>
</tr>
<tr>
<td>System: AlphaServer DS10</td>
</tr>
<tr>
<td>Processor: Digital Alpha 21264 600MHz</td>
</tr>
<tr>
<td>Memory: 256 MB</td>
</tr>
<tr>
<td>Alpha Processor(s) Status:</td>
</tr>
<tr>
<td>Processor 0 Running</td>
</tr>
<tr>
<td>TIG PAL Revision: 2:1</td>
</tr>
<tr>
<td>SCSI Controller Initialization</td>
</tr>
<tr>
<td>Initializing ATAPI #0</td>
</tr>
<tr>
<td>Device: Disk SCSI ID:0 FUJITSU MPD3108AT DD2</td>
</tr>
<tr>
<td>Initializing ATAPI #1</td>
</tr>
</tbody>
</table>

F2= Setup  PAUSE=Pause Display  ESC=Bypass Network Init
You will see the No Selections Found Screen.

**Figure 2–2  AlphaBIOS No Selections Found Screen**

<table>
<thead>
<tr>
<th>No Operating System Selections Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>Press &lt;F2&gt; to enter Setup and configure the system.</td>
</tr>
<tr>
<td>F2=Setup</td>
</tr>
</tbody>
</table>

Press **F2** on this screen to enter the setup program.
The AlphaBIOS Setup screen shown in Figure 2–3 is displayed.

**Figure 2–3  AlphaBIOS Setup Screen**

<table>
<thead>
<tr>
<th>AlphaBIOS Setup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display System Configuration...</td>
</tr>
<tr>
<td><strong>AlphaBIOS upgrade...</strong></td>
</tr>
<tr>
<td>Hard Disk Setup...</td>
</tr>
<tr>
<td>CMOS Setup...</td>
</tr>
<tr>
<td>Network Setup...</td>
</tr>
<tr>
<td>Install Windows NT...</td>
</tr>
<tr>
<td>Utilities</td>
</tr>
<tr>
<td>About AlphaBIOS...</td>
</tr>
</tbody>
</table>

Press ENTER to install new firmware image(s) from floppy, CD-ROM, or Network.

---

**NOTE:** Only the Utilities choice is applicable for the Tru64 UNIX and OpenVMS operating systems.
2.20.1 Running Configuration Utilities

Configuration utilities are run directly from the AlphaBIOS Utilities menu. If you change your system configuration, for example, by adding another RAID drive, you will have to run the RAID configuration utility. As you modify your system, you might be required to run other types of configuration utilities as well. Configuration utilities (also called maintenance programs) are run directly from the AlphaBIOS Utility menu.

1. From the AlphaBIOS Setup screen, move the cursor to Utilities, and press Enter.

![AlphaBIOS Setup Screen]

2. From the submenu that is displayed, select Run Maintenance Program with the arrows and press Enter.
Figure 2-5 Run Maintenance Program Dialogue Box

![Run Maintenance Program Dialogue Box]

Program Name: __________________
Location: A:

ENTER=Execute                ESC=Quit

CAT0138
3. In the Run Maintenance Program dialog box, type the name of the program to be run in the Program Name field. Then tab to the Location list box, and select the hard disk partition, diskette, or CD-ROM drive from which to run the program.

4. Press Enter to execute the program.

NOTE: If you are running a utility from a diskette, you can simply type the utility's name into the Program Name field, and press Enter. The diskette drive is the default selection in the Location field. Use Alt+Down arrow when a list box is selected to open the list.

To return to the SRM console, power the system off and then on again. The changes you made will take effect, and the SRM will appear.
Chapter 3
Remote Management Console

The remote management console (RMC) provides a command-line user interface for entering commands to monitor and control the system. In addition to doing routine monitoring, you can invoke the command-line interface to perform remote power on/off, halt, and reset.

The RMC can detect alert conditions such as overtemperature, fan failure, and power supply failure and automatically dial a pager phone number or another computer system to notify the remote operator of the alert condition.

This chapter explains the operation and use of the RMC. Sections are:

- RMC Components
- Remote Halt (In/Out)
- Terminal Setup
- Configuring Remote Dial-In
- Operating Modes
- Configuring Dial-Out Alert
- Entering the RMC
- Dialing In
- SRM Environment Variables for COM1
- Resetting the RMC to Factory Defaults
- Status Monitoring
- Troubleshooting Tips
- Remote Power (On/Off)
- RMC Commands

**NOTE:** In many ways the DS10 and DS10L systems are identical. This manual uses DS10 systems for most illustrations and examples. Where significant differences exist, an illustration or example of a DS10L is presented separately.
3.1 RMC Components

The RMC resides in an independent microprocessor on the system motherboard and allows a remote operator to connect to the system COM1 port from a modem or from a serial terminal or terminal emulator.

Figure 3–1 Location of RMC Components on Motherboard – DS10
The RMC logic is implemented using an 8-bit microprocessor, PIC17C44, as the primary control device. The RMC PIC is programmed with code to control access to various environmental status bits.

You can gain access to the RMC as long as AC power is available to the system (through the wall outlet). Thus, if the system fails, you can still access the RMC and gather information about the failure. The RMC jumper position shown in Figure 3–1 and Figure 3–2 is the default position set in manufacturing which enables the RMC. To disable RMC, move the jumper to cover the middle pin and the other end pin.
3.2 **Terminal Setup**

Remote connection is made through a modem connected to the COM1 port. To set up the modem, you first use a local terminal on the COM1 port to set up the parameters of the modem and RMC connection. You then disconnect the terminal and connect the modem.

**Figure 3-3  Setups for RMC Mode – DS10**
You can connect a terminal or a modem to the COM1 port, but not both at the same time. You use the terminal to set RMC parameters for the connection, then connect the modem. See Section 3.9.
3.3 Operating Modes

RMC runs in three modes on this system: Snoop, soft bypass, and firm bypass. The bypass modes are set with the set com1_mode command from the SRM console.

Figure 3–5 Bypass Mode

NOTE: The internal system COM1 port should not be confused with the external COM1 serial port on the back of the system. The internal COM1 port is used by software to send data either to the COM1 port on the system or to the RMC modem port if a modem is connected.

Examples:

>>> set com1_mode snoop
>>> set com1_mode soft_bypass
>>> set com1_mode firm_bypass
3.3.1 Snoop Mode (Default Mode)

In snoop mode data partially bypasses the RMC. The data and control signals are routed from the system COM1 port to the external modem port, but the RMC taps into the data lines and listens passively for the RMC escape sequence. If it detects the escape sequence, it enters RMC mode.

The escape sequence is also delivered to the system on the bypassed data lines. If you decide to change the default escape sequence, be sure to choose a unique sequence so that the system software does not interpret characters intended for the RMC.

Because snoop mode does not filter every piece of data, it is useful when you want to monitor the system but also ensure optimum COM1 performance.

3.3.2 Bypass Modes

In bypass modes, note that the internal system COM1 port is connected directly to the modem port. The RMC passively listens to the escape sequence from the external COM1 port, when the RMC escape sequence is captured.

**Soft Bypass Mode**

In soft bypass mode all data and control signals are routed directly from the system COM1 port to the external modem port, and the RMC does not listen to traffic on the COM1 data lines. If an alert condition or loss of carrier occurs, however, the RMC detects it and switches automatically into snoop mode. In soft bypass mode, the RMC also initializes the modem for dialing in and dials out when an alert is detected.

Soft bypass mode is useful if management applications need the COM1 channel to perform a binary download, because it ensures that RMC does not accidentally interpret some binary data as the escape sequence.

**Firm Bypass Mode**

Firm bypass mode effectively disables the RMC. All data and control signals are routed directly from the system COM1 port to the external modem port. In firm bypass mode, the RMC dial-in and call-out features are disabled. Firm bypass mode is useful if you want the system, or an application (such as Insight Manager or ServerWorks) — not the RMC — to fully control the modem port and you want to disable RMC features.
3.4 Entering the RMC

You type an escape sequence to invoke the RMC. You can enter RMC from a modem or the local serial console terminal. You can enter the RMC from the local terminal regardless of the current operating mode. You can set up RMC parameters.

1. Invoke the RMC from a serial terminal by typing the following default escape sequence:
   \[\text{^}|\text{^}|	ext{rmc}\]
   This sequence is equivalent to typing Ctrl/left bracket, Ctrl/left bracket, and rmc. On some keyboards, the Esc key functions like the Ctrl/left bracket combination.

2. To exit RMC, enter the \text{quit} command. This action returns you to whatever you were doing before you invoked the RMC.
3.5 SRM Environment Variables for COM1

Several SRM environment variables allow you to set up the COM1 serial port for use with the RMC.

You may need to set the following environment variables from the SRM console, depending on how you decide to set up the RMC. See Chapter 2 for information on setting SRM environment variables.

Table 3–1 SRM Environment Variables for COM1

<table>
<thead>
<tr>
<th>Variable</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>com1_baud</td>
<td>Sets the baud rate of the COM1 serial/modem port. The default is 9600.</td>
</tr>
<tr>
<td>com1_flow</td>
<td>Specifies the flow control on the serial port. The default is software.</td>
</tr>
<tr>
<td>com1_mode</td>
<td>Specifies the COM1 data flow paths so that data either flows through the RMC or bypasses it. This environment variable can be set from either the SRM or the RMC.</td>
</tr>
<tr>
<td>com1_modem</td>
<td>Specifies to the operating system whether or not a modem is present.</td>
</tr>
</tbody>
</table>
3.6 Status Monitoring

Use the RMC status command to check the current state of the system's sensors as well as the current escape sequence and alarm information.

RMC> sta

PLATFORM STATUS
Firmware Revision: V1.1
Power: ON
RMC Halt: Deasserted
RMC Power Control: ON
Power Supply: OK
System Fans: OK       CPU Fan: OK
Temperature: 31.0°C (warnings at 55.0°C, power-off at 60.0°C)
Escape Sequence: ^[^RMC
Remote Access: Disabled
RMC Password: set
Alert Enable: Disabled
Alert Pending: YES
Init String: AT&F0E0V0S0=2
Dial String: ATXDT8,1800759888
Alert String: ,,,,,,,,,1066278#,,,,,,,,,1#,,,,30140#;
Com1_mode: SNOOP
Last Alert: AC Loss
Watchdog Timer: 00 seconds
Autoreboot: OFF
Logout Timer: 20 minutes
User String:

Table 3–2 Status Command Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firmware Revision</td>
<td>Revision of RMC firmware on the microcontroller.</td>
</tr>
<tr>
<td>Power</td>
<td>On = System is on. Off = System is off.</td>
</tr>
<tr>
<td>RMC Halt</td>
<td>Asserted = System has been halted by RMC. Deasserted = Halt has been released by RMC.</td>
</tr>
</tbody>
</table>

Continued on next page.
Table 3-2  Status Command Fields (Continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>RMC Power Control</strong></td>
<td>On = System has powered on from RMC.</td>
</tr>
<tr>
<td></td>
<td>Off = System has powered off from RMC.</td>
</tr>
<tr>
<td><strong>Power Supply</strong></td>
<td>OK = Auxiliary 5V is working.</td>
</tr>
<tr>
<td><strong>System Fans</strong></td>
<td>OK = PCI and system fan are operating.</td>
</tr>
<tr>
<td></td>
<td>FAIL = PCI or system fan failure has been detected.</td>
</tr>
<tr>
<td><strong>CPU Fan</strong></td>
<td>OK = Fan on CPU chip is operating.</td>
</tr>
<tr>
<td></td>
<td>FAIL = CPU fan failure has been detected.</td>
</tr>
<tr>
<td><strong>Temperature</strong></td>
<td>Reports current temperature and system limits.</td>
</tr>
<tr>
<td><strong>Escape Sequence</strong></td>
<td>Current escape sequence for access to RMC console.</td>
</tr>
<tr>
<td><strong>Remote Access</strong></td>
<td>Enable = Modem for remote access is enabled.</td>
</tr>
<tr>
<td></td>
<td>Disable = Modem for remote access is disabled.</td>
</tr>
<tr>
<td><strong>RMC Password</strong></td>
<td>Set = Password set for modem access.</td>
</tr>
<tr>
<td></td>
<td>Not set = No password set for modem access.</td>
</tr>
<tr>
<td><strong>Alert Enable</strong></td>
<td>Enabled = Dial-out enabled for sending alerts.</td>
</tr>
<tr>
<td></td>
<td>Disabled = Dial-out is disabled for sending alerts.</td>
</tr>
<tr>
<td><strong>Alert Pending</strong></td>
<td>Yes = Alert has been triggered.</td>
</tr>
<tr>
<td></td>
<td>No = No alert has been triggered.</td>
</tr>
<tr>
<td><strong>Init String</strong></td>
<td>Initialization string that was set for modem access.</td>
</tr>
<tr>
<td><strong>Dial String</strong></td>
<td>Phone number dialed when an alert occurs.</td>
</tr>
<tr>
<td><strong>Alert String</strong></td>
<td>Identifies the system that triggered the alert to the paging service.</td>
</tr>
<tr>
<td></td>
<td>Usually the phone number of the monitored system.</td>
</tr>
<tr>
<td><strong>Com1_mode</strong></td>
<td>Can be set to snoop, soft-bypass, or firm-bypass.</td>
</tr>
<tr>
<td></td>
<td>See Section 3.3.</td>
</tr>
<tr>
<td><strong>Last Alert</strong></td>
<td>Type of alert (for example, power supply failed).</td>
</tr>
<tr>
<td><strong>Watchdog timer</strong></td>
<td>Reports time set by user using set wdt command; can be up to 60 seconds in</td>
</tr>
<tr>
<td></td>
<td>increments of 10. When it times out, alert is sent.</td>
</tr>
<tr>
<td><strong>Autoreboot</strong></td>
<td>ON = Autoreboot feature enabled.</td>
</tr>
<tr>
<td></td>
<td>OFF = Autoreboot feature disabled.</td>
</tr>
<tr>
<td><strong>Logout Timer</strong></td>
<td>The amount of time before the RMC terminates an inactive modem connection.</td>
</tr>
<tr>
<td></td>
<td>The default is 20 minutes.</td>
</tr>
<tr>
<td><strong>User String</strong></td>
<td>Notes supplied by user.</td>
</tr>
</tbody>
</table>
3.7 Remote Power (On/Off)

You can power a monitored system on or off from the RMC using console monitor commands.

Figure 3–6 Power Button – DS10
Remote Power-On

The RMC power (on, off) commands can be issued remotely to power the system on or off. They have the same function as the Power button on the control panel. The Power button, however, has precedence.

- If the system has been powered off with the Power button, the RMC cannot power the system on.
- If the system has been powered on with the Power button, and the power off command is used to turn the system off, you can toggle the Power button off, then on, to power the system back on.

When you issue the power on command, the terminal exits the RMC and reconnects to the system’s COM1 port.

```
RMC> power on
Returning to COM port
RMC> power off
```
3.8 Remote Halt (In/Out)

You can issue a halt to a monitored system from the RMC using console monitor commands. Under OpenVMS and Tru64 UNIX, the system will halt.

The RMC halt in command can be issued remotely to halt the system. The RMC halt out command can be issued to deassert the halt.

These commands have the same function as the Halt button (see Figure 3–8 or Figure 3–9) on the control panel for OpenVMS and Tru64 UNIX.

Figure 3–8 Halt/Reset Button - DS10

PK1043c
The Halt/Reset button suspends the operating system and returns control to the SRM or RMC console under either the OpenVMS or Tru64 UNIX operating systems.

The Halt button, however, does not override the halt (in, out) commands. If you halt the system with halt in, you must use halt out to deassert the halt state.

When you issue either the halt in or halt out command under OpenVMS or Tru64 UNIX, the terminal exits the RMC and reconnects to the system's COM1 port.

```
RMC> halt in
Returning to COM port

RMC> halt out
Returning to COM port
```
3.9 Configuring Remote Dial-In

Before you can dial in through the RMC modem port or enable the system to call out in response to system alerts, you must configure the RMC for remote dial-in.

Connect your serial terminal to the COM1 port and turn it on. Set up the RMC parameters. Then disconnect the serial terminal, connect the modem, and check your configuration.

Example 3-1 Dial-In Configuration

RMC> set password  \[1\]
RMC Password: ****  \[2\]
Verification: ****
RMC> set init  \[3\]
Init String: AT&F0E0V0X0S0=2
RMC> enable remote  \[4\]
Modem will be enabled when it is connected
RMC> status  \[5\]
Remote Access: Enabled
NOTE: The following modems require the initialization strings shown here. For other modems, see your modem documentation.

<table>
<thead>
<tr>
<th>Modem</th>
<th>Initialization String</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motorola 3400 Lifestyle 28.8</td>
<td>AT&amp;F0E0V0X0S0=2</td>
</tr>
<tr>
<td>AT &amp;T Dataport 14.4/FAX</td>
<td>AT&amp;F0E0V0X0S0=2</td>
</tr>
<tr>
<td>Hayes Smartmodem Optima 288 V-34/V.FC + FAX</td>
<td>AT&amp;FE0V0X0S0=2</td>
</tr>
</tbody>
</table>

1. Sets the password that is prompted for at the beginning of a modem session. The string cannot exceed 14 characters and is not case sensitive. For security, the password is not echoed on the screen. When prompted for verification, type the password again.

2. Sets the initialization string. The string is limited to 31 characters and can be modified depending on the type of modem used. Because the modem commands disallow mixed cases, the RMC automatically converts all alphabetic characters entered in the init string to uppercase.

   The RMC automatically configures the modem’s flow control according to the setting of the SRM `com1_flow` environment variable. The RMC also enables the modem carrier detect feature to monitor the modem connectivity.

3. Enables remote access to the RMC modem port by configuring the modem with the setting stored in the initialization string.

4. Because you have the serial terminal connected and not the modem, the system responds that the modem will be enabled when it is connected.

5. Verify the settings and check that the Remote Access field is set to Enabled, ready for the modem to be connected.

6. Disconnect the serial terminal, connect the modem and check that the modem’s TR light is lit. See Section 3.11 for dialing-in instructions.
3.10 Configuring Dial-Out Alert

When you are not monitoring the system through a modem connection, you can use the RMC dial-out alert feature to remain informed of system status. If dial-out alert is enabled, and the RMC detects alarm conditions within the managed system, it can call a preset pager number.

You must configure remote dial-in for the dial-out feature to be enabled. See Section 3.9. To set up the dial-out alert feature, enter the RMC from the local serial terminal.

Example 3-2 Dial-Out Alert Configuration

RMC> set dial
Dial String: ATXDT9,15085553333
RMC> set alert
Alert String: ,,,,,5085554444#;
RMC> enable alert
Modem will be enabled when it is connected
RMC> clear alert
RMC> send alert
Alert detected!

# Disconnect the serial terminal and connect the modem at COM1 port.
# You should receive an alert within 30 minutes of modem connection.
# Once the alert is received, reconnect the serial terminal and clear the test alert.
RMC> clear alert
RMC> status
Alert Enable: Enabled

A typical alert situation might be as follows:

- The RMC detects an alarm condition caused by excessive temperature.
- The RMC dials the operator’s pager and sends a message identifying the system.
- The operator dials the system from a remote serial terminal.
- The operator invokes the RMC, checks system status, and powers down the managed system.
• When the problem is resolved, the operator powers up and reboots the system.

• The dial-out alert feature is enabled as part of the dial-in setup. See Section 3.9.

The elements of the dial string and alert string are shown in Table 3–3. Paging services vary, so you need to become familiar with the options provided by the paging service you will be using. The RMC supports only numeric messages.

1. Sets the string to be used by the RMC to dial out when an alert condition occurs. The dial string must include the appropriate modem commands to dial the number. In this example, 1-508-555-3333 is the pager number.

2. Sets the alert string, typically the phone number of the modem connected to the remote system. The alert string is appended after the dial string, and the combined string is sent to the modem when an alert condition is detected. In this example, the system's modem number is 1-508-555-4444.

3. Enables the RMC to page a remote system operator. Because the modem is not connected at the COM1 port at this time, the RMC notifies you that the alert will be enabled at connection.

4. Clears any alert that may be pending. This ensures that the send alert command will generate an alert condition.

5. Forces an alert condition. This command is used to test the setup of the dial-out alert function. It must be issued from the local serial terminal.

The RMC tries to send the alert immediately. Because the modem is not connected at the COM1 port at this time, the RMC resets the paging interval to at most 30 minutes, and will send the alert again. If the pager does not receive the alert within 30 minutes, re-check your setup.

6. Clears the current alert so that the RMC can capture a new alert. The last alert is stored until a new event overwrites it. The Alert Pending field of the status command becomes NO after the alert is cleared.

7. Verifies the settings. Check that the Alert Enable field is set to Enabled.

---

NOTE: If you do not want dial-out paging enabled at this time, enter the disable alert command after you have tested the dial-out alert function. Alerts continue to be logged, but no paging occurs.
### Table 3–3  Elements of Dial String and Alert String

#### Dial String

The dial string is case sensitive. The RMC automatically converts all alphabetic characters to uppercase.

<table>
<thead>
<tr>
<th>ATXDT</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Attention.</td>
</tr>
<tr>
<td>X</td>
<td>Forces the modem to dial “blindly” (not seek the dial tone). Enter this character if the dial-out line modifies its dial tone when used for services such as voice mail.</td>
</tr>
<tr>
<td>D</td>
<td>Dial</td>
</tr>
<tr>
<td>T</td>
<td>Tone (for touch-tone)</td>
</tr>
<tr>
<td>9,</td>
<td>The number for an outside line (in this example, 9). Enter the number for an outside line if your system requires it.</td>
</tr>
<tr>
<td></td>
<td>, = Pause for 2 seconds.</td>
</tr>
<tr>
<td>15085553333</td>
<td>Phone number of the paging service.</td>
</tr>
</tbody>
</table>

#### Alert String

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Each comma (,) provides a 2-second delay. In this example, a delay of 12 seconds is set to allow the paging service to answer.</td>
</tr>
<tr>
<td>5085553332#</td>
<td>A call-back number for the paging service. The alert string must be terminated by the pound (#) character.</td>
</tr>
<tr>
<td>;</td>
<td>A semicolon (;) must be used to terminate the entire string.</td>
</tr>
</tbody>
</table>
3.11 Dialing In

To start a remote monitoring session, dial in, using the dial string you entered during the setup procedure. Enter the RMC modem password, and then type the escape sequence.

1. After completing the setup procedure, dial in, enter the RMC password at the Modem password: prompt. When a prompt is displayed, type the escape sequence. In the following example, the system is at the SRM console when the modem connection is made.

   ATDT15085554444
   RINGING
   RINGING
   CONNECT 9600/ARQ/V32/LAPM
   Modem password: *********
   Welcome to RMC V1.0
   >>> ^^[rmc (sequence is not echoed)
   RMC>

2. At the RMC> prompt, enter commands to monitor and control the remote system.

3. When you have finished your modem session, enter the **hangup** command to cleanly terminate the modem session and disconnect from the system.
3.12 Resetting the RMC to Factory Defaults

If the RMC escape sequence is set to something other than the default, and the sequence has been lost or forgotten, the RMC must be reset to factory settings to restore the default escape sequence. See Appendix A.

Figure 3–10  RMC Jumpers (Default Positions) – DS10

WARNING: To prevent injury, access is limited to persons who have appropriate technical training and experience. Such persons are expected to understand the hazards of working within this equipment and take measures to minimize danger to themselves or others.
Figure 3-11  RMC Jumpers (Default Positions) – DS10L
3.13 Troubleshooting Tips

Table 3-4 lists possible causes and suggested solutions for symptoms you might see.

<table>
<thead>
<tr>
<th>Table 3–4</th>
<th>RMC Troubleshooting</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Symptom</strong></td>
<td><strong>Possible Cause</strong></td>
</tr>
<tr>
<td>If you are not at the RMC prompt, a system reset or initialization disconnects the modem.</td>
<td>SRM clears modem connections on power-up.</td>
</tr>
<tr>
<td>RMC does not answer when the modem is called.</td>
<td>Modem cables may be incorrectly installed.</td>
</tr>
<tr>
<td>RMC remote access is disabled.</td>
<td>RMC does not have a valid password set.</td>
</tr>
<tr>
<td>On power-up, the RMC defers initializing the modem for 30 seconds to allow the modem to complete its internal diagnostics and initializations.</td>
<td>Modem may have had power cycled since last being initialized or modem is not set up correctly.</td>
</tr>
<tr>
<td></td>
<td>Enter enable remote command from the RMC.</td>
</tr>
<tr>
<td>Symptom</td>
<td>Possible Cause</td>
</tr>
<tr>
<td>------------------------------------------------------------------------</td>
<td>--------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>After the system is powered up, the COM1 port seems to hang and then</td>
<td>This delay is normal.</td>
</tr>
<tr>
<td>starts working after a few seconds.</td>
<td></td>
</tr>
<tr>
<td>New password and escape sequence are forgotten.</td>
<td></td>
</tr>
<tr>
<td>The remote user sees a “+++” string on the screen.</td>
<td>The modem is confirming whether the modem has really lost carrier.</td>
</tr>
<tr>
<td>The message “unknown command” is displayed when the user enters a</td>
<td></td>
</tr>
<tr>
<td>carriage return by itself.</td>
<td>The terminal or terminal emulator is including a line feed character with the</td>
</tr>
<tr>
<td>Cannot enable modem or modem will not answer.</td>
<td>carriage return.</td>
</tr>
<tr>
<td>The modem is not configured correctly to work with the RMC.</td>
<td></td>
</tr>
</tbody>
</table>
3.14 RMC Commands

The remote management console supports setup commands and commands for remotely managing the system.

clear {alert, port}
disable (alert, reboot, remote)
enable (alert, reboot, remote)
halt {in, out}
hangup
help or ?
power {on, off}
quit
reset
send alert
set {alert, com1_mode, dial, escape, init, logout, password, user, wdt}
status
Command Conventions

Observe the following conventions for entering RMC commands:

- Enter enough characters to distinguish the command.

  **NOTE:** The reset and quit commands are exceptions. You must enter the entire word for these commands to work.

- For commands consisting of two words, enter the entire first word and at least one letter of the second word. For example, you can enter disable a for disable alert.

- For commands that have parameters, you are prompted for the parameter.

- Use the Backspace key to erase input.

- If you enter a nonexistent command or a command that does not follow conventions, the following message is displayed:

  *** ERROR - unknown command ***

- If you enter a string that exceeds 14 characters, the following message is displayed:

  *** ERROR - overflow ***
3.14.1  clear alert

The clear alert command clears the current alert condition and causes the RMC to stop paging the system operator at the remote location.

If the alert is not cleared, the RMC continues to page the remote operator every 30 minutes if both remote access and alerts are enabled.

The clear alert command clears the current alert so that the RMC can capture a new alert. The last alert is stored until a new event overwrites it. The Alert Pending field of the status command becomes NO after the alert is cleared.

Syntax:  clear alert

3.14.2  clear port

The clear port command uses the console port modem control signals to clear any “stuck” conditions on the system’s COM1 port.

The clear port command attempts to free the port by resetting all UARTs controlled by the RMC if the port is currently locked by an application program, without resetting the entire system.

Syntax:  clear port

NOTE:  This command also causes the modem to disconnect.
3.14.3 disable alert

The disable alert command disables the RMC from paging a remote system operator.

Monitoring continues and alerts are still logged in the Last Alert field of the status command, but alerts are not sent to the remote operator.

Syntax: disable alert

3.14.4 disable remote

The disable remote command disables remote access to the RMC modem port and disables automatic dial-out alerts.

Syntax: disable remote
3.14.5 enable alert

The enable alert command enables the RMC to page a remote system operator.

Before you can enter the enable alert command, you must configure remote dial-in and call-out, set an RMC password (set password command), and enable remote access (enable remote command) to the RMC modem port.

Syntax: enable alert

Example:

RMC> set dial
Dial String: atxdt9,15085553333
RMC> set alert
Alert String: ,,,,,,5085554444#;
RMC> enable alert
   Modem will be enabled when it is connected

The system notifies you that when you connect the modem (after disconnecting the serial terminal at the COM1 port), the alert will be enabled. Before you connect the modem, you can issue the status command to see if the Alert Enable field is set to Enabled.

If the enable alert command fails, the following error message is displayed:

*** ERROR - enable failed ***
### 3.14.6 enable remote

The enable remote command enables remote access to the RMC modem port by configuring the modem with the setting stored in the initialization string.

This command also allows the RMC to automatically dial the phone number set with the `set dial` command upon detection of alert conditions.

Before you can enter the enable remote command, you must configure remote dial-in by setting an RMC password (`set password` command) and initialization string. The enable remote command remains in effect until you enter the `disable remote` command.

**Syntax:** enable remote

**Example:**

```
RMC> set password
RMC Password: ****
Verification: ****
RMC> set init
Init String: AT&F0E0V0X0S0=2
RMC> enable remote
 Modem will be enabled when it is connected
```

The system notifies you that when you connect the modem (after disconnecting the serial terminal at the COM1 port), remote access will be enabled. Before you connect the modem, you can issue the `status` command to see if the Remote Access field is set to Enabled.

If the enable remote command fails, the following error message is displayed:

```
*** ERROR - enable failed ***
```
3.14.7 halt (in/out)

You can issue a halt to a monitored system from RMC using console monitor commands. The effect of this command depends on the setting of the HALT/RESET jumper on the motherboard. See Section 3.8 for a full discussion of this feature.

The halt in command is equivalent to pressing the Halt button on the control panel. The effect depends on which operating system you are running, and how the Halt/Reset switch is set. The default settings are:

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenVMS and Tru64 UNIX</td>
<td>Suspends the operating system and returns control to the SRM or RMC console.</td>
</tr>
</tbody>
</table>

The operator at the control panel can override the halt in command by pressing the Power button.

Syntax:    

halt in
halt out

Example:

RMC> halt in
Returning to COM port

You cannot use halt out to release a halt if the Halt button on the control panel is latched in. If you issue the command, the following message is displayed:

RMC> halt out
Halt button is IN
3.14.8  hangup

The hangup command terminates the modem session.

If you do not issue the hangup command, the session is disconnected automatically after a period of idle time set by the set logout command. The default is 20 minutes

Syntax:    hangup

3.14.9  help or ?

The help or ? command displays the RMC command set.

Syntax:    help or ?

Example:

RMC> help
clear {alert, port}
disable {alert, reboot, remote}
enable {alert, reboot, remote}
halt {in, out}
hangup
help or ?
power {off, on}
quit
reset
send alert
set {alert, com1_mode, dial, escape, init, logout,
password, user, wdt}
status
3.14.10  power off

The power off command is equivalent to turning off the system power from the control panel.

If the system is already powered off, this command has no effect. You can override the power off command either by issuing a power on command or by toggling the Power button on the control panel.

Syntax:  power off

3.14.11  power on

The power on command is equivalent to turning on the system power from the control panel.

If the system is already powered on, this command has no effect. After the power on command is issued, the user’s terminal exits the RMC and reconnects to the system’s COM1 port.

Syntax:  power on

Example:

RMC> power on
Returning to COM port

The power on command does not turn on the system if the Power button on the control panel is in the OFF position. Check the Power button if you issue the power on command and receive the following message:

RMC> power on
Failed to power on.
3.14.12 quit

The quit command exits RMC from a serial terminal and returns the user's terminal to the system's COM1 port.

You must enter the entire word for the command to take effect.

Syntax: quit
Example: RMC> quit
Returning to COM port
3.14.13 reset

The reset command is equivalent to pushing the Reset button on the control panel.

The reset command restarts the system. The terminal exits RMC and reconnects to the server’s COM1 port. You must enter the entire word for the command to take effect.

Syntax: reset
Example:

    RMC> reset
    Returning to COM port

3.14.14 send alert

The send alert command forces an alert condition.

This command is used to test the setup of the alert dial-out function, sending an alert condition to the pager or the phone.

However, since your serial terminal is connected while you are entering the command, initially the alert will not be able to be sent. When the RMC cannot page the operator, it may be that the modem or terminal is in use. The RMC waits approximately 30 minutes, and then resends the alert. This allows you to connect the modem, and wait for the alert string.

If the pager does not receive the alert after a half an hour, re-check your setup.

Syntax: send alert
Example:

    RMC> send alert
    Alert detected!
3.14.15  set alert

The set alert command sets the alert string that is transmitted through the modem when an alert condition is detected.

Set the alert string to the phone number of the modem connected to the remote system. The alert string is appended after the dial string, and the combined string is sent to the modem.

The alert string cannot exceed 63 characters, and consists of the following elements:

```
,,....... Each comma (,) provides a 2-second delay. In this example, a delay of 12 seconds is set to allow the paging service to answer.
5085554444# A call-back number for the paging service. The alert string must be terminated by the pound (#) character.
; A semicolon (;) must be used to terminate the entire string.
```

The example shown below is generic. Because paging services vary, be sure to listen to the options provided by the paging service to determine the appropriate delay and the menu options.

Syntax:  set alert
Example:

```
RMC> set alert
alert>,,,,,,,,5085551212#;
```
3.14.16  set com1_mode

The set com1_mode command specifies the COM1 data flow paths, so that data either passes through the RMC or bypasses it. See Section 3.3 for descriptions of the RMC modes.

Syntax:  

\texttt{set com1\_mode value}

where value can be:

\begin{description}
  \item[snoop]  
  Data partially bypasses the RMC, but the RMC taps into the data lines and listens passively for the RMC escape sequence.
  
  \item[soft\_bypass]  
  Data bypasses RMC, but the RMC switches automatically into snoop mode if an alert condition or loss of carrier occurs.
  
  \item[Firm\_bypass]  
  Data bypasses the RMC. The RMC is effectively disabled.
\end{description}

Example:

\begin{verbatim}
>>> set com1_mode
COM1\_MODE (SNOOP, SOFT\_BYPASS, FIRM\_BYPASS)
\end{verbatim}
3.14.17 set dial

The set dial command sets the dial string to be used by the RMC to dial out when an alert condition occurs.

The dial string must be in the correct format for the attached modem. If a paging service is to be contacted, the dial string must include the appropriate modem commands to dial the number, wait for the line to connect, and send the appropriate touch tones to leave a pager message. The dial string is limited to 31 characters.

Because the modem commands do not allow mixed cases, the RMC converts all alphabetic characters in the dial string to uppercase.

Syntax: set dial

Example:

```
RMC> set dial
Dial String: ATXDT15085553333
```

where:

- **ATXDT**
  - AT = Attention.
  - X = Forces the modem to dial “blindly” (not seek the dial tone). Enter this character if the dial-out line modifies its dial tone when used for services such as voice mail.
  - D = Dial
  - T = Tone (for touch-tone)

- **9, ,**
  - The number for an outside line (in this example, 9). Enter the number for an outside line if your system requires it.

- **15085553333**
  - Phone number of the paging service. (In this example it is 1–area code 508 – exchange 555 – number 3333.)
3.14.18  set escape

The set escape command changes the escape sequence used for invoking the RMC.

The escape sequence can be any character string, not to exceed 14 characters. A typical sequence consists of two or more control characters. It is recommended that control characters be used in preference to ASCII characters. Use the status command to verify the escape sequence.

Be sure to record the new escape sequence. If you forget the escape sequence, you must reset the RMC to the factory defaults. See Section 3.12 for information on setting the RMC to the factory defaults.

The following example consists of two instances of the Esc key and the letters “FUN.” The “F” is not displayed when you set the sequence because it is preceded by the escape character. Enter the status command to see the new escape sequence.

Syntax: set escape
Example:

RMC> set escape
Escape Sequence: un
RMC> status
.
.
.
Escape Sequence: ^[^FUN

3.14.19 set init

The set init command sets the modem initialization string.

The initialization string is limited to 31 characters and can be modified depending on the type of modem used.

Syntax: set init

Example:

```
RMC> set init
Init String: at&f0e0v0x0s0=2
RMC>
```

Because the modem commands do not allow mixed cases, the RMC converts all alphabetic characters entered in the init string to uppercase.

The RMC configures the modem’s flow control according to the setting of the SRM `com1_flow` environment variable. The RMC also enables the modem carrier detect feature to monitor the modem connectivity.
3.14.20  set logout

The set logout command sets the amount of time before the RMC terminates an inactive modem connection. The default is 20 minutes.

The settings are in tens of minutes, 0–9. The zero (0) setting disables logout. With logout disabled, the RMC never disconnects the idle modem session.

The following example sets the logout timer to 50 minutes.

Syntax:  

Example:

RMC> set logout
Logout Time (0-9 tens of minutes): 5

3.14.21  set password

The set password command allows you to set or change the password that is prompted for at the beginning of a modem session.

A password must be set to enable access through a modem. The string cannot exceed 14 characters. For security, the password is not echoed on the screen. When prompted for verification, type the password again. If you mistype, reenter the set password command.

Syntax:

Example:

RMC> set pass
RMC Password: ****
Verification: ****
***ERROR - Verification failed, password is not set***
RMC> set pass
RMC Password: ****
Verification: ****

3.14.22  set user

The set user command allows you to set a user string to be displayed in the status command.
You may want to make notes regarding the system. The string is limited to 63 characters and is displayed in the User String field when you enter the \texttt{status} command. In this example, the operator leaves a reminder that the power supply needs to be replaced.

**Syntax:** \texttt{set user}  
**Example:**  

```
RMC> set user
User String: need to replace P/S
```

3.14.23 \texttt{set wdt}  

\textbf{The watchdog timer is a value up to 60 seconds, in increments of 10, set by the user, that can be used by software. This feature is not currently used in any applications or operating systems.}\n
**Syntax:** \texttt{set wdt}  
**Example:**  

```
RMC> set wdt
```

3.14.24 \texttt{status}  

\textbf{The status command displays the system status and the current RMC settings.}\n
Table 3–2 describes each field of the \texttt{status} command output.

**Syntax:** \texttt{status}  
**Example:**  

See Section 3.6 for an example of the status command output.
Appendix A
Setting Jumpers

This appendix gives information on the correct settings of the jumpers on the DS10/DS10L motherboard.

Sections include:

- Warnings and Cautions
- Remove Power from the System
- Open the System
- Remove the Floppy Disk Enclosure (DS10 only)
- Set Jumpers
- Restore Power

NOTE: In many ways the DS10 and DS10L systems are identical. This manual uses DS10 systems for most illustrations and examples. Where significant differences exist, an illustration or example of a DS10L is presented separately.
A.1 Warnings and Cautions

Read the following Warning and Cautions before working on DS10/DS10L systems.

**WARNING**: To prevent injury, access is limited to persons who have appropriate technical training and experience. Such persons are expected to understand the hazards of working within this equipment and take measures to minimize danger to themselves or others.

**CAUTION**: To reduce the risk of electrical shock or damage to the equipment, do not disable the power cord grounding plug. The grounding plug is an important safety feature. Plug the power cord into a grounded (earthed) electrical outlet that is easily accessible at all times. Disconnect power by unplugging the power cord from the electrical outlet or the system.

The CPU module, RMC PIC processor, and memory modules have parts that operate at high temperatures. Wait 2 minutes after power is removed before touching any module.

Always wear a grounded wrist strap when servicing internal components of the system.

**ACHTUNG**: Um Verletzungen zu vermeiden, ist der Zugriff nur Personen gestattet, die eine entsprechende technische Schulung vorweisen können und über die notwendige Erfahrung verfügen. Des weiteren sollten die Gefahren, denen diese Personen bei der Arbeit mit dem Gerät ausgesetzt sein könnten, bekannt sein, und die folgenden notwendigen Schritte eingeübt werden, um das Gefahrenrisiko für sowohl diese als auch andere Personen zu minimieren:
1. Entfernen Sie leitfähigen Schmuck.
3. Tragen Sie bei der Berührung von internen Komponenten ein Antistatikarmband.
A.2 Remove Power from the System

Be sure to remove the AC power cord from either the wall outlet or the system cabinet. Power remains active in the RMC PIC processor when the system is powered off using only the control panel power switch. Also the CPU and memory modules have parts that operate at high temperatures. Wait 2 minutes after power is removed before touching any module.

Figure A–1 Removing Power - DS10 System
1. Turn off the system and all external peripheral devices.
2. Unplug the system from the wall outlet.
3. Wait at least 15 seconds, to allow time for the power supply capacitors to fully discharge.
4. Wait 2 minutes after power is removed before touching any module.
A.3 Open the System

Remove the cover to gain access to the system.

Figure A–3 Opening the DS10 System Cabinet

1. Unlock the top cover ❶.
2. Loosen the captive screw at the top of the bulkhead ❷.
3. Push down on the lever to the right of the screw ③ and pull it out, perpendicular to the system.

4. Slide the cover toward the back of the system ❹. Lift it off.

---

**NOTE:** If your DS10 or DS10L system is rack mounted, refer to the appropriate rack mounting documentation (*EK-DS10S-RM* for the DS10 or *EK-DS10L-RM* for the DS10L), and reverse the rack mounting procedures to gain access to the system cabinet.
Figure A–4 Opening the DS10L System Cabinet
1. Remove power from the system.
2. Unscrew the two captive screws ❶ on the top of the cover.
3. Unscrew the six quarter-turn screws ❷ on the top of the cover.
4. Raise the cover up and secure it in the 60° or 90° position using a notch on the cover hold-open bracket ❸ located on the right hand side.

**NOTE:** The 60° position on the DS10L cover hold-open bracket allows access to the cabinet interior with the rear cables attached. The 90° position requires removal of all cables attached to the rear of the system.
A.4 Remove the Floppy Disk Enclosure (DS10 Only)

To access the jumpers, remove the floppy disk drive enclosure for DS10 systems, and the hard disk(s) and/or floppy/CD-ROM drive for DS10L systems.

Figure A–5 Removing the DS10 Floppy Disk

1. Hold on to the cylinder pins, which secure the floppy disk enclosure. Pull the pins toward the center 1.
2. Pull the floppy drive unit back and up 2.
3. Place the unit on top of the CD-ROM drive. You do not need to remove the cables. Cable lengths have been designed to move the unit out of the way without disconnecting.
A.5 Set Jumpers

There are three jumpers on the motherboard, which you can access. The switches are set according to the CPU in your system. Do not change the Timer Disable jumper or any of the switches.

Figure A–6 Setting Jumpers on the Motherboard

(DS10 shown; DS10L switches are in the same location.)

NOTE: This figure shows the switches set properly for an EV6 CPU running at 466 MHz as an example. Factory default switch settings for available CPUs are shown in Table A-1.
CAUTION: Altering these switches from the specified settings may cause damage to your system and void your warranty.

Table A–1 Factory Default Switch Settings

<table>
<thead>
<tr>
<th>CPU/MHz</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>EV6 466</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>SW2</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>SW3</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EV67 600</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW1</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>SW2</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>SW3</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
</tbody>
</table>

- Do not change the setting of the Timer jumper or any of the switches unless they do not correspond to the settings shown in Figure A–6, or Table A–2.
- The Halt/Reset Select jumper affects the operation of the control panel Halt button. This jumper should be set to Halt for all operating systems available on the DS10 and DS10L systems.
- The RMC jumper enables or disables the remote management console.

Table A–2 Jumper and Factory Default Positions

<table>
<thead>
<tr>
<th>Default position</th>
<th>Jumper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halt/Reset Select</td>
<td>Set for Halt</td>
</tr>
<tr>
<td>RMC</td>
<td>To Enable RMC</td>
</tr>
<tr>
<td></td>
<td>To Disable RMC</td>
</tr>
<tr>
<td>Timer</td>
<td>Set for Enable Timer</td>
</tr>
</tbody>
</table>

To change the jumper on the RMC jumper, wearing an anti-static strap, move the pin to the position described in Table A-2.
A.6  Restore Power

Close up the system and restore power.

1. Replace the drive(s) you removed to access the motherboard. Check that the cables are clear and not pinched.
2. Replace the system cover and secure it.
3. Plug the AC power cord back into the system or outlet, whichever you disconnected.
4. Push the On button on the control panel and power up.
Appendix B
Regulatory Compliance Notices

This appendix contains regulatory compliance notices for this computer system.

B.1 Class A and Class B Ratings

Part 15 of the Federal Communications Commission (FCC) Rules and Regulations has established Radio Frequency (RF) emission limits to provide an interference-free radio frequency spectrum. Many electronic devices, including computers, generate RF energy incidental to their intended function and are, therefore, covered by these rules. These rules place computers and related peripheral devices into two classes, A and B, depending upon their intended installation. Class A devices are those that may reasonably be expected to be installed in a business or commercial environment. Class B devices are those that may reasonably be expected to be installed in a residential environment. The FCC requires devices in both classes to bear a label indicating the interference potential of the device as well as additional operating instructions for the user.

The rating label on the device shows which class (A or B) the equipment falls into. Class B devices have a FCC logo or FCC ID on the label. Class A devices do not have a FCC logo or ID on the label. Once the class of the device is determined, refer to the corresponding statements in the sections that follow.
B.1.1 Class A Device Notices

FCC Notice
This equipment generates, uses, and may emit radio frequency energy. The equipment has been type tested and found to comply with the limits for a Class A digital device pursuant to Part 15 of FCC rules, which are designed to provide reasonable protection against such radio frequency interference.

Operation of this equipment in a residential area may cause interference in which case the user at his own expense will be required to take whatever measures may be required to correct the interference.

Any modifications to this device unless expressly approved by the manufacturer can void the user's authority to operate this equipment under part 15 of the FCC rules.

Modifications
The FCC requires the user to be notified that any changes or modifications made to this device that are not expressly approved by Compaq Computer Corporation may void the user's authority to operate the equipment.

Cables
Connections to this device must be made with shielded cables with metallic RFI/EMI connector hoods in order to maintain compliance with FCC Rules and Regulations.
Taiwan Notice

警告使用者:
這是甲類的資訊產品，在居住的環境中使用時，可能會造成射頻干擾，在這種情況下，使用者會被要求採取某些適當的對策。

Japanese Notice

に基づくクラスA情報技術装置です。この装置を家庭環境で使用すると電波妨害を引き起こすことがあります。この場合には使用者が適切な対策を講ずるよう要求されることがあります。
**Canadian Notice**

This Class A digital apparatus meets all requirements of the Canadian Interference-Causing Equipment Regulations.

**Avis Canadien**

Cet appareil numérique de la classe A respecte toutes les exigences du Règlement sur le matériel brouilleur du Canada.

**European Union Notice**

Products with the CE Marking comply with both the EMC Directive (89/336/EEC) and the Low Voltage Directive (73/23/EEC) issued by the Commission of the European Community.

Compliance with these directives implies conformity to the following European Norms (in brackets are the equivalent international standards):

- EN55022 (CISPR 22) - Electromagnetic Interference
- EN50082-1 (IEC801-2, IEC801-3, IEC801-4) - Electromagnetic Immunity
- EN60950 (IEC950) - Product Safety

**Warning!**

This is a Class A product. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

**Achtung!**

Dieses ist ein Gerät der Funkstörgrenzwertklasse A. In Wohnbereichen können bei Betrieb dieses Gerätes Rundfunkstörungen auftreten, in welchen Fällen der Benutzer für entsprechende Gegenmaßnahmen verantwortlich ist.

**Attention!**

Ceci est un produit de Classe A. Dans un environnement domestique, ce produit risque de créer des interférences radioélectriques, il appartiendra alors à l'utilisateur de prendre les mesures spécifiques appropriées.
B.1.2  Class B Device Notices

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. Any modifications to this device - unless expressly approved by the manufacturer - can void the user’s authority to operate this equipment under part 15 of the FCC rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference and (2) This device must accept any interference that may cause undesirable operation.

This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

• Reorient or relocate the receiving antenna.
• Increase the separation between the equipment and receiver.
• Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
• Consult the dealer or an experienced radio/TV technician for help.

Modifications

The FCC requires the user to be notified that any changes or modifications made to this device that are not expressly approved by Compaq Computer Corporation may void the user’s authority to operate the device.

Cables

Connections to this device must be made with shielded cables with metallic EMI/RFI connector hoods to maintain compliance with FCC rules and regulations.
Declarati on of Conformit y for Products Marked with the FCC Lo go  
(United States only) 
The device complies with Part 15 of the FCC rules. Operation is subject to the following two conditions:

- The device may not cause harmful interference, and
- The device must accept any interference received, including interference that may cause undesired operation.

For questions regarding this FCC declaration contact:
Compaq Computer Corporation
PO Box 661
Marlboro, Massachusetts 01752

To identify the device, refer to the part, series or model number found on the product.

Japanese Notice

この装置は、情報処理装置等電波障害自主規制協議会（V C C I）の基準に基づくクラスB情報技術装置です。この装置は、家庭環境で使用することを目的としていますが、この装置がラジオやテレビジョン受信機に近接して使用されると、受信障害を引き起こすことがあります。

取扱説明書に従って正しい取り扱いをして下さい。
**Canadian Notice**
This Class B digital apparatus meets all requirements of the Canadian Interference-Causing Equipment Regulations.

**Avis Canadien**
Cet appareil numérique de la classe B respecte toutes les exigences du Règlement sur le matériel brouilleur du Canada.

**European Union Notice**
Products with the CE Marking comply with the EMC Directive (89/336/EEC) and the Low Voltage Directive (73/23/EEC) issued by the Commission of European Community.
A

AlphaBIOS
  boot screen, 2-54
  configuration, 2-57
  run maintenance program, 2-58
  setup screen, 2-56
  utilities, 2-57
alphabios command, SRM, 2-3
AlphaBIOS console, 1-6, 2-54
  switching from SRM, 2-53
auto_action environment variable, SRM, 1-6, 1-7, 2-40, 2-42
Auxiliary power supply, RMC, 3-1

B

Baud rate, setting for COM* ports, 2-45
boot command, SRM, 1-9, 1-10, 1-12, 1-14, 1-15, 1-16, 1-20, 1-22, 2-3, 2-19
  passing information to command, 2-43
  using in secure mode, 2-26
boot_file environment variable, SRM, 1-10, 1-12, 1-16, 1-18, 1-20, 2-26
boot_flags environment variable, SRM, 2-26
boot_osflags environment variable, SRM, 1-10, 1-12, 1-16, 1-18, 1-20, 2-40, 2-43
  OpenVMS, 2-43, 2-44
  Tru64 UNIX, 2-43
boot_reset environment variable, SRM, 1-16
bootdef_dev environment variable, SRM, 1-10, 1-12, 1-16, 1-18, 1-20, 2-26, 2-40
Booting
  OpenVMS, 1-15
  from cluster disk, 1-17
  from local disk, 1-15
  from remote disk, 1-19
  passing information to command, 2-43
  Tru64 UNIX, 1-9
    from local disk, 1-9
    from remote disk, 1-11

C

Cautions, A-2
Class A Device Notice, B-2
Class B Device Notice, B-5
Class Ratings
  FCC, B-1
clear alert command (RMC), 3-28
clear envar command, SRM, 2-3
clear password command, SRM, 2-3, 2-27
clear port command (RMC), 3-28
COM* ports, setting baud rate, 2-45
com*_baud environment variable, SRM, 2-40, 2-45
COM1 environment variables, 3-9
Command conventions, RMC, 3-27
Command syntax, SRM console, 2-5
Configuration
  AlphaBIOS utilities, 2-57
  Configuration utility
    running, 2-57
Console
  AlphaBIOS, 1-6
    SRM, 1-6, 1-7
    switching from SRM to AlphaBIOS, 2-53
Console commands, SRM, 2-3
Console environment variable, SRM, 2-32, 2-33, 2-40, 2-46
Console terminal
   specifying type, 2-46
continue command, SRM, 2-3
   using in secure mode, 2-26
cpu_enabled environment variable,
   SRM, 2-40
crash command, SRM, 2-3, 2-31
Crash dump, 2-31

D
Default Settings
   jumpers, A-11
   switches, A-11
deposit command, SRM, 2-3, 2-35
Depositing data, 2-35
Device naming conventions, SRM, 2-11
Dial-in configuration, 3-16
Dialing in, 3-21
Dial-out alerts, 3-18
disable alert command (RMC), 3-29
disable remote command (RMC), 3-29
display command, LFU, 1-33
Displaying system configuration, 2-8
Displaying the value or setting of an
   environment variable, 2-33
DS10
   opening cabinet, A-5
   power, removing, A-3
   removing floppy disk, A-9
   restoring power, A-12
DS10L
   opening cabinet, A-7
   power, removing, A-4
   restoring power, A-12

E
edit command, SRM, 2-3, 2-34
enable alert command (RMC), 3-30
enable remote command (RMC), 3-31
Environment variables, SRM, 2-32
   auto_action, 1-6, 1-7
   boot_file, 1-10, 1-12, 1-16, 1-18, 1-20,
   2-26
   boot_flags, 2-26
   boot_osflags, 1-10, 1-12, 1-16, 1-18, 1-20
   boot_reset, 1-16
   bootdef_dev, 1-10, 1-12, 1-16, 1-18, 1-20, 2-26
   displaying the value or setting, 2-33
   modifying, 2-32
   os_type, 1-6, 1-7
   password, 2-27
   setting, 2-32
   summary, 2-40
Escape sequence (RMC), 3-8
Ethernet, specifying controller type, 2-47
ew*0_mode environment variable,
   SRM, 2-40, 2-47
ew*0_protocols environment variable,
   SRM, 2-40, 2-47
examine command, SRM, 2-3, 2-36
Examining data, 2-36
exit command, LFU, 1-26, 1-32, 1-33

F
Factory Default Settings
   jumpers, A-11
   switches, A-11
FCC
   class ratings, B-1
FCC Class A Device Notice, B-2
FCC Class B Device Notice, B-5
Finding help
   SRM console, 2-39
Firmware
   updating, 1-25
   updating from floppy disk, 1-27, 1-28
   updating from network device, 1-30
   updating from SRM, 2-29
   updating, SRM command, 1-24

G
Graphics monitor, specifying as console
terminal, SRM, 2-46

H
halt command, SRM, 2-3, 2-29
halt in command (RMC), 3-32
Halt, remote, 3-15
hangup command (RMC), 3-17, 3-21, 3-33
help command, LFU, 1-33, 1-34
help command, SRM, 2-3, 2-39
help or ? commands (RMC), 3-33

I
initialize command, SRM, 2-3, 2-17, 2-38
Initializing the system, 2-38
Installing
  OpenVMS, 1-21
  Tru64 UNIX, 1-13
IOD, 1-6, 1-7

J
Jumpers
  default settings, A-11
  setting, A-10

K
kdb_hardware_type environment variable, SRM, 2-32, 2-33, 2-40, 2-48
Keyboard
  specifying hardware type, SRM, 2-48
  specifying layout, SRM, 2-48

L
language environment variable, SRM, 2-32, 2-33, 2-40, 2-48
LFU
  starting, 1-24, 1-25
  typical update procedure, 1-25
  updating firmware from floppy disk, 1-27, 1-28
  updating firmware from network device, 1-30
lfu command, LFU, 1-33, 1-34
lfu command, SRM, 1-25, 2-3, 2-29
LFU commands
  display, 1-33
  exit, 1-26, 1-32, 1-33
help, 1-33, 1-34
lfu, 1-33, 1-34
list, 1-25, 1-31, 1-32, 1-33, 1-34
readme, 1-33, 1-34
summary, 1-33
update, 1-25, 1-33, 1-35
verify, 1-33, 1-35
list command, LFU, 1-25, 1-31, 1-33, 1-34
Loadable Firmware Update utility. See LFU
login command, SRM, 2-3, 2-27
  using in secure mode, 2-26

M
Modifying an environment variable, SRM, 2-32
more command, SRM, 2-4, 2-37
Motherboard
  setting jumpers, A-10

N
Naming conventions, SRM, 2-11
Network protocols, enabling for booting and other functions, SRM, 2-47

O
ocp_text environment variable, SRM, 2-32, 2-33, 2-41
Opening Cabinet
  DS10, A-5
  DS10L, A-7
OpenVMS
  booting, 1-15
    from cluster disk, 1-17
    from local disk, 1-15
    from remote disk, 1-19
  console for, 2-1
  installing, 1-21
  specifying as default operating system, 2-49
Operating system
  booting OpenVMS, 1-15
    from cluster disk, 1-17
    from local disk, 1-15
from remote disk, 1-19
booting Tru64 UNIX, 1-9
from local disk, 1-9
from remote disk, 1-11
installing OpenVMS, 1-21
installing Tru64 UNIX, 1-13
specifying default, 2-49
os_type environment variable, SRM, 1-6, 1-7, 2-33, 2-49

P
Pagers, 3-19
password environment variable, SRM, 2-27
PCI
  enabling and disabling parity checking on bus, SRM, 2-49, 2-50
PCI card cage
  slot numbers, 2-12
PCI options
  slot numbers, 2-12
pci_parity environment variable, SRM, 2-41, 2-49, 2-50
pk*0_fast environment variable, SRM, 2-41, 2-50
pk*0_host_id environment variable, SRM, 2-41, 2-51
pk*0_soft_term environment variable, SRM, 2-41, 2-51
Power
  DS10, A-3
  DS10L, A-4
  restoring, A-12
power off command (RMC), 3-34
power on command (RMC), 3-34
Power-on/off, from RMC, 3-12
Power-up, specifying console action, SRM, 2-42
prcache command, SRM, 2-4, 2-20

Q
quit command (RMC), 3-8, 3-35

R
Reading a file, 2-37
readme command, LFU, 1-33, 1-34
Regulatory Compliance Notices, B-1
Remote console monitor. See RMC
Remote dial-in, 3-21
Remote power-on/off, 3-12
Removing Floppy Disk
  DS10, A-9
Removing Power
  DS10, A-3
  DS10L, A-4
reset command (RMC), 3-20, 3-36
Reset, from RMC, 3-15
Reset, specifying console action, SRM, 2-42
Restoring Power
  DS10 and DS10L, A-12
RMC
  accessing, 3-7
  auxiliary power supply, 3-1
  clear alert command, 3-28
  clear port command, 3-28
  command conventions, 3-27
  commands, 3-26
  configuring call-out, 3-16
  dial-out alerts, 3-18
  disable alert command, 3-29
  disable remote command, 3-29
  enable alert command, 3-30
  enable remote command, 3-31
  entering, 3-8
  escape sequence, 3-8
  exiting, 3-8
  halt in command, 3-32
  hangup command, 3-17, 3-21, 3-33
  help or ?, commands, 3-33
  power off command, 3-34
  power on command, 3-34
  quit command, 3-8, 3-35
  remote halt, 3-15
  remote power-on/off, 3-15
  remote reset, 3-15
  reset command, 3-36
  resetting to factory defaults, 3-22
  send alert command, 3-36
  set alert command, 3-37
  set dial command, 3-39
set escape command, 3-40
set init command, 3-41
set logout command, 3-42
set password command, 3-42
set user command, 3-42
status command, 3-10, 3-43
terminal setup, 3-4
troubleshooting, 3-24
RMC mode, 3-6
Run maintenance program
AlphaBIOS, 2-58

S
SCSI
   enabling and disabling terminators,
      SRM, 2-51
   enabling Fast SCSI, SRM, 2-50
   setting controller host bus node ID,
      SRM, 2-51
send alert command (RMC), 3-36
Serial terminal, specifying as console terminal, SRM, 2-46
set alert command (RMC), 3-37
set dial command (RMC), 3-39
set envar command, SRM, 2-4, 2-32, 2-33
set escape command (RMC), 3-40
set host command, SRM, 2-4
set init command (RMC), 3-41
set logout command (RMC), 3-42
set password command (RMC), 3-42
set password command, SRM, 2-4, 2-24
set secure command, SRM, 2-4, 2-25
set user command (RMC), 3-42
Setting an environment variable, 2-32
Setting Jumpers
default settings, A-11
Setting Motherboard Jumpers, A-10
Setting Switches, A-11
show config command, SRM, 2-4, 2-8
show device command, SRM, 1-9, 1-10, 1-12, 1-15, 1-16, 1-18, 1-20, 2-4, 2-10
show envar command, SRM, 1-15, 2-4, 2-33
show memory command, SRM, 2-4, 2-13
show pal command, SRM, 2-4, 2-13
show power command, SRM, 2-4, 2-14
show version command, SRM, 2-4, 2-15
Special characters, SRM console, 2-6
SRM console, 1-6, 1-7, 2-1–2-52
   command syntax, 2-5
   device naming conventions, 2-11
   invoking, 2-2
   special characters, 2-6
   summary of commands, 2-3
   summary of environment variables, 2-40
   switching to AlphaBIOS, 2-53
SRM console commands
alphabios, 2-3
boot, 1-10, 1-12, 1-14, 1-16, 1-20, 1-22, 2-3, 2-19
   using in secure mode, 2-26
clear envar, 2-3
clear password, 2-3, 2-27
continue, 2-3
   using in secure mode, 2-26
crash, 2-3, 2-31
deposit, 2-3, 2-35
edit, 2-3, 2-34
examine, 2-3, 2-36
halt, 2-3, 2-29
help, 2-3, 2-39
initialize, 2-3, 2-17, 2-38
lfu, 1-25, 2-3, 2-29
login, 2-3, 2-27
   using in secure mode, 2-26
more, 2-4, 2-37
prcache, 2-4, 2-20
set envar, 2-4, 2-32, 2-33
set host, 2-4
set password, 2-4, 2-24
set secure, 2-4, 2-25
show config, 2-4, 2-8
show device, 1-10, 1-12, 1-16, 1-18, 1-20, 2-4, 2-10
show envar, 2-4, 2-33
show memory, 2-4, 2-13
show pal, 2-4, 2-13
show power, 2-4, 2-14
show version, 2-4, 2-15
start
using in secure mode, 2-26
stop, 2-4, 2-29
summary of commands, 2-3
test, 2-4, 2-21
SRM console environment variables
  auto_action, 2-40, 2-42
  boot_osflags, 2-40, 2-43, 2-44
  boot_osflags, OpenVMS, 2-43
  boot_osflags, Tru64 UNIX, 2-43
  bootdef_dev, 2-40
  com*_baud, 2-40, 2-45
  commands for displaying the value or setting, 2-33
  commands for modifying, 2-32
  commands for setting, 2-32
  commands for using, 2-32
  console, 2-40, 2-46
  cpu_enabled, 2-40
  ew*0_mode, 2-40, 2-47
  ew*0_protocols, 2-40, 2-47
  kbd_hardware_type, 2-40, 2-48
  language, 2-40, 2-48
  ocp_text, 2-41
  os_type, 2-49
  pci_parity, 2-41, 2-49, 2-50
  pk*0_fast, 2-41, 2-50
  pk*0_host_id, 2-41, 2-51
  pk*0_soft_term, 2-41, 2-51
  tt_allow_login, 2-41, 2-52
SRM firmware
  enabling and disabling login to, 2-52
start command, SRM
  using in secure mode, 2-26
status command (RMC), 3-10, 3-43
stop command, SRM, 2-4, 2-29
Switches
  default settings, A-11
Syntax
  SRM console commands, 2-5
System configuration
  displaying in SRM console, 2-8
System crash dump, 2-31
System failure, specifying console action, SRM, 2-42

T
  Terminal setup (RMC), 3-4
test command, SRM, 2-4, 2-21
Testing the system (all operating systems), 2-21
Troubleshooting
  RMC, 3-24
Tru64 UNIX
  booting, 1-9
    from local disk, 1-9
    from remote disk, 1-11
  console for, 2-1
  installing, 1-13
  specifying as default operating system, 2-49
  tt_allow_login environment variable, SRM, 2-41, 2-52

U
  update command, LFU, 1-25, 1-32, 1-33, 1-35
Updating firmware
  from SRM console, 1-24
  SRM console, 2-29
Utilities
  Running AlphaBIOS, 2-57

V
  verify command, LFU, 1-33, 1-35

W
  Warnings, A-2