AlphaServer ES40
Release Notes

Part Number: EK–ES240–RN. C01

October 1999

This document supplies the hardware release notes for the Compaq AlphaServer ES40 system and is intended for anyone operating, managing, or maintaining the system.
This document covers the hardware release notes for the AlphaServer ES40. Sections in this document include:

- Operating System Support
- Memory Performance Considerations
- Memory Allocation
- Installing Disk Cages
- OpenVMS Configuration Restriction
- OpenVMS Galaxy Support
- Tru64 UNIX Configuration Restriction
- Booting Linux
- Console_memory_allocation Environment Variable
- Fibre Channel Support
- Miscellaneous Errata

Operating System Support

The AlphaServer ES40 system supports the Tru64 UNIX, Linux, and OpenVMS operating systems. The Microsoft Windows NT operating system is not supported. Information about Windows NT in the hardware documentation does not apply to this system.

Memory Performance Considerations

Interleaved operations reduce the average latency and increase the memory throughput over non-interleaved operations. With one memory option (4 DIMMs) installed, memory interleaving will not occur. With two identical memory options (8 DIMMs) installed, memory read-write operations are two-way interleaved. With four identical memory options (16 DIMMs) installed, memory read-write operations are four-way interleaved, maximizing memory throughput.

The output of the `show memory` command provides the memory interleaving status of the system.

```
P00>>> show memory

<table>
<thead>
<tr>
<th>Array</th>
<th>Size</th>
<th>Base Address</th>
<th>Intlv Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>256Mb</td>
<td>0000000060000000</td>
<td>2-Way</td>
</tr>
<tr>
<td>1</td>
<td>512Mb</td>
<td>0000000040000000</td>
<td>2-Way</td>
</tr>
<tr>
<td>2</td>
<td>256Mb</td>
<td>0000000070000000</td>
<td>2-Way</td>
</tr>
<tr>
<td>3</td>
<td>1024Mb</td>
<td>0000000000000000</td>
<td>2-Way</td>
</tr>
</tbody>
</table>

2048 MB of System Memory
```
Memory Allocation

The SRM console allocates enough memory for most configurations. If you installed options that require more memory than the SRM console has allocated, the console dynamically resizes itself to provide additional memory to support the new configuration. The following crash/reboot cycle can occur several times until the console has allocated enough memory. An abbreviated example of the output to a serial console screen is shown on the next page.

1. The console powers up.
2. Drivers try to allocate more “heap space” (space for more memory) but cannot.
3. The console displays a message similar to the following:

 CPU0: insufficient dynamic memory for a request of 4592 bytes
 Console heap space will be automatically increased in size by 64KB

4. The console takes an exception.
5. The console allocates more heap space and restarts with memory set to the required size.

After the console completes its final reinitialization, the console banner is displayed, followed by the P00>>> prompt. Enter the **show heap_expand** command to verify that the console has allocated more memory. You can then boot the operating system. No other action is required, and the crash/reboot cycle should not occur again.

If you subsequently change your configuration, enter the following command to reset the heap space to its default before you boot the system:

```
P00>>> set heap_expand none
```

Resizing may or may not occur again, depending on whether the console requires additional heap space.

```
initialized idle PCB
initializing semaphores
initializing heap
initial heap 200c0
memory low limit = 15e000
heap = 200c0, 17fc0
initializing driver structures
initializing idle process PID
initializing file system
initializing hardware
initializing timer data structures
lowering IPL
CPU 0 speed is 500 MHz
create dead_eater
create poll
create timer
create powerup
access NVRAM
Memory size 2048 MB
testing memory
......
probe I/O subsystem
probing hose 1, PCI
bus 0, slot 1 -- pka–NCR 53C895
bus 0, slot 3 -- mca–DEC PCI MC
```
bus 0, slot 4 -- mcb-DEC PCI MC
.
.
starting drivers
entering idle loop
initializing keyboard
starting console on CPU 1
initialized idle PCB
initializing idle process PID
lowering IPL
CPU 1 speed is 500 MHz
create powerup
.
.
Memory Testing and Configuration Status

<table>
<thead>
<tr>
<th>Array</th>
<th>Size</th>
<th>Base Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>512Mb</td>
<td>0000000040000000</td>
</tr>
<tr>
<td>1</td>
<td>1024Mb</td>
<td>0000000000000000</td>
</tr>
<tr>
<td>2</td>
<td>256Mb</td>
<td>0000000060000000</td>
</tr>
<tr>
<td>3</td>
<td>256Mb</td>
<td>0000000070000000</td>
</tr>
</tbody>
</table>

2048 MB of System Memory

Testing the System
CPUU0: insufficient dynamic memory for a request of 4592 bytes
Console heap space will be automatically increased in size by 64KB

<table>
<thead>
<tr>
<th>PID</th>
<th>bytes</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000000</td>
<td>27360</td>
<td>???</td>
</tr>
<tr>
<td>00000001</td>
<td>23424</td>
<td>idle</td>
</tr>
<tr>
<td>00000002</td>
<td>800</td>
<td>dead_eater</td>
</tr>
<tr>
<td>00000003</td>
<td>800</td>
<td>poll</td>
</tr>
<tr>
<td>00000004</td>
<td>800</td>
<td>timer</td>
</tr>
<tr>
<td>00000005</td>
<td>49584</td>
<td>powerup</td>
</tr>
<tr>
<td>00000031</td>
<td>129536</td>
<td>pwrup_diag</td>
</tr>
<tr>
<td>00000013</td>
<td>896</td>
<td>???</td>
</tr>
<tr>
<td>00000016</td>
<td>1056</td>
<td>???</td>
</tr>
<tr>
<td>00000026</td>
<td>128</td>
<td>???</td>
</tr>
<tr>
<td>00000017</td>
<td>512</td>
<td>???</td>
</tr>
<tr>
<td>00000006</td>
<td>2880</td>
<td>tt_control</td>
</tr>
<tr>
<td>00000007</td>
<td>800</td>
<td>mscp_poll</td>
</tr>
<tr>
<td>00000008</td>
<td>800</td>
<td>dup_poll</td>
</tr>
<tr>
<td>00000012</td>
<td>2336</td>
<td>shell_0</td>
</tr>
<tr>
<td>0000000A</td>
<td>13920</td>
<td>???</td>
</tr>
<tr>
<td>0000000D</td>
<td>13920</td>
<td>???</td>
</tr>
<tr>
<td>00000010</td>
<td>13920</td>
<td>???</td>
</tr>
<tr>
<td>0000000B</td>
<td>2336</td>
<td>shell_1</td>
</tr>
<tr>
<td>0000000E</td>
<td>2336</td>
<td>shell_2</td>
</tr>
<tr>
<td>00000011</td>
<td>2336</td>
<td>shell_3</td>
</tr>
<tr>
<td>00000029</td>
<td>128</td>
<td>???</td>
</tr>
<tr>
<td>00000014</td>
<td>992</td>
<td>rx_ewa0</td>
</tr>
<tr>
<td>00000018</td>
<td>512</td>
<td>???</td>
</tr>
<tr>
<td>0000001F</td>
<td>992</td>
<td>rx_eib0</td>
</tr>
<tr>
<td>0000001C</td>
<td>992</td>
<td>rx_eia0</td>
</tr>
<tr>
<td>0000001D</td>
<td>160</td>
<td>???</td>
</tr>
<tr>
<td>00000025</td>
<td>1024</td>
<td>rx_eie0</td>
</tr>
<tr>
<td>00000021</td>
<td>992</td>
<td>rx_eic0</td>
</tr>
<tr>
<td>0000002C</td>
<td>160</td>
<td>???</td>
</tr>
<tr>
<td>00000023</td>
<td>992</td>
<td>rx_eid0</td>
</tr>
<tr>
<td>0000002F</td>
<td>160</td>
<td>???</td>
</tr>
<tr>
<td>00000024</td>
<td>128</td>
<td>???</td>
</tr>
<tr>
<td>00000028</td>
<td>992</td>
<td>rx_eif0</td>
</tr>
<tr>
<td>00000027</td>
<td>160</td>
<td>???</td>
</tr>
<tr>
<td>0000002B</td>
<td>1024</td>
<td>rx_eig0</td>
</tr>
<tr>
<td>0000002E</td>
<td>992</td>
<td>rx_eih0</td>
</tr>
<tr>
<td>0000002D</td>
<td>160</td>
<td>???</td>
</tr>
<tr>
<td>0000002A</td>
<td>128</td>
<td>???</td>
</tr>
<tr>
<td>00000030</td>
<td>128</td>
<td>???</td>
</tr>
<tr>
<td>00000038</td>
<td>2080</td>
<td>???</td>
</tr>
</tbody>
</table>
SYSFAULT CPU0 - pc = 0014faac
exception context saved starting at 00FD7B0
GPRs:
 0: 00000000 00048FF8 16: 00000000 0000001E
 1: 00000000 00150C00 17: 00000000 EFEFEF0C
 2: 00000000 001202D0 18: 00000000 001FD2F8
 3: 00000000 000011F0 19: 00000000 00000025
 4: 00000000 0010C7B8 20: 00000801 FC000000
 5: 00000000 003B3400 21: 00000000 0008A8B0
 6: 00000000 00000000 22: 00000000 0010ACB8
 7: 00000000 00000000 23: 00000000 00000001
 8: 00000000 00000000 24: 00000000 00000000
 9: 00000000 00000000 25: 00000000 00000001
 10: 00000000 00000000 26: 00000000 0014FAAC
 11: 00000000 3FFFF520 27: 00000000 00150C90
 12: 00000000 001254D0 28: 00000000 0038518
 13: 00000000 0013BB20 29: 00000000 001FD8F0
 14: 00000000 0010C7C0 30: 00000000 001FD8F0
 15: 00000000 00000000 00000001
dump of active call frames:
 PC = 0014FAAC
 PD = 001202D0
 FP = 001FD8F0
 SP = 001FD7B0

 ...
 ...
 initialized idle PCB
 initializing semaphores
 initializing heap
 initial heap 200c0
 memory low limit = 15e000
 heap = 200c0, 17fc0
 initializing driver structures
 initializing idle process PID
 initializing file system
 initializing hardware
 initializing timer data structures
 lowering IPL
 CPU 0 speed is 500 MHz
 create dead_eater
 create poll
 create timer
 create powerup
 access NVRAM
 Memory size 2048 MB
 testing memory
 probe I/O subsystem
 probing hose 1, PCI
 bus 0, slot 1 -- pka--NCR 53C895
 bus 0, slot 3 -- mca--DEC PCI MC
 ...
 ...
 bus 0, slot 15 -- dqb--Acer Labs M1543C IDE
 starting drivers
 entering idle loop
 initializing keyboard
 starting console on CPU 1
 initialized idle PCB
 initializing idle process PID
 lowering IPL
 CPU 1 speed is 500 MHz
 create powerup
 ...
 ...

6 AlphaServer ES40 Release Notes
Memory Testing and Configuration Status

<table>
<thead>
<tr>
<th>Array</th>
<th>Size</th>
<th>Base Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>512Mb</td>
<td>00000000040000000</td>
</tr>
<tr>
<td>1</td>
<td>1024Mb</td>
<td>00000000000000000</td>
</tr>
<tr>
<td>2</td>
<td>256Mb</td>
<td>00000000600000000</td>
</tr>
<tr>
<td>3</td>
<td>256Mb</td>
<td>00000000700000000</td>
</tr>
</tbody>
</table>

2048 MB of System Memory

Testing the System
Testing the Disks (read only)
Testing the Network
Partition 0, Memory base: 000000000, size: 080000000
initializing GCT/FRU at offset 1dc000

AlphaServer ES40 Console V5.5-3059, built on May 14 1999 at 01:57:42

P00>>> show heap_expand
heap_expand 64KB
P00>>>

Installing Disk Cages

The following procedure replaces Section 5.15 (pages 5-38 to 5-40) of the Compaq AlphaServer ES40 Owner’s Guide. Before starting this procedure, refer to the Owner’s Guide for instructions on the following:

- Removing enclosure panels (Section 5.1)
- Removing covers from the system chassis (Section 5.2)

WARNING: To prevent injury, access is limited to persons who have appropriate technical training and experience. Such persons are expected to understand the hazards of working within this equipment and take measures to minimize danger to themselves or others.

WARNING: To prevent injury, unplug the power cord from each power supply before installing components.
NOTE: Install the first cage as the right cage in a pedestal or rackmount system or as the top cage in a tower system.

Shut down the operating system before starting the procedure.

1. Remove enclosure panels and remove the cover from the PCI card cage as described in Sections 5.1 and 5.2 of the Compaq AlphaServer ES40 Owner’s Guide.
2. Install the SCSI controller in the PCI backplane.
3. Unscrew the four screws securing the disk cage filler plate and set them aside. Discard the filler plate.
4. When installing the first disk cage, set the jumper (J10) to the parked position (one pin only).
5. When installing the second disk cage, set the jumper (J10) to the on position (across both pins).
6. Slide the cage part way into the system chassis.
7. Pull out the fans blocking access to the cabling.
8. Connect the power source cable to the storage backplane.
9. Plug one end of the 68-conductor SCSI cable (17-04867-01) into the SCSI controller. Route it through the opening in the PCI cage. Snap open the cable management clip, route the cable through, and close the clip. Plug the other end of the cable into the storage backplane.
10. When installing the first disk cage, plug the 16-position end of the 29-inch cable (17-04914-01) into the PCI backplane. Route the cable through the opening in the PCI cage and plug the 14-position end into the J2 connector on the storage cage.

When installing a second cage, plug the end of the 6-inch cable marked “out” into the J9 connector on the back of the first cage, and plug the end marked “in” into the J2 connector on the second cage.

NOTE: Cable 17-04914-01 and cable 17-04960-01 are mutually exclusive.
11. Slide the cage the rest of the way into the system chassis and replace the four screws set aside previously.
12. Replace the fans.
13. Replace the PCI card cage cover and enclosure covers.
14. Install hard drives as described in Section 5.6 of the Compaq AlphaServer ES40 Owner’s Guide.

Verification

1. Turn on power to the system.
2. When the system powers up to the P00>>> prompt, enter the SRM show device command to determine the device name. For example, look for dq, dk, ew, and so on.
OpenVMS Configuration Restriction
If you have a KZPAC RAID controller, it must be installed in a slot on PCI bus 1. It cannot be installed on PCI bus 0. See Section 5.12 of the AlphaServer ES40 Owner’s Guide for PCI slot locations.

OpenVMS Galaxy Support
OpenVMS Galaxy is now supported on AlphaServer ES40 systems.
The Galaxy Software Architecture on OpenVMS uses adaptive partitioned multiprocessing (APMP) to execute multiple instances on OpenVMS in a single computer. Software logically partitions CPUs, memory, and I/O ports by assigning them to individual instances of OpenVMS. Each individual instance is a complete system with the resources it needs to execute independently. Resources such as CPUs can be dynamically reassigned to different instances of OpenVMS.

Documentation for creating an OpenVMS Galaxy computing environment on the ES40 is available on the remedial kit that supports this functionality:
Kit name: DEC-AXPVMS-VMS721-DS20E_ES40-V0100--4.PCSI
URL: http://www.service.digital.com/patches

The documentation will also be included in the OpenVMS Alpha Galaxy Guide, available at http://www.openvms.digital.com:8000/.

To create an OpenVMS Galaxy environment on an AlphaServer ES40 system, you must download the V5.5-107 console firmware from the following location.
BOOTP or MOP file: v55b_clupdate.exe
MOP file: v55b_clupdate.sys

Information for creating bootable floppies of the firmware image is at:

The VMS721_LAN kit must also be installed, as documented in the kit cover letter.

Tru64 UNIX Configuration Restriction
Multifunction PCI options cannot be installed in PCI bus 0, slot 1 or slot 2. Multifunction options currently include:
- KZPCM–DA dual Ultra SCSI differential/10/100 MB Ethernet combo
- DE504–BA PCI-based 10/100 Mbit quad channel Ethernet adapter
See Section 5.12 of the Compaq AlphaServer ES40 Owner’s Guide for PCI slot locations.
Booting Linux

The procedure for installing Linux on an AlphaServer ES40 is documented in the Linux Installation and Configuration Guide for AlphaServer DS10, DS20, ES40, and AlphaStation XP1000 Computers. You can obtain the installation document from the following URL:

1. Power up the system to the SRM console and enter the `show version` command.

 P00>>> show version
 version V5.4-2 May 19 1999 14:53:22
 P00>>>

 You need V5.4-2 or higher of the SRM console to install Linux. If you have an lower version of the firmware, you will need to upgrade. For instructions, see the AlphaServer ES40 Owner's Guide or the following URL. You can also download the latest images from this URL.

2. Before booting Linux, enter the `show device` command to determine the unit number of the drive for your boot device. In the following example DKA300 is a hard disk, DKA500 is a CD, and DVA0 is a floppy drive.

 P00>>> show device
 dka300.3.0.7.1 DKA300 R21CF-CF 1614
 dka500.5.0.7.1 DKA500 TOSHIBA CD-ROM XM-5701TA 0557
 dva0.0.0.0.0 DVA0
 pka0.7.0.7.1 PKA0 SCSI Bus ID 7 5.57
 .
 .

3. Set the following SRM environment variables to configure boot parameters. This example shows configuration commands to boot the floppy created by the Linux installation.

 P00>>> set bootdef_dev dva0
 P00>>> set boot_file vmlinux.gz
 P00>>> set boot_osflags "root=/dev/hda"
 P00>>> show boot*
 boot_dev dva0.0.0.0.0
 boot_file vmlinux.gz
 boot_osflags root=/dev/hda
 boot_reset OFF
 bootdef_dev dva0.0.0.0.0
 booted_dev
 booted_file
 booted_osflags
4. Insert the boot floppy and enter the **boot** command. The following example shows abbreviated **boot** output:

```bash
P00>>>b
(boot dkb0.0.0.3000.0 -file boot/vmlinux.gz -flags root=/dev/hda)
block 0 of dkb0.0.0.3000.0 is a valid boot block
reading 152 blocks from dkb0.0.0.3000.0
bootstrap code read in
base = 200000, image_start = 0, image_bytes = 13000
initializing HWRPB at 2000
initializing page table at 3ff8e000
initializing machine state
setting affinity to the primary CPU
jumping to bootstrap code
Linux version 2.2.12 (jestabro@linux04.mro.dec.com) (gcc version egcs-2.90.29 980515 (egcs-1.0.3 release)) #21 Fri Sep 10 16:55:01 EDT 1999
Booting on Tsunami variation Clipper using machine vector Clipper
Command line: root=/dev/hda bootdevice=sd0 bootfile=boot/vmlinux.gz
setup_smp: 2 CPUs probed, cpu_present_map 0x3, boot_cpu_id 0
Console: colour VGA+ 80x25
Calibrating delay loop... 996.15 BogoMIPS
Memory: 1033720k available
POSIX conformance testing by UNIFIX
Entering SMP Mode.
secondary_console_message: on 0 from 1 HALT_REASON 0x0 FLAGS 0x1ee
secondary_console_message: on 0 message is 'P01>>>START  P01>>>'
start_secondary: commencing CPU 1 current fffffc003ffe0000
Alpha PCI BIOS32 revision 0.04
PCI: Probing PCI hardware
Linux NET4.0 for Linux 2.2
.
.
General self-test: passed.
Serial sub-system self-test: passed.
Internal registers self-test: passed.
ROM checksum self-test: passed (0x24c9f043)
.
.
Red Hat Linux release 6.0 (Hedwig)
Kernel 2.2.12 on an alpha
peng1 login:
```
Console_memory_allocation Environment Variable
The console_memory_allocation environment variable determines which memory locations the SRM console will allocate for its private use.

- If you are running Tru64 UNIX, set this environment variable to old.
- If you are creating an OpenVMS Galaxy environment, set this environment variable to new. For more information on OpenVMS Galaxy, see the section entitled “OpenVMS Galaxy Support.”

Fibre Channel Support
The Fibre Channel adapter (KGPSA-BC) is supported on V5.5 or higher of the SRM console firmware. Refer to the WWIDMGR User’s Manual, which is included on the Alpha Systems Firmware Update CD, V5.5 (and higher). The file wwidmgr_v10.pdf can be found in the [.DOC] subdirectory on the V5.5 CD. The V5.6 CD will contain .pdf, .doc, and .ps versions of the file.

Miscellaneous Errata
- The “Fan 5, 6 failed” message in Table 7-2 of the AlphaServer ES40 Owner’s Guide should be amended to read as follows:
 Main fan (6) and redundant fan (5) failed.
- The pk*0_soft_term environment variable, described in Section 2.24.22 of the AlphaServer ES40 User Interface Guide, does not support differential mode.
- Section 5.6 of the Owner’s Guide states that hard drives can be hot swapped (removed and replaced while the system is running). That information should be amended. Disk drive hot swap is not currently supported within the internal drive cages. Support for disk drive hot swap within the internal drive cages is a planned future enhancement.