$8.0.0.80.80080.900¢4.40005000000060000000¢6004600040000004
0. 0.8.8.0.6.000.0.06.0080600.6080800084980800088880900$¢00004

0 6.4.6.0.00.0.9.0.0.0.0006000.00000606080000060840¢60606064

$ 8. 08.9.0008:60.8.909008969090.699600088090096000.06.00004
p.00..0.0.0.000.00.604089.86400.000606000080046090$¢94
}9.89.9.4.0.000900000808800600685000600.064046004
§$.8.06.0.0.6.040.6806049006000606.0008068006004
.9.6.0.0.0.6,0.0.0.6.0.66.6666.660000669009060.900464
[.9,9,2.0.0.0.0.00.8.6909.660000800804806060046044
p.0.0.9.9.6.6.0.0.0.8.0.5.0.0.00.08,0606.008900466004
10.0.0.8.0.0.0.4.0.0.0.00.90.009600000606.00004
$0.0.9.0000.8.09.0.060000006080008.0064
).0.89.0.0.8.06.0.9.0000660666¢8¢$.0¢4
$16.9.9.0:9.6.0.9.8.9.9.9.0.0.0.6.9.¢.4.9.4.6.0.6.4
10.0.9.910.0.¢.9.9.6.6.0.0.0.9.9.96.06.664

p.0.0.9.5.4.6.¢.6.9.0.0.4.6.0.6.64.9¢06.4

}.0.9.99.9.0.0.6.6.90.0.9¢.646.0.64

}:9.6.0:0:0.8,4.9.0.9.4.6.4.9.6¢.4

LAAAXAXX XX XK XXX

$.4.9.9.6.9.6.6.9.0.8.0.¢.9

XXXXXXXXKXX

XXAXAKKXX

XXAKXAX

XXXXX
XXX

X

XXXXX

XXXXXXX

XXXAXKKXA Y
XAXXXXKXXXHN
$:0.9.0..9.9.9.0.¢.0.4.9,
$9.9.6.0.0.0.9.0.0.609.0¢
}.9.9.8.9.9.0.0.9.0.0.0.0.94,09,
$,$.6.9.4.0.9.9.9.0.6.6.9.09.¢0.09
).0.9.0.4.9.6.9.9.0.8.0.6.9.66.64694
).0.8.0.4.9.0.0.6.4.0.4.0.6.9.06409.44.0¢
$.9.8.0.6.0.6,¢.0.6.6.6.9.0.$.6894660604¢
).9.6.9.8.0.9.0.6.9.9.0.9.6.9.9.60046¢.0044¢
.0.0.910.0.9.0.90.0.0.6.0.0.6.0.9.00.0.0.0.9040000¢
$.9.0.6.0.0 6600 909.0000.860040863604600046

).$.0,0.0.0.0.4.904.9.0.06.9.0.60.9.6.$9649090.80504
$.0.6.9.0.0.6.0.0.9.0.0.0.09.$0.0.96609.06009060090¢
$.8.9.0.8.4.6.8.6.0.0.0.6.0.0.00.690.9.64.664.94606464999

064 0.00.0.80.00.9000698808988.9690890800009
$0.0.0.0.9.0.6.0.506.000.¢6.06:0.04006840.0.9069606604804
$.0.0,0.0.96.000.090.0.0.06.606600600¢9086069085080500098
p6.6.6.0.0,0.0.¢.0.60.0.0.9.0.0066.90.0000.09¢00000090500040¢¢
$.9.0.9.6.0.0.4.6.0008.880.0.660$08080800086080080898868446¢
0.0.6.8.8.6904.00.099.9.0.000040068990008604668000806606¢6¢
$.0.0.0.90.6.90.9.0.0.0.000.9.0.08.0:0.00.00004.¢90009.0606¢6.08000600600¢

EK-1BQ01-UG-002

IBQO1
BITBUS Controller

User's Guide

Prepared by
Computer Special Systems

2nd Edition, March, 1988

© Digital Equipment Corporation 1988
All Rights Reserved

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

Printed in U.S. A

The software described in this document s furmshed under aheense and may be
used or copied with the terms of such license. Book production was done by
Educational Services Development and Publishing in Mernmack,. N .H.

Digital Equipment Corporation assumes no responsibility for the ose or
reliability of its software on equipment thatis not supplied by Digital Equipment
Corporation.

The following are trademarks of Digital Equipment Corporation:

Hn@uan" DECUS RSX
DECwriter Scholar

DATATRIEVE DIBOL ULTRIX

DEC MASSBUS UNIBUS

DECmate PDP VA X

DECset P/OS VMS

DECsystem-10 Professional VT

DECSYSTEM-20 Rainbow Work Processor

RSTS

Table of Contents

Preface. e e e e xvii
CHAPTER 1
OVERVIEW e 1
INTRODUCTION e e e s i e s i s 1
BITBUSCONTROLLER et e e i e s 1
PROGRAMINTERFACE. it v i i e 2
BITBUS e e e e e e e e e e e e e 3
USER'S PROGRAM. i e e e e it as 3
INTERACTIVEINTERFACE it i 3
CHAPTER 2
BITBUS CONTROLLER. i 5
INTRODUCTION e e e e e e et)
IBQO1 BITBUS CONTROLLER (M3125) 5
BITBUS CONTROLLERCONTROLS 5
BITBUSINTERFACE i i et i it s i i i e e 6
MESSAGE AND DATALINKPROTOCOLS 6
REMOTE ACCESS AND CONTROL (RAC) COMMANDS. 7
Message Format i 8
RACControlCommardsttt i ittt e s oo 9
RACAccessCommands. o v ittt it i i e o n e e as 9
TROUBLESHOOTING i i ittt e e i i e e e 11
BITBUSEIIOIS o v v vt e e e et e it e ettt i s e s 11
IBQO1 BITBUS ControllerErrors. 11

Table of Contents (il

CHAPTER 3
CROSSASSEMBLER AND DOWNLOAD UTILITIES
ASSEMBLERASM44 OVERVIEW.
OPERATING ENVIRONMENT
ASSEMBLY LANGUAGE PROGRAMMING
RMX PROGRAMMING ENVIRONMENT.
8044 ARCHITECTURE. i i,
Memory Addresses e e

General Purpose Registers
Stack e e e
Symbolically Addressable Hardware Registers.
Function Flag Bit Locationand Symbols
BitAddressing e
RMX51 FLASH PROGRAM EXAMPLE.
ASM44 INSTRUCTIONS.
INSTRUCTION SUMMARY.
ASM44 OPERANDS AND EXPRESSIONS
SEGMENT SPACES (ADDRESSSPACES)
SYMBOLS e e e e
STATEMENTLABELS
ASSEMBLY TIME EXPRESSIONS
Numbers e
Character Strings
Operators e e e
SEGMENT TYPES IN EXPRESSIONS
ADDRESSING MODES
Code Addresses
Bit Addresses. e
Data Addresses.
Immediate Addresses
Indirect Addresses. e
ASM44 ASSEMBLER DIRECTIVES
SEGMENT SPACES
SYMBOLS e e
STATEMENT LABELS

...............................

....................
.............................

................................

...............................

.............................

iv Tabie of Conienis

SYMBOL DEFINITION DIRECTIVES 37
EQU Directive e e e e e e e s 37
Set Directives e e e e e e e e e 37
BIT airecuive s a7
Data Directives. e e e e e e 37
XDATA Directive o e e e e e 37
IDATA Directive. s e e e e e e e e 37
CODE Directive e e i e e e e 317

STORAGE INITIALIZATION AND RESERVATION DIRECTIVE 38

DS Expression Directive 38
DBIT Expression Directive. i 38

DB Directive e e e e e e e 38
DW Directive. e e 38
ASSEMBLER STATE CONTROLS DIRECTIVES 39
END Directive e e e e e 39
ORG Expression Directive, 39
USING Directive. e e e 39
SEGMENT SELECTION DIRECTIVES. 39
ASM44 ASSEMBLER CONTROLS 40
INVOCATION e e e e 40
ASSEMBLER CONTROLS 42
Binary Controls e e e e e e 42
Parameter Controls e e 44
General Controls e 45
String Controls. e 46
ASM44 ERROR MESSAGES 0. 47
SOURCE FILE ERRORS. e 48
ASSEMBLER CONTROLERRORS 52
OTHER ERRORS e e e 53
RESERVED SYMBOL NAMES. 54
DATEM HEX FILE FORMAT. bb
MEMORY MAP REQUIREMENTS 56
RMXSLEXTFILE CONTENTS e i e e 57

CHAPTER 4

VMS SOFTWARE e 59
INTRODUCTION . . . e e e e e e e e i e e 59
INTERACTIVE INTERFACE e 69
BCS OVERVIEW e e e e e e e 59
BITBUS CONTROL SERVICE CONFIGURATION UTILITY. 60

DEFINE Command Line

Table of Contents v

vi

DELETE Command Line 0 v v i i et et 63

DIAGNOSE Command Line 64
DOWNLOAD Command Line 65
EXCHANGE Command Line. 66
EXIT Command Line e 68
HELP Command Line« . e e 69
OFFLINE Command Line. o 70
ONLINE Command Line o 71
QUIT Command Line 72
READ Command Line. e 73
RECEIVE Command Line 75
REPEAT Command Line 71
RESET Command Line 71
SCANON Command Line. 78
SEARCH Command Line. 80
SEND Command Line. 81
SHOW Command Line 82
WRITE Command Line 84
BCS Command Line Facihty 85
PHYSICAL UNITNUMBERS. 86
Range Parameter. L 86
PROGRAM INTERFACE OVERVIEW 87
QIOSs . . . 87
DATA FORMATS e 90
QIO FUNCTIONS 90
IBQ$ BUSSEARCH 91

IBQF DOWNLOAD 91

IBQS OFFLINE 92

IBQ$ ONLINE. 92

IBQS RECEIVE 93

IBQ$ RESET. 94

IBQP SCANON 94

IBQY SCANOFF. 95

IBQS SEND 95

IBQS SETAST 96

IBQ® TESTIBQ 96

IBQ$ TRADE 97

IBQ$ UPLOAD 101

IBQP XCHANGE 102

Table of Contents

EXAMPLES e e e e e e e 103
Example 1. e e i e s 103
Example 2. e e e e 105
Example3. e 108

IBQSLD44V DOWNLOAD UTILITY v i ooy 107

TROUBLESHOOTING e e e e 108

DEVICE COMMUNICATIONS FAILURE 108
System Failures o oo 108
Operator Failures 109
IBQO1 VMS DriverReturnCodes. 109
BITBUS Errors and IBQ01 BITBUS Controller Errors 110

CHAPTER 5
VAXELN SOFTWARE o .. 111

INTRODUCTION . . . e e e e e e 111

OVERVIEW. . . . e e 111
IBQELNI/OFunctions, 113

IBQS ABORT e 114
Format e e e e e e 114
ATUMENES e e e e 114
Status Values. e e e e 1156

IBQY BUSSEARCH i v 116
FOrmat o o o e e e e e e e e e e e e e e e e e 116
AFGUIMENES o ottt i e e e e e 116
Status Values. e e e 117

IBQP DOWNLOAD s 118
Format e 118
Arguments e e e e e e 119
Status Values. e 120

IBQS INIT e 121
Format e e e e e 121
Arguments L e e e e e 121
Status Values. e e e e e e 122

IBQS LOAD44 e 123
Format o o e e e e e e e e e e e 123
ArQUMENtS o ot e e e e e 124
Status Values. e e e e e e 126

Table of Contents vil

IBQS MAP . . . o 128

FOrmat . . . o e e e e e e e e e e e e 126
ATgUMENES o oo e e 126
Status Values. o e e e e e e 126
IBQ$ NODEINFO. 127
Format e e e e 127
AFZUMENES o it i e e 127
Status Values. i e e e e 127
IBQE NOTIFYo e 128
FOrmat o o o e et e e e e e e e e e e e e 128
ATGUIMENES o v vt e e 128
Status Values. & . v v v v e e e e e e e e e e e e 129
IBQS OFFLINE 130
FOrMAL . . . o v o v e e e e et e e e e e e e e e 130
ATEUMENES o o ot oo 130
Status Values. e e 131
IBQS ONLINE. 132
Format e e e e 132
AFZUIMENLS v vt vt v e e s e e e e e 133
Status Values. e e e e e 134
IBQ$ RECEIVE 135
Format e e e e e e e 135
AFUIMENES o oo et 136
Status Values. 1317
IBQP RESET. 138
Format e e e e e e e 138
AFZUITIENESo v vt e e e 138
Status Values. e e e 139
IBQS SEND 140
Format e e e e e e e e e e e e e e 140
Arguments e e 141
Status Values. e e e e e 142
IBQS SHUTDOWN 143
Format e e e e e e 143
Arguments L e e e 143
Status Values. e 143
IBQS SYSINFO 145
Format e e e e 145
Arguments e e e e e 145
Status Values. e e e e e 146

Table of Contents

IBQS TESTIBQ o ot o e it et e 147

Format e e e e e e e e 147
AYBUMENES o e e e e e e e e e e e e e 147
Status Values. e e 148
IBQS TRADE 149
Format e 149
ATZUITIENTS o v v e e e e e e e e e e e e e e 149
Status Values. e 160
IBQP UNMAP e 151
Format e e e e 151
ATBUMENLS e e e e e 161
Status Values. e e e 1561
IBQ$ UPLOAD e 162
Format e e 162
AFZUMENTS o e e e e e 1563
Status Values. e e e 164
IBQ$P XCHANGE o 156
Format . . . e e e e e 155
ATZUMENES o e e e e 166
Status Values. e e 157
DEVICE DATASTRUCTURES. 158
Device Wide Parameters e 168
Request Fields e 1659
IBQSLD44E DOWNLOAD UTILITY 163
TROUBLESHOOTING ettt 166
CommonErrors Made. 166
ERROR VALUES e e e e 166
GLOSSARY e 169
INDEX . . . e 173
Figures
Tables
RMX51 System Commands (Table3-1) 14
Special Function Registers (Table 3-2) 17

Table of Contents

Ix

PAGE x INTENTIONALLY LEFT BLANK

Preface

This manual is written to support the IBQO1 BITBUS Controller programming
and operating personnel. It assumes that the programmer is familiar with the
entries from the following list which relate to his application:

° VAX/VMS operating system

] QIO System Services

] VAXELN

° Intel™ 8044 BITBUS enhanced microcontroller

° Intel DCX51 Distributed Control Executive operating system
° BITBUS Remote Access and Control (RAC) interface.

This manuz! contains five chapters, a glossary, and an index:

J CHAPTER 1. OVERVIEW — Briefly describes the IBQ family of
equipment, software, and utilities.

o CHAPTER 2, BITBUS CONTROLLER — Describes the BITBUS
controller, the BITBUS interface, and the RAC commands.

° CHAPTER 3, CROSSASSEMBLER - Contains a detailed
discussion of the 8044 Crossassembler.

Intel™ is a trademark of Intel Corporation.

Preface xi

xil Preface

CHAPTER 4, VMS SOFTWARE — Contains a detailed discussion
of the operator to BITBUS Control Service (BCS) utility interface
and the VMS program interface. The related driver calls and the
related interface tools are described.

CHAPTER 5, VAXELN SOFTWARE — Contains a detailed
discussion of the VAXELN driver calls.

GLOSSARY
INDEX

RELATED DOCUMENTS

In this manual you will find it helpful to refer to the following related manuals.
They can help you use and understand the IBQ01 BITBUS Controller.

IBQO01 BITBUS Controller Software Installation Manual (AA-JQ52A-TN)

IBQO01 BITBUS Controller Hardware Installation Manuai (EK-1IBQO1-IN)

IBQO01 BITBUS Controller Technical Manual (EK-IBQO1-TM)
Distributed Control Modules Handbook ({Intel 230973-001)
Intel Embedded Microcontroller Data Book (210918-005)
VAX VMS System Services Reference Manual (AA-Z5C1B-TE)
IEEE BITBUS Specification (IECE P1118)

VAXELN Release notes

VAXELN Installation Manual

Introduction to VAXELN

VAXELN Host System Guide

VAXELN Run-Time Facilities Guide

VAXELN Application Design Guide

VAXELN PASCAL Language Reference Manual, Parts 1 and 2
VAX Language Sensitive Editor VAXELN PASCAL Guide
VAX . VMS DCL Dictionary

VAX/VMS Run-Time Library Routines Reference Manual
VAX Architecture Handbook

VAX Hardware Handbook

LSI-11 Analog System User's Guide

Preface xiii

CONVENTIONS

This section describes the special symbols used in this manual.

Horizontal or vertical eilipses in text means that the informa-
tion not directly related to the description has been omitted.

{info) The information inside the square bracket is optional in the
command. The command will complete without it.
COMMAND The verb portion of all commands are shown in upper case.

param The parameters in the BCS command set are shown in lower
case.

PARAM The. parameters in the QIO commands are shown in upper
case.

NOTES, CAUTIONS, AND WARNINGS

Notes, cautions. and warnings used in this manual are defined as follows:

NOTE The information is important to the understanding of the
process being described.

CAUTION

The information describes a process that can damage the

equipment or software.
WARNING l The information describes a process that can harm the

user.

Corrections and suggestions for improving this publicatior are welcome.

R e

FCC USER STATEMENT

NOTICE

~

This equipment generates. uses and may emu! radho frequency energy The
cquipmenthas been type testedand found to complvwvith the hmuts fora Class
A computing device pursuant to Subpart J of Part 15 of FCC rules which are
designed 1o provide reasunable protection against such radio frequency
interference Operation of ths equipment 1 3 restentiad! drea may cduse
interference in which case the user at his own expense will be required to take
whatever measures may be required to correct the nterference

Preface Xiv

POGS0000008.086:008800890000850.800000000084660080060650000.4
P 00.96.6.04.00.0.60.04600000080400860660000998066098¢04 ¢4
P0.6.00.90.0.4.60.6.0606000800600.06.9086008¢900906848080¢04¢
$40.0.48900.0.06.0008900860000009008000890040.460.090.0.4
$.6.6.086.4.04.0.8:0.6.9.66800.0608.0.009.0009066660099000¢
p6.0.0.00.0.0.89.6.0.089.060.0000605060.80600696606084
$9.9.8.40.0.0.0.0.9.6.6.0.00.6.9.60000000806008.600060069¢¢4

) 0:6.0.0.0.6.0.0.6.0.68.00849.9600068068068480088844
F9.0.8.0.0.0.6.0.0.04.9.0.0.0.0.0.0.066.063.08.66.00700¢04
p0.9.0.0.000.0.06.480.60.9064009.09.9.9.0$.06004
).0.0.90.06.6.0.0.90.9.0.0.0.0.0.0,080.6,00.6.9.¢9.964

) $.9.9.9.90.0.0.0.6.09.00.00¢6099.¢.0906¢064
p:0.0.9.0.0.8.00.0.690.6.8.96.6000668090.4
$.6.4.9.4.9.80.0.9.0.6,6.00.66609696009
p4.6:4.4:6.0.60.0.6.0.9.0.0¢.60906.004
$.9.8.9.9.0.0.0.0.0.0.9.9.0.9.0.9.6.0.0.0.4
.6.0.0.6.6.4.0.6.0.6.9.4.9.6.¢.9.994

J.6.9.0.9.6.6.0.9.9.6.:4.9.0.9.9,9 4

18.8.4.6.0.6,8.0,0.9.9.¢0¢1

XXXUXXXKXXKK

).0.6.6.9.9:4.9.6.0.9.¢

HAXAXAXAXK

XA XKXXX

XXXXX
XXX

X

HAXXX

XAXAXAX

XXXXXXXXX

XY RXXXXXXXX
.9:6.0:4,0.0.¢.9.¢.4.¢.6 ¢
$4.0.0.9.4.0.¢64.9.0.6.¢.0.4
XXXXXXXXXXXXXAXXK
$,0.6.6.9.0.0.6.6,6.6.0.0.6.9.0.6.6.¢.4

1 00.0.9.0.0.6.9.9.0.0$.0.9.¢.4.49.¢9¢
}.0.9.0.9.0.9.¢.0.0.0.9.:6.4,6.49,9.¢.9.0.0.64
)0.9.0.6.0.6.9.0.9.6.9.0.0.9,0.9,0.9.4.4.9.9.9.0.4
1.0.0.4.6.0.5.5.9.0.6.0.6.¢.9.9.0.06.0.$.0,6.0,0.0.4 4
)0.9.90.6.0.9.0.9.0.6.9.00.9.0.9.60.86.6.06906.0.90.4
).0.0.0.8.60.4.8.6.0.00.09560.9.60.080609.68060.4
).9.9.0.0.94.0.9.9.0.0.¢.6.0.90.9.00.0.0.90.00000.¢¢0460.¢
).0.0.0.0.9.0.90.0.00.¢04.09.0.0.9.699.9.89.0880698069
$0.0.9,9.60.0.90.0.9.0.0.86.0.00.0$4066069.008$000.904
10.9.6.6.0.0.00.0.0.0.6.0899.0.9.609.¢$8.000998960.¢64899
1.0.9.8.9.6.9.0.9.0.0.0.9.6.0.0.0.0.0.0.0.0.0.0.0.9.0.0,0.0.9.4,0,0.6.0.9.0.0,0.0.4
p.0.0.6.0.0.9.0.9.9.0.0,0.60.6.0.8600.086060600.9000009.08.00.06484
POV 008800 8890900006808000808960600900000006464
$9.9.0.0.0.0.6.0.0060.00060.809009080006.06000.9.09.¢.609.0.94¢.9¢
§6.0.0.0.04.900$990000609.806099009.000069000606680.000604
$0.9.0.080.699.0.0¢09.00.000008090900000.0400069006060006804484

CHAPTER 1
OVERVIEW

INTRODUCTION

This chapter contains an overview of the IBQO1 BITBUS family of equipment.
It includes a brief description of the softwar: and the utilities.

BITBUS CONTROLLER

The 1BQO1 BITBUS Controller is the hardware. firmware, and software link
between a MicroVAX 11 and the serial control BITBUS. The 1BQ01 BITBUS
Controller hardware consists of the BITBUS Controller board, the connector
panel. and the interconnecting cable. The firmware is resident on the BITBUS
Co.troller board. The software includes items in the host processor.

The 1BQO1 BITBUS Controller board firmware includes:

° Diagnostics for power-up tests and self-test
° Message handling
. Initialization of the BITBUS network

° Maintenance of the BITBUS network

The host processor software includes the following.

CHAPTER 1 OVERVIEW 1

VMS Software

° Device driver
° User's program

° BITBUS Control Service (BCS) configuration utility for VMS
applications

° Task download utility
ELN Software

° Svstem unique to the application. This system was built on a
development system which includes the VAXELN Toolkit and the
IBQ VAXELN driver. This system may then be downloaded to a
target machine. which acts as host to the IBQ0O1 BITBUS control-
ler board.

. VMS utility to facilitate task fownlueding under ELN,
The IBQO1 BITHUS Controiler is the master “dvvice that supports computer
integrated manufacturing in whatever . rm your application defines as part of a

node controller {slave device} or any system requiring BITBUS communica-
tions. BITBUS communications include:

o Message passing between the host processor and all configured
nodes.

° Automatic polling of specified nodes.

e Asynchronous reporting of network events to user applications.

PROGRAM INTERFACE

The Program Interfaces are the IBQO1 Drivers for VAX/VMS and VAXELN.
The format of the driver calls for these device drivers are described in Chapter
4 for VMS applications, and Chapter 5 for VAX EL!N uipplications.

2 CHAPTER 1 OVERVIEW

BITBUS

Yach host MicroVAX II can support up to eight IBQO1 BITBUS Controllers
(processor dependent), and each IBQO1 can support vp to 250 slave devices,
depending on speed selection to take full advantag. of the IBQO1 functionality
each slave device must have an Intel remote access and control compatible
controller.

USER’'S PROGRAM

Control of the operation of the slave nodes on the BITBUS is based on your
program in conjunction with the configuration file.

Your program can be written in anv of the VMS supported languages by using
the INCLUDE command or as an environment file in the case of PASCAL.
Also, you can define any language with the SYSLIB cormand. The VMS sup-
ported languages include the following.

Language Include File
BASIC IBQEFUNC.BAS
C IBQSFUNC.H
FORTRAN IBQS$FUNC.FOR
Macro IBQ$FUNC.MAR
IBQSDEF.MAR
PASCAL IBQSFUNC.PAS (environment module)

IBQ$FUNC.PEN (environment file)

INTERACTIVE INTERFACE

The Interactive Interface is a BITBUS Control Service (BCS) command line
facility. It is available when using the VAX/VMS driver only. You can select
any one of the VMS editors to generate a configuration file. You can use the
BCS command line facility to generate and modify the configuration file. With
either, you can define the BITBUS nodes (devices/positions connected to the
serial BITBUS line). Also, with the command line facility you can interact with
the Program Interface.

CHAPTER 1 OVERVIEW 3

PAGE 4 INTENTIONALLY LEFT BLANK

PANORNOISIN GG F0000050.0.0.585.0000.680000.0:00.0.0.0.9.0.0.09908
PG E P 605090909000 0086.050909:00.000 0096609000
L0 000.00 0008 8.0.000000006606.68008000409.0.0.00.69960

BEA SO EFEIA.36.0500060004080.0.60000800006¢05.000004
POGELS$080.6000.8000090.000.640.006009.9000.0.6.00004
Ji80.9060.8600.0.9.00605000.400046600.0.0.0.0.6.0.0006.00
$9.0.4.0.00.0090.0.0.8.0.000860.0040.060009.0:9.50,6.9.0.0.0.04

D6 9.0.000:0.8.60.000.98000.06.606506000.0806.900.80
$0.0.0,0.9.0,0.0.56.4.6.9.9.0.9.0.05.0.0.6.¢.0.4.0.0.0.0.9.0:9.0.0 4
10.0.8.0,0.0.0.0.0.0.0.0.0.0.0.9.0.6.0.0.6.6.0.0.0.6.4.6.9:4.954

0 $.00,6.0.0.0.90.9.¢99.99.90.400.00066.0.0959
1$,0.0,8.9.6.0.846.9.0.64.000060.00060900¢4
§0.0.0.0.0.0.400.0.6.9.4.000.00400.6686094
§0.0.9.0.0.04840688449.069¢.900
§8.0.0.8.4.0.05.0.6.0.0.0.999.0.064.¢.94
$9.9.6.0.0.6.0.6.4.9.0.9.9.9.9.0.0.0.0.6.
§10.0.6.0.0.0.6.0.0.9.9.9.8.¢0.0.9.0.04

19.9.0.0,8.9.4.0.4.6.9,6.9.0.0.9,4

119.6.9.0.0.6,4.9.6.9.9.6.9.4 4

0:0.0.0.6.9.0.9.6.9.0.9,0.¢

$19.9.9.4.0.8.9.9.¢.44

XXXAXKKXK

XHUUAXXX

KXXXX
XXX
X

XXXXX

XXXXXXX

XAXAXXNKX

XXAXXXXAXXX
p.8.9.0.4.6.9,4.9.9.9.¢.4.4
XXAXXX XX KAXXXXX
$9.0.0.0.9.:9.0.9.9.9.0.0:9,6.9¢
).:0.9.9.9.9.6.9.9.6.9.9.6.6,0,60'¢ ¢
9.0,0.6.0.6.0.0.8.9.0.6.0.¢.6.6:06.0.
§;9.0:9.0.0.0,0.9.0.9.¢.$.¢.0.4.6.0.0.6.6,0.6 ¢
$.0.0.9.6,0.9.0.0.0.0.48:0.0.0.0.6.0.9.9,0.9.9.0.4
$9.0,0.6.9.9.0.0.0.6.6:0.0.0.6.6.0.0.0.6.0.9.6.9.0.0 4
$19.8/9,0.0.0:0.6,0.6.0.64.0.0.6,0.0.0.8.0.6.4,¢.0 0461
9,9.9,9.8.0.0.0.9.0.9.¢.9.6.0.9.0.6.9.0.0.0.0.0.00.009.0.1

b0.6,0.0.6.9.0.0.0.0.0.0.00.0.4.6.6.0.0.0.0.9.6.0:4.0.0.0.9.0.0.4
219.0.0.0,0:0.0.8.0.4.0.0.0.0.0.0.0.6.¢:0.00,0.0.0.6.0.0.0.0 ¢.9.0.9'¢

10:6,0.0.0.0.0.6.9.0.0.0.9.9.6.9.9.0.0.0.0.0.0.0.0.6.9.6.0.9.99.699 ¢
D10.0.8.0.9.0.0,9.0.0.0.6.:0.0.0.0.0.0.9.0.8.6.9.0.6.0.0.0.0.0.0.9.00 66904
D.8,0.9.0.8:0.8.6.6.6.0.0.0.,6.8.0.0.6.0.0.0.0,0:0.0:0.0.0.0:0.0.900.999 494
0/00.0,0.8.0.0.¢.0.0.¢.0.0,6.9.6.9.0.0.0.0,0.5.6.0.0.6.0.0.0.0 .09 0.4 949 094
D0.0.9:0.0.8,0.0.6.9.0.0.0.0.0.9:0.6.8:8.0.0.9.6.9.0.9.0.0.:00.0.0.9090 00000001

DD 0.9.0.0.0.0,00.0.0.6.6,0.6.0.6.6.0.6:¢.6.0.60.¢.0.40.0.9.0.9.0.0.0.00999 606004
.80.9.0.9.9.0.6.0.0.0.0.0.0,0.0.0.0.0.0.0.0.010.0.0.0.0.0.0.0.0.00.0.4.09 40 009000094
D00.0.0.0.9.0.9,0,0.0.0.0.8.0.0.070.9.6.0.0:0.0.0.0:0.0.0:0.0:0.0.0:0.910.0.0/0 96000000004

CHAPTER 2
BITBUS CONTROLLER

INTRODUCTION

This chapter contains a description of the BITBUS Controller, the BITBUS
interface, and the RAC command set.

IBQO1 BITBUS CONTROLLER (M3125)

The 1BQ0O! BITBUS Controller contains a supervisor microprocessor and a
communications microcontroller. Under the control of the microprocessor, the
BITBUS controller has a full functionality Q-bus interface to the MicroVAX II.
The microcontroller is in contro! of the BITBUS multidrop line and initiates all
communications activity.

BITBUS CONTROLLER CONTROLS

The following sections describe how the IBQO1 BITBUS Controller controls the
intelligent slave nodes through message packets. From your instructions
through the driver commands. the IBQO1 BITBUS Controller forms BITBUS
messages.

NOTE
This is an overview of the BITBUS Controller. You must reference
the applicable manuals on slave nodes you have in your BITBUS.

CHAPTER 2 BITBUS CONTROLLER §

BITBUS INTERFACE

The interface between the IBQ0O1 BITBUS Controller and the BITBUS pro-
vides access to the slave nodes through message-passing utilities in the operat-
ing system of the 8051 CPU. This is iDCX, the Intel operating system for the
8051 CPU. which is a part of the Intel 8044 microcontroller. The Remote
Access and Control (RAC) interface for the BITBUS interconnect defines a set

of high level commands and responses to perform general purpose operations at
a slave nod:

See the Intel Distributed Control Modules Databook (23097-001) and
Distributed Control Modules (146312-001) for details on BITBUS, iDCX, and
RAC.

MESSAGE AND DATA LINK PROTOCOLS

Protocol in the BITBUS message provides a task-to-task message interface be-
tween a master node (IBQO1 BITBUS Controller) and multiple slave nodes
using an order/reply structure. The master node issues orders to the slave
nodes which respond with replies. Every order on the BITBUS requires a reply.

This structure is built on top of the data link protocol using information frames
for the message transfer. The data link protocol is a subset of the IBM™
Synchronous Data Link Control standard. The BITBUS data link protocol con-
nects a master device to multiple slave devices in a multidrop topology.

6 CHAPTER 2 BITBUS CONTROLLER

REMOTE ACCESS AND CONTROL (RAC) COMMANDS

The BITBUS Controller controls the remote nodes through RAC 1/0 and
memory commands. All slave nodes must be configured with Intel-compatible
software. This task must reside at task 0 on the node. If the remote node does
not support the RAC commands. an error message is returned when certain
RAC commands are addressed to the node.

The RAC interface is built on top of the standard message protocol. The
message format is shown below.

RS LSH
\ % — FIRST BIT
LENGTH TRANSMITTED
ME | o | PE | TR | RESERVED 4 BITS)
NODE ADDRESS
SOURCE TASK DESTINATION TSk

COMMAND Re E20ONSE

DaATA

LAST BIT— —
TRANSMITTED

5-5642

CHAPTER 2 BITBUS CONTROLLER 7

Message Format

All fields in a message, except the data field. are required in all messages. A
description of the fields in a message follows:.

LENGTH

MESSAGE TYPE (MT)

SOURCE EXTENSION (SE)

DESTINATION
EXTENSION (DE)

TRACK (TR)

RESERVED

NODE ADDRESS

SOURCE TASK

DESTINATION TASK

COMMAND/RESPONSE

DATA

This eight-bit field specifies the total length of
the message and can be between seven and 255
bytes. This is equal to the total number of data
bytes plus seven.

This bit describes the message as an order (0) or
a reply (1). All message from the IBQC1
BITBUS Controller are orders, and all messages
from slave nodes are replies.

This bit indicates the source of the order or the
destination of the reply. It is set to 0 for the
1BQO1 BITBUS Controller and it is set to 1 for
the IBQO1 BITBUS Controller extension.

This bit indicates the destination of an order or
the source of a reply. It is set to O for slave.
and it is set to 1 for a slave extension.

This bit is used to provide message control at a
master or slave which may be required by some
implementations. It is set to 0 when sending a
message. and it is set to 1 when receiving a
message from the IBQO1 BITBUS Controller.

These four bits are reserved and are cleared
when sending a message.

This eight-bit field specifies the destination node
for orders and the source node for replies. Valid
entries are 1 through 260.

This four-bit field identifies the task that has
generated an order or is to receive a reply.

This four-bit field identifies the task that is to
receive an order or has generated a reply.

This eight-bit field is used by both the user
tasks and the message protocol. The message
protocol uses the field for reporting errors.

This field can be a maximum of 13 bytes. and it
is the only optional field in the message.

8 CHAPTER 2 BITBUS CONTROLLER

RAC Control Commands

The RAC control commands are:

CREATE TASK

DELETE TASK

GET FUNCTION IDs

RAC PROTECT

RESET

RAC Access Commands

Initializes and begins execution of a task at a
slave node. It assumes that the task to be
created already exists in the slave node
memory.

Stops a particular task from running in the
slave node. The task number associated with the
deleted task can be used again.

Causes the slave node to respond with a list of
function ID codes for the tasks currently in ex-
istence on the node.

Suspends or resumes RAC functions at a slave
node. When suspended, the RAC functions only
recognize the remote control commands.

Returns the slave node to its original (after
power-up) state.

In the RAC access commands there are three command groups:

1. Memory commands — These commands (MEMORY UPLOAD and
MEMORY DOWNLOAD) control the flow of data between the
master node and a slave node.

2. 1/0 commands — These commands (READ /O, WRITE 1/O,
UPDATE 1/O. OR /0O, AND I/O, and XOR 1/0O) allow the master
node to access up to 256 1/O ports on each slave device.

3. Status commands — These commands (READ STATUS and
WRITE STATUS) allow the master node to access up to 256 bytes
of information on each slave device.

CHAPTER 2 BITBUS CONTROLLER 9

The RAC access commands are:

XREAD 110

XWRITE 1/O

XUPDATE 1/O

OR /O

AND 1/O

XOR 1/O

READ INTERNAL
MEMORY

WRITE INTERNAL
MEMORY

DOWNLOAD EXTERNAL
MEMORY

UPLOAD EXTERNAL
MEMORY

Causes the slave node to read the specified 1/0
ports.

Causes the slave node to write to the specified
1/0 ports.

Causes the slave note to write the data byte

fields to the specified I/O ports and then reread
the ports.

Causes the slave node to read the specified 1/0
port. and OR the data with the contents of the
data byte field, write the data back to the 1/O
port. and reread the I/O port.

Causes the slave node to read the specified 1/0
port and AND the data with the contents of the
data byte field. write the data back to the I/O
port, and reread the 1/O port.

Causes the slave node to read the specified 1/0
port and XOR the data with the contents of the
data byte field. write the data back to the 1/0O
port, and reread the /O port.

Causes a slave node to read to the specified
memory locations.

Causes a slave mode to write to the specified
memory locations.

Write the data starting at the external slave
memory.

Read the data starting at the external slave
memory location.

10 CHAPTER 2 BITBUS CONTROLLER

TROUBLESHOOTING

For problems encountered with the BITBUS Controller, follow the procedures
contained in the IBQ01 BITBUS Controller Technical Manual (EK-IBQO1-TM).

BITBUS Errors

A list of errors in hexadecimal returned by the BITBUS in 10SB[mode reply]

follow.

0
80
81
82
83
84
91
93
96
96
97 to FF

No error

No destination task
Task overflow

Register bank overflow
Duplicate function ID
No buffers

Protocol error

No destination device
RAC protected

Unknown RAC command

Reserved

IBQO1 BITBUS Controller Errors
The following errors are returned by the IBQ0O1 BITBUS Controller in

1I0SB[IBQO1 code].

0
1
2
3
4
5
6

No error

Invalid command

Node offline

DMA failure

Command failed to complete
Data buffers

Transmission failure

CHAPTER 2 BITBUS CONTROLLER

11

PAGE 12 INTENTIONALLY LEFT BLANK

P00 0800080800000 0 8080000000000 0600000000856.006.60.0.40
p 00000000008 80000 00808089000 0800000000 4000008006004
PO 8980060068 08080000000000 08 4600000046¢94040.¢0,¢4
XXX OO KX OO K XK KK KA XAKXX XX XK XXX

PO IUN G088 00 0800000000000 808080600096606484

P8 89.6660 6800008000 000000000 0800060600000

§ 0806000086 084000080000008000886000404043

P8 0.0.00000.6600004004040006064.0066446900¢4
D886 6.000600080000600000000009060¢0¢4

p 0000000000080 000800800 0¢00.048 46464

D $.6.00040000008400990000400800¢¢4
}.0.0.0.9.0.809.6.606.005800086406468¢¢4

PG 088800449 ¢80006900004¢6¢64

$ 0000040868 00468¢¢64404¢44

b 88600 068000040400 0440044

D0 000694008080 00460¢44¢4
XEAXKXAXA XK XX NKXXXXKK

$.0.9.¢.0.0666668804444

XXXAXAXKAXAKAXKAXXK

XXRAXKXAXX XX XXX

XXXXXXXXXAK

XXXXXAKXXX

XXXXXXX

XXXXX
XXX

X

XXXXX

XXXAXXX

XXXXXXXXX

0.9.9.0.6.0.4.6.44.¢4
AAAXXXAXAXKXXX
h0.4.9.6.0.6.0.¢0.0.09444
XXXXXAXXXXXAXKXKAX
p.0,9.0.0.0.9.¢.0.0.4.6¢.¢.4.6.66.4 4

0. 8.0.9.8.0.6.06069.80480640044

P9 9.0.098.860.8.960.¢6.00.4.¢0004
XXAX KA XA KA XX KX XK XKXXX
P.9.9.0.0.0.0.0.0.0.6.0.0,0.6.0.0.9.9.40.0.09.09.9

. 9.6.0.9.0.0.0.6000808609865860068644

B O.6.0.8.0.9.0.9.00000¢59080.4¢96640904464

pO6.0.8.0.9009006090400.08009000800600
p9.9.90.0.9.60.60000908690666.0909.0864.¢60096¢4

§9.9.9.606.0.6.68.0880080000068066666806600004

196999006 0.86960098.00004006¢9090¢060666¢¢4

P8 0000800000868 8 000400080 08890:08.8.0409.9.9.6064

P00 00.0.0.0.00.04.0.00909.080,0000600.0600040.9006¢400

D009 00060000 08089060.00.0606060800000060000646944
f0.0.0.800680600000490.000000¢008000000080669906660¢4

PO 000800080 00000 080000 0000.06980000060460600800664

PO OO EE 0000000000900 80000000 00000090.0080600080.9¢484

CHAPTER 3
CROSSASSEMBLER AND DOWNLOAD
UTILITIES

ASSEMBLER ASM44 OVERVIEW

The DATEM dDCM844 absolute assembler (ASM44) for the Intel 8044 micro-
controller provides a tool for the generation of RMX51 application code. The
ASM44 supports the needs of computer specialists.

OPERATING ENVIRONMENT

ASM44 may be used with the download utilities (IBQSLD44V and
IBQ$IBQ44E) supplied by DEC™ This combination lets you generate applica-
tion code, which in turn may be installed on BITBUS slave nodes. A review of
the operating environment of such application software follows.

Slave nodes have a local 8044 microcontroller for network communications and
local processing. Each slave node has the Intel RMX51 real-time operating
system, a Remote Access and Control (RAC) task, and one or more software
tasks. Although a slave node can support remote access to the 1/O functions
through command/response messages. it is often desirable to have software at
the slave nodes provide application specific processing.

Slave node software operates under the control of the RMX51 operating
system. This control program provides facilities which automaticaily schedule
application tasks, preprocess asynchronous interrupts, provide intertask
message support, and allows you to redefine the operating characteristics in
realtime. Table 3-1 shows the available system commands. Entry points for
these functions are in the file RMX511.EXT, which is included in this release.

DEC™ is a trademark of Digital Equipment Corporation.

CHAPTER 3 CROSSASSEMBLER AND DOWNLOAD UTILITIES 13

Table 3-1 RMX51 System Commands

RQCREATETASK - Create a new task
RQDELETETASK - Delete an existing task
RQALLOCATE - Allocate message buffer
RQDEALLOCATE - Deallocate message buffer

RQDISABLEINTERRUPT - Disable interrupt source
RQENABLEINTERRUPT - Enable interrupt source

RQGETFUNCTIONIDS - Return list of active tasks
RQSENDMESSAGE - Send a message

RQWAIT - Wait for message, interrupt or timeout
RQSETINTERVAL - Set system clock interval

You can use the RMX51 system calls to provide additional capability at slave
nodes by generating new RMX51 tasks. These tasks are written in assembly
language, and the purpose of the ASM44 and the download utilities is to aid in
the generation of these tasks.

ASSEMBLY LANGUAGE PROGRAMMING

The 8044 microcontroller executes instructions fetched from a program
memory. Each instruction directs the machine to either fetch or store a data
variable. modify a variable. or transfer control to another string of machine
instructions. Normally. instructions are executed sequentially from the program
memory. The 8044 is an 8-bit processor, the data manipulation instructions op-
erate on bytes (8-bit quantities).

With ASM44 you specify the instruction sequence using a set of mnemonics
which are then translated into bit patterns. After you create a source file, you
instruct the assembler to translate this source file into an object file for loading
into the processor ready for execution.

ASM44 uses a hexadecimal file format to store the machine instructions which
the download utilities software may then transfer across the BITBUS to the
slave node processor. In addition, you may specify that a list file be generated
which contains the mnemonics, the resulting object code, and any erroneous
instructions.

14 CHAPTER 3 CROSSASSEMBLER AND DOWNLOAD UTILITIES

RMX PROGRAMMING ENVIRONMENT

ASM44 supports programming RMX51 application tasks, which usually have
the following structure.

TASK_INITIALIZATION

|
~-> WAIT_FOR_REQUEST
l

|

|

i I
| PROCESS_REQUEST
I

|

|

|

Initialize variables/data

Wait for function request

Process request

|
SEND RESPONSE

Send response indicating status/data

In general, each task should be fully standalone, each task should be self-
contained. and code should not be shared by tasks.

CHAPTER 3 CROSSASSEMBLER AND DOWNLOAD UTILITIES 15

8044 ARCHITECTURE

The 8044 microcontroller architecture is optimized for control applications.

Memory Addresses

The processor recognizes five address spaces.

1- CODE (0-64K)

2- Directly and indirectly addressable on-board RAM (0-127)
3- External DATA (0-64K), indirect addressing only

4- Bit addressable space (0-255)

6- Special Function Registers (128-255)

Also, the processor supports special instructions. which allow reading the code
space to fetch constants. There is no instruction that allows writing to the code
space.

External data memory may only be accessed indirectly through either the
DPTR register or a combination of the P2 port. and either RO or R1. All such
transfers must use the A register as the second operand.

The bit-addressable address space overlaps the on-board RAM memory from lo-
cation 20H to 3FH (0-127) and the selected special function register bits. When
using bit addressing. the CARRY flag (C} is treated as a bit accumulator.

General Purpose Registers

There are four banks of general purpose registers. with each bank containing
eight registers. Registers RO and R1 may be used to indirectly access either
on-board memory or external data-memory. Two bits within the Program
Status Word (PSW) select the active register bank. The registers are mapped
to the on-board data memory locations 0-1FH.

Stack

The stack pointer points to an on-board stack area (the last location used)
which, in turn, must map tu the on-board data memory. Typically, the stack is
used to save intermediate results (PUSH and POP) as well as return addresses
during subroutine CALLS.

16 CHAPTER 3 CROSSASSEMBLER AND DOWNLOAD UTILITIES

Symbolically Addressable Hardware Registers

All special function registers may be accessed through predefined assembler

names. Table 3-2 lists these registers.

Table 3-2 Special Function Registers

Symbol Data Address Function

ACC EOH ACCUMULATOR

B FOH MULTIPLICATION REGISTER
DPH 83H DATA POINTER (HIGH)

DPL 82H DATA POINTER (LOW)

IE * A8H INTERRUPT ENABLE REGISTER
IP * B8H INTERRUPT PRIORITY

NSNR * D8H XMIT/RECV COUNT

PO * 80H 1/0 PORT 0

P1 90H /0 PORT 1

P2 AOH 1/O PORT 2

P3 * BOH 1/O PORT 3

PSW DOH PROGRAM STATUS WORD
RFL * CDH RECEIVE FIELD LENGTH
RBS * CCH RECEIVE BUFFER START
RBL * CBH RECEIVE BUFFER LENGTH
RCB * CAH RECEIVE CONTROL BYTE
SBUF * 99H SERIAL BUFFER

SIUST * D9H SIU STATUS BYTE

SMD * C9H SERIAL MODE BYTE

SP * 81H STACK POINTER

STD * CEH STATION ADDRESS

STS * C8H STATUS BYTE

TBS * DCH TRANSMIT BUFFER START
TBL * DBH TRANSMIT BUFFER LENGTH
TCB * DAH TRANSMIT CONTROL BYTE
TCON * 88H TIMER CONTROL

NOTE

Registers marked with * are maintained by RMX51 and should

never be modified by the user.

CHAPTER 3 CROSSASSEMBLER AND DOWNLOAD 'LITIES 17

Table 3-2 Special Function Registers (Cont)

Symbol Data Address Function

THO * 8CH TIMER 0 HIGH BYTE
TH1 * 8DH TIMER 1 HIGH BYTE
TLO * 8AH TIMER 0 LOW BYTE
TL1 * 8BH TIMER 1 LOW BYTE
TMOD * 89H TIMER MODE

NOTE
Registers marked with * are maintained by RMX51 and should
never be modified by the user.

Function Flag Bit Location and Symbols

Carry Flag (C REG) CY PSW.7
Auxiliary Carry AC PSW.6
User Flag FO PSW.5
Register Select 1 RS1 PSW 4
Register Select 0 RSO PSW.3
Overflow ov PSW.2
Reserved _ PSW.1
Parity Flag P PSW.0

Bit Addressing

Extensive bit control instructions are available on the 8044 microcontroller.
Any of the bit addressable registers, including the bits w:thin the ACC and
PSW registers, may be directly accessed using the format ACC.x (where x indi-
cates the selected bit). Bit instructions use the C register as a bit accumulator.
A full range of bit-test transfer-control instructions are availatle.

18 CHAPTER 3 CROSSASSEMBLER AND DOWNLOAD UTILITIES

RMX51 FLASH PROGRAM EXAMPLE
NAME LED_FLASH

iThe following program has the structure of an RMX51
:task responsible for implementing a LED FLASH function.
;The function accepts 2 commands as shown below:

COMMAND RESULT
BYTE

; 0 Turn off the LED flash function
1 Turn on the LED flash function

‘Wiiile the LED flesh function is enabiled, it will cause the RED
:indicator LED to flash at a 250 msec rate.

.The function will return an e_ok (0) response if the command is
.accepted or an e_invalid (011H) if the command is invalid.

include rmx51i.ext

wait_msg equ 01 wait for message

e ok equ 0 :command byte ok

e_invalid equ 011h :invalid command byte
clr_cmd equ 0 .clears (disables) flash function
enb_cmd equ 1 ;enables flash function

:The following bits are defined within the 8344 bit space
bseg at 04%h

led flag: dbit 1 :flag tracks status of LED
enb_flag: dbit 1 ;set to 1 if flash enabled
ledlit equ P1.0 :bit address of led

CHAPTER 3 CROSSASSEMBLER AND DOWNLOAD UTILITIES

19

:The program is ORG'D at the beginning of SOCKET 3 of a DATEM
dDCM900

cseg at 4000h

task_entry: ;enter here when task starts
clr led_flag sled initially off
setb enb_flag ;but enabled for flashing
clr ledlit :turn off the LED
comm_fnc: .forms main program loop
mov a,#wait_msg ;wait for a message
mov b,#0feh wait for 250 msec
Icall rgwait :go wait for it
jb acc.0,comm_0 .jmp if message received
acall flash_fnc :go flash LED if enabled
ajmp comm_fnc :then wait for next event
comm_0:
mov ar7 :get buffer (assume onchip)
add a.#6 :point to command
mov r0,a :set pointer
cjne @r0,#clr_cmd,comm_1 jump if not clear command
acall clr_fnc iclear the flash enable function
ajmp send rsp :go send response, all okay
comm_1:
cjne @r0,#enb_cmd.comm_2 :jump if not enable command
acall enb_fnc ;enable the flash function data
ajmp send_rsp .and exit
comm_2:
mov b.#e_invalid :invalid command

20 CHAPTER 3 CROSSASSEMBLER AND DOWNLOAD UTILITIES

send_rsp:

mov ar7 ;get message pointer
mov r0,a ;set up pointer register
inc r0
inc r0 :adjust to point to length field
mov @r0,.#7 :force length to 7 bytes
inc r0 :point to flag byte
mov a,@r0 :get flag byte
orl a,#80h ;set to response message
mov @r0.a ;store it in message
inc r0 ;skip node address field
inc r0 :skip task id field
inc rQ ;point to response field
mov @r0,b ;save response byte
mov dpl.r7 ;set up dptr with message pointer
mov dph.#0
Icall rgsendmessage ;g0 send response message
ajmp comm_fnc ;:and go wait for next...
clr_fnc:
clr enb_flag ;clear flash enable flag
mov b.#e_ok ireturn e_ok status
ret
enb_fnc:
setb enb flag .enable flash flag
mov b.#e ok ;return e_ok status
ret
flash_fnc:
jnb enb_flag.flash 1 .exit if not enabled
jnb led_flag.led_on :if led off, turn it on
clr ledlit ;else turn it off
clr led flag
sjmp flash 1 ;g0 back and wait

CHAPTER 3 CROSSASSEMBLER AND DOWNLOAD UTILITIES 21

led_on:

flash_1:

itd1:

end

setb ledlit
setb led flag

ret
org 5ffOh

dw 0AA55h

dw itdl-task_entry
db 6

db 3

db 03h

dw 0

dw itd1-itd1+1

itd1

;turn led on

:exit

:allow for autoload

flags

;entry point

;stack size

:FUNCTION ID

;register = don't care, priority 3
:no interrupt processing allowed
;point to invalid ITD

;indicate itd address

22 CHAPTER 3 CROSSASSEMBLER AND DOWNLOAD UTILITIES

ASM44 INSTRUCTIONS

The following sections describe the instruction set of the 8044 microcontroller.
For further information on the 8044 instructions and hardware functions, con-
sult the manufacturer's reference material.

INSTRUCTION SUMMARY

The 8044 instruction set is provided as shown below, in alphabetical order. This
table contains the mnemonic, the function, and a description of operation.

Mnemonic Function Description
ACALL code_add -save address of next instruction on stack
and transfer contro! to specified address.
Target must be INBLOCK.
ADD A #data -add immediate data
A,@Rr -add indirect
A.Rr -add register
A.data_add -add to direct address
ADDC A #data -add with carry immediate data
A.@Rr -add with carry indirect
ARr -add with carry register
A data_add -add with carry to uirect address
AJMP code_add -transfer to INELOCK target address
ANL A.#data -bitwise AND A with immediate data
A.@Rr -bitwise AND A with indirect address
A.Rr -bitwise AND A with register contents
A.data_add- -bitwise AND A with direct address
data_add.#data -bitwise AND direct address immediate
data_add.A -bitwise AND direct address with A
C.,bit_add -bitwise AND C with bit address
C.hbit_add -bitwise AND C with complement of bit
CJNE #Rr #data,code_add -compare/jmp not equal

A.#data.code_add
A,data_add.code_add

-target must be relative (+/- 127)

CLR A -clear A register
C -clear C bit
bit_add -clear contents of bit address

CHAPTER 3 CROSSASSEMBLER AND DOWNLOAD UTILITIES 23

Mnpemonic Function Description

CPL A -1's complement of A register
C -complement C bit
bit_add -complement contents of bit address

DA A -decimal adjust A register

DEC @Rr -decrement contents of memory
A -decrement contents of accumulator
Rr -decrement contents of register
data_add -decrement direct address byte

DIV AB -divide A/B

DJNZ Rr,code_add -decrement, jmp non zero
data_add,code_add

INC Rr -increment register r
A -increment accumulator
DPTR -increment 16-bit DPTR register
@Rr -increment indirect location
data_add -increment direct address byte

JB bit_add,code_add -jmp if bit is set (relative)

JBC bit_add,code_add -jmp if bit and clear it

Je code_add -jmp if C bit set (relative)

JMP @A+ DPTR -jmp through table address

JNB bit_add,code_add -jmp if bit not set (rclative)

JNC code_add -jmp if C bit cleared (relative)

JNZ code_add -jmp if Z flag cleared (relative)

JZ code_add -jmp if Z flag set (relative)

LCALL code_add -save address of next instruction on stack

and transfer control to specified address.
LJMP code_add -transfer to code address

24 CHAPTER 3 CROSSASSEMBLER AND DOWNLOAD UTILITIES

Mnemoniec
MOV

MOVC

MOVX

MUL
NOP
ORL

POP

Function

@Rr.#data
@Rr A
@Rr,data_add
A.#data

A,@Rr

A Rr

A,data add
C,bit_add
DPTR,#data
Rr,#data

Rr.A
Rr.data_add
bit_add.C
data_add,#data
data_add,@Rr
data_add.A
data_add.kr
data_addl.data_add2
A.@A+DPTR
A@A+PC

@DPTR,A
@Rr A
A,@DPTR
A @Rr

AB

A #data

A,@Rr

ARr

A data_add
data_add,#data
data_add,A
C.bit_add
C./bit_add

data_add
data_add

Description

-move immediate to indirect address
-move accumulator to indirect address
-move direct data to indirect address
-move immediate to accumulator

-move indirect to accumulator

-move register contents to accumulator
-move direct address to accumulator
-move bit variabies to C register

-16-bit data allowed

-move immediate to register

-move accumulator to register

-move direct address to register

-move C register to bit variable

-move immediate data to direct address
-move indirect to direct address

-move accumulator to direct address
-move register to direct address

-move direct address to direct address
-load A from code space through DPTR
-ioad A from code space through PC

-move accumulator to external memory
-move accumulator to external indirect
-move external memory to accumulator
-move external indirect to accumulator

-multiply A*B
-do nothing

-bitwise OR A with immediate cr._a
-bitwise OR A with indirect aadress
-bitwise OR A with register contents
-bitwise OR A with direct address
-bitwise OR direct address immediate
-bitwise OR direct address with A
-bitwise OR C with bit address
-bitwise OR C with complement of bit

-pop byte from stack
-push onto stack

CHAPTER 3 CROSSAMBLER AND DOWNLOAD UTILITIES 2§

Mnemonic
RET
RETI

RL

RLC

RR

RRC
SETB

<MP
SURB

SWAP
XCH

XCHD
XRL

Function

> > > »

C
bit_add

code_add

A #data

A ,@Rr
ARr

A, data_add

A

A,@Rr
ARr
Adata_add

A,@Rr

A, #data

ARr
A.data_add
data_add,#data
data_add,A

Description

-return from CALL
-return from interrupt
-rotate left

-rotate left through carry
-rotate right

-rotate right through curry

-set carry bit
-set bit address

-relative jump

-subtract with borrow
-subtract indirect
-subtract register
-subtract to direct address

-swap upper/lower nibbles

-exchange accumulator indirect
-exchange accumulator with register
-exchange accumulator with data address

-exchange low nibbles indirect

-EXCLUSIVE OR A with immediate data
-EXCLUSIVE OR A with indirect address
-EXCLUSIVE OR A with direct address
-EXCLUSIVE OR direct address immediate
-EXCLUSIVE OR direct address with A

26 CHAPTER 3 CROSSASSEMBLER AND DOWNLOAD UTILITIES

ASM44 OPERANDS AND EXPRESSIONS

The following sections describe the format of ASM44 instructions and sub-
fields. In ASM44, the general form of an instruction line is:

<label: > Mnemonic <operand> <,operand> <.operand> <;comment>

The number and types of operands depend on the instruction or directive mne-
monic. Operands fall into one of six classes and may be represented as a con-
stant or expression.

SEGMENT SPACES (ADDRESS SPACES)

ASM44 supports the five address spaces in the 8044 as separate segments.
Each segment space has a location counter which is updated when addresses
are assigned as storage location. Also, in the code segment through the
generation of object code. Each location counter is initially set to 0. When a
segment is activated using one of the segment selection directives. the location
counter is set to either the last location used or to the value specified by the
optional 'AT expression’ clause.

Segment Characteristics

CODE Contains executable object code (0-65535)

DATA Onboard direct address space (0-255)

BIT Onboard bit addressable address space (0-255)
IDATA Onboard indirectly addressable addresses (0-255)
XDATA Offboard indirectly addressable addresses (0-65535)

IDATA and XDATA types may only be used as operands in the IDATA
{(XDATA) directives or in immediate mode addressing while loading the indirec-
tion registers RO. RI. and DPTR.

The active location counter may be set to an arbitrary value using the ORG
expression directive. Note that when you modify the location counter using
ORG expression directive, the address range is restricted to addresses greater
than or equal to the location pointer value, and less than the hardware defined
maximums.

The current position of the location counter is represented by symbol $, which
is used in expressions as any other symbol. The § represents the first byte of
storage of the instruction or directive.

CHAPTER 3 CROSSASSEMBLER AND DOWNLOAD UTILITIES 27

SYMBOLS

Symbols must begin with a letter or with one of the special characters ? or _,
and may be up to 255 characters in length. Only the first 31 characters are
significant. Each symbol must be stored in an internal table: this restricts you
to approximately 10000 characters spaces. (Assuming an average of eight char-
acters per symbol, this represents 1200 user defined symbols.) All characters
are converted to upper case. Refer to the RESERVED SYMBOL NAMES sec-
tion in this chapter for the list of all predefined symbols.

All symbols are defined with four attributes.

1. The type attribute defines the symbol as a register, number, or an
address.

2. The segment-type attribute defines the segment address type
(DATA., BIT, XDATA, CODE, an IDATA).

ASM44 is absolute, forcing all symbols to have local attribute.

The value attribute is either the numeric value assigned, the ad-
dress location assigned, or, if the symbol is a register, a value rep-
resenting the register.

Once a symbol is defined, it may not be redefined unless the SET directive was
used. ASMd44 performs checks on the attribute fields for the suitability of the
symbol, and reports errors if the symbol cannot be used.

ASM44 also defines a group of special assembler symbols to represent special
registers within an instruction opcode. These symbols, listed below, may be
used as part of the operand field within an instruction. The special assembler
symbols A and RO-R7 may also appear as the operand in the EQU and SET
directives. Symbols defined as special assembler symbols may only be used as
operands in instructions and subsequent EQU and SET directives.

Special Symbol Description

A Accumulator

RO-R7 Eight general-purpose registers of currently active reg-
ister bank

DPTR 16-bit data pointer used for indirect references to
CODE and XDATA space

PC Program counter

C Carry flag/boolean accumulator

AB Operand for MUL and DIV instructions

28 CHAPTER 3 CROSSASSEMBLER AND DOWNLOAD UTILITIES

The absolute addresses of the currently active registers may be accessed
through the predefined symbols ARO-AR7. The data address value of these
symbols is calculated as an offset from the value specified in the USING direc-
tive. Refer to the Assembler State Control Directives section in this chapter. If
a symbol is defined with an EQU or SET directive to one of ARO-AR?7, its
value will not change following subsequent USING directives.

STATEMENT LABELS

Labels are a form of symbol which are defined by specifying the symbol name
immediately followed by a colon (;) as the first field on a line. The labels are
defined with the value of the current location pointer and with the segment
type of the active segment. Labels may be used in any expression which ac-
cepts a memory address. Label definitions may only appear on empty state-
ments, statements which initialize data (DB and DW), storage allocation
directives (DS and DBIT) and machine instructions.

CHAPTER 3 CROSSASSEMBLER AND DOWNLOAD UTILITIES 29

ASSEMBLY TIME EXPRESSIONS

Assembly time expressions consist of numbers, character strings, symbols and
operators, which are evaluated during assembly to produce a single 16-bit value
and associated type.

Numbers

Numbers may be specified using a default radix (2-16) or an explicit radix by
appending a radix specifier (as shown below). All numbers must begin with a
digit (0-9) and will be assigned the type NUMBER.

Radix Specifier Radix

B Binary (0.1)

Oor Q@ QOctal (0-7)

D Decimal (0-9)

H Hexadecimal (0-9, A-F)

If no radix specifier is provided, ASM44 uses the default radix (see radix
control).

Numbers are entered as unsigned values in the range 0-65535, but all ex-
pression evaluation is performed using signed arithmetic rules. If a number
greater than 65535 is entered, an error message will be generated. Arithmetic
overflows are not trapped during expression evaluation.

Character Strings

Character strings are specified b: enclosing the string in single quotes ('). If
the string is less than three characters long, it may form part of an expression
and will be automatically converted to a number, the first character in the high
byte position if two characters are present or the low byte position if one char-
acter is present.

Strings longer than two characters may only be used in the DB directive and
each character (left to right) will be assigned to a consecutive memory location.
Note that when used in a DB directive, a null string formed by two adjacent
quote characters will not be assigned any locations. If used in an expression, a
null string will evaluate to 0. A quote character may be embedded in a string
by immediately following the quote with a second quote character.

30 CHAPTER 3 CROSSASSEMBLER AND DOWNLOAD UTILITIES

Operators

ASM44 supports arithmetic, logical, special and relational operators. All opera-
tors return to a 16-bit value with the type determined by the operands.
Operators represented by alphanumeric strings (MOD, NE, AND, ...) must be

separated from adjacent operands by at least one space or tab character, or be
enclosed in parenthesis.

E«pressions are evaluated left to right according to the precedence levels
shown, unless specifically modified by use of the () parenthesis operators.
ASM44 maintains an independent arithmetic stack which allows operand nest-
ing up to 25 levels.

Relational operators evaluate to either true (1) or false (0) and ASM44 will
treat any non-zero value as true. Relational expressions may be used as nu-
meric results, allowing the encoding of in-line, conditional assignments. The
statement:

ABC EQU (X1 > X2)*DEF + (X1 <=X2)*GHI

assigns ABC the value of DEP if the variable X1 is greater than X2, or the
value of GHI if X1 is less than or equal to X2. The relational operators treat
variables as signed, 16-bit values in all calculations.

Since many operands within ASM44 are restricted to byte values, it tests to
ensure that the assigned values fit into a byte. Bytes are considered unsigned
values and if contained within an expression are treated as positive integers in
the range 0 to 255. When testing the results of an expression being assigned
to a byte quantity, ASM44 checks thac the upper byte is all zeros (range 0 to
255) and will generate an error message if the quantity cannot be represented
as a byte.

CHAPTER 3 CROSSASSEMBLER AND DOWNLOAD UTILITIES 31

Operator

Precedence

Function

() 0 modify expression precedence

HIGH a 1 return upper 8 bits of a

LOW a 1 return lower 8 bits of a

a*b 2 multiply a times b

alb 2 divide a by b

aMOD b 2 return remainder of a/b

a+b 3 addatob

a-b 3 subtract b from a

+ a 3 unary plus of a

-a 3 unary minus of a

aEQb 4 return TRUE if a equal b

aNEb 4 return TRUE if a not equal b

aLTh 4 return TRUE if a less than b

aLEb 4 return TRUE if a less or equal b
aGThb 4 return TRUE if a greater than b
aGE b 4 return TRUE if a greater than or equal b
a=>b 4 return TRUE if a equal b

a<>hb 4 return TRUE a not equal b

a<b 4 return TRUE if a less than b

a<=b 4 return TRUE if a less or equal b
a>b 4 return TRUE if a greater than b
a>=>b 4 return TRUE if a greater than or equal b
NOT a 5 return TRUE ifa = 0

aAND b 6 return bitwise logical AND of a and b
aORb 7 return bitwise logical OR of a and b

a XOR b 7 return bitwise exclusive OR of a and b

SEGMENT TYPES IN EXPRESSIONS

While the results of an expression is, in general, a number type, some ex-
pressions result in a typed value, according to the following rules:

1 Unary operations result in the same type as operand.
2 All binary operations except + and - will result in a number type.

3 For binary + and -, if one of the operands has a segment type,
then the result will have the same type. Otherwise, the result is a
number type.

32 CHAPTER 3 CROSSASSEMBLER AND DOWNLOAD UTILITIES

ADDRESSING MODES

The maintenance of separate address segments and the typing of all symbols
and expressions allows ASM44 to ensure that the address references made in
instructions and directives are to the correct address space. If ar operand
refers to a particular address space, the operand must be of type address and
have the correct segment type, or it must be of type number.

Code Addresses

Code addresses are used in operands to transfer instructions and and may be a
number type or address type within the code segment.

When used in relative jumps (SIMP and conditional jumps), ASM44 calculates
the correct offset from the user specified target address. The absolute range of
target addresses is -128 to +127 from the first byte of the next instruction.

When used with block transfers (AJMP and ACALL), the target address must
be within the block address of the first byte of the next instruction. A block
address is defined to be contained within 11 bits, therefore the upper five bits
of the target address and the address of the first byte of the next instruction
must be identical.

The long jump and call instructions (LJMP and LCALL) accept a full 16-bit
target address.

Bit Addresses

Bit addresses represent the internal RAM bit spzce or the special function reg-

isters of the chip. They may be specified as an abselute bit address or in a
base address.offset form.

If specified explicitly. the expression must evaluate to an address in the bit
segment or to a number. Locations 0-127 map to internal RAM locations 32-47,
and locations 128-255 map to the special function registers.

The base_address.offset form of bit addresses requires that the base_address
expression evaluates to either a number type or to an address in the data seg-
m at. It must be in the range 32-47 or 128-247. The offset must evaluate to a
number in the range 0-7. If the base_address is less than 128, it has 32 sub-
tracted from it and is then multiplied by 8. The offset is then added to form
the BIT address and .ne resulting value is flagged as an ADDRESS type
within the BIT segment.

CHAPTER 3 CROSSASSEMBLER AND DOWNLOAD UTILITIES 33

Data Addresses

Data addresses must be either numbers or address types in the data segment,
which maps to the first 128 bytes of internal RAM and to the special function
hardware registers. Valid ranges are 0 to +255. Access to the internal RAM
above location 127 must be made through the IDATA space.

immediate Addresses

Immediate addressing, indicated by the pound sign (#) is encoded as part of the
machine code. The expression may be any TYPE and its range is either 0 to
255 if a byte operand or 0 to 65535 if loading the DPTR register. The XDATA
and IDATA address types may only be used as part of an immediate operand.

Indirect Addresses

Indirect addresses provide access to memory through a register {either RO and
R1 for onboard RAM of DPTR) if accessing offboard memory or code memory.
Access to onboard memory is made by specifying @R0 or @R1, where RO or
R1 must contain the address of the location to be accessed. Offboard memory
is accessed using one of @R0O, @R1 or @DPTR in the MOVX instruction.
Code memory is accessed using either the MOVC @A+DPTR or MOVC @A

+ PC instruction. In all cases, the registers must be preloaded using an imme-
diate value.

34 CHAPTER 3 CROSSASSEMBLER AND DOWNLOAD UTILITIES

ASM44 ASSEMBLER DIRECTIVES

The following sections describe the ASM44 directives for the definition of
symbols, reservation of storage locations, and controi of memory allocation.

With the exception of DW and DB, the directives do not produce object code

and may not have a label associated with them. The five classes of directives
are as follows.

° Symbol Definition Type
symbol EQU expr
symbol SET expr
symbol DATA data_address
symbol XDATA xdata_address
symbol IDATA idata_address
symbol BIT bit_address OR data_address.offset
symbol CODE code_address
° Storage Initialization type
< label; > DS expr
<label: > DBIT expr
<label: > DB expr <.expr...> OR 'ascii string’
<label: > DW expr
. State Control type
ORG expr

END <expr>
USING expr

° Segment Selection type

CSEG <AT expr>
DSEG <AT expr>
XSEG <AT expr>
ISEG <AT expr>
BSEG <AT expr>

In each of the preceding definitions, <...> indicates the field is optional and
7?7_address (where ??? is a segment class name) indicates the value must have
either the indicated segment type or be typeless.

Expressions which define symbol values or which set the location counter may
not contain forward references.

CHAPTER 3 CROSSASSEMBLER AND DOWNLOAD UTILITIES 35

SEGMENT SPACES

ASM44 supports the five address spaces in the 8044 as separate segments.
Each segment space has a location counter which is updated when addresses
are assigned as storage locations, or through the generation of object code
when in the CODE segment. Each location counter is initially set to 0. When a
segment is activated using one of the segment selection directives, the location
counter will be set to either the last location used, initially 0, or to the value
specified by the optional <expr>. The currently active location counter may be
set to an arbitrary value using the ORG directive. Note that when modifying
the current location counter using the ORG construct, the address range is
restricted to addresses greater than or equal to the current value and less than
the hardware defined maximums.

SYMBOLS

Symbols must begin with a letter or with one of the special characters, ? or _,
and may be up to 255 characters in lengths, of which 31 characters are signifi-
cant. All characters are converted to uppercase, and unless defined using the
SET directive, a symbol may not be redefined.

STATEMENT LABELS

Labels are a form of symbol which are defined by specifying the symbol name
immediately followed with a colon (:) as the first field on a line. The labels will
be defined with the value of the active segment. Labels may be used in any
expression which accepts a memory address. Label definitions may only appear
on empty statements, statements which initialize data (DB and DW), storage
allocation directives (DS and DBIT) and machine instructions.

36 CHAPTER 3 CROSSASSEMBLER AND DOWNLOAD UTILITIES

SYMBOL DEFINITION DIRECTIVES

Symbol definition directives allow defining new symbols. They may not be pre-
ceded with a label.

EQU Directive

The EQU directive allows assigning a symbol with a numeric value or a special
assembler type A or RO-R7. The expression must not contain forward refer-
ences and the symbol will be the same TYPE as the expression. Symbols de-
fined as A or RO-R7 will have the type REGISTER and may only be used as
instruction operands or other EQU directives.

Set Divectives

The SET directive is similar to EQU, except that it allows the symbol to be
redefined.

BIT directive

The BIT directive creates a symbol of type BIT ADDRESS. The expression
must evaluate to ei*her a NUMBER or a BIT ADDRESS type, and must be in
the range 0-255.

Data Directives

DATA Directive creates a symbol of type DATA ADDRESS. The expression
must evaluate to either a NUMBER or a DATA ADDRESS type, and must be
in the range 0 to 255.

XDATA Directive

The XDATA directive is used to create a symbol of type XDATA ADDRESS.
The expression must evaluate to either a number or a XDATA ADDRESS, and
may be in the range 0 to 65535.

IDATA Directive

The IDATA directive is used to creaie a symbol of type IDATA ADDRESS.
The expression must evaluate to either a number or an IDATA ADDRESS,
and may be in the range 0 to 65535.

CODE Directive

The CODE directive is used to create a symbol of type CODE ADDRESS. The
expression must evaluate to either a number or a CODE ADDRESS, and may
be in the range 0-65535.

CHAPTER 3 CROSSASSEMBLER AND DOWNLOAD UTILITIES 37

STORAGE INITIALIZATION AND RESERVATION
DIRECTIVE

The following directives initialize or reserve storage in either word, byte or bit
units, and may be preceaed by a label. Note that only the DB and DW direc-
tives generate object code, and these directives may only be used in the CODE
segment.

DS Expression Directive

The DS expression directive reserves the number of bytes indicated by ex-
pression and may be used in any segment except the BIT segment. The ex-
pression may not contain forward references and the sum of expression plus
the current value of the location counter must not exceed the address space of
the segment.

DBIT Expression Directive

The DBIT expression direction reserves the number of bits indicated by ex-
pression. and may only be used in the BIT segment. The expression may not
contain forward references, and the sum of expression plus the current value of
the location counter must not exceed the address space of the segment.

DB Directive

The DB directive allows initializing code memory with a series of bytes or
string constants. Each value must be separated by a comma. Null strings will
not generate any data. The label, if present, will be assigned the address of the
first byte.

DW Directive

The DW directive allov s initializing code memory with a series of word (16-bit)
constants. Each value must be separated by a comma. Null strings will gener-
ate a value of 0, and strings longer than two characters are not allowed. The
label, if present, will be assigned the address of the first byte.

38 CHAPTER 3 CROSSASSEMBLER AND DOWNLOAD UTILITIES

ASSEMBLER STATE CONTROLS DIRECTIVES

The assembler state controls manipulate the environment or state of the
assembly.

END Directive

The END directive indicates to the assembler the end of the current program.
END directives encountered within INCLUDE files are ignored. If an ex-
pression follows the END statement, it must be either a NUMBER or a CODE
ADDRESS and will be included in the object file. Typically, within an ASM44
environment, the expression would reference the address of the initial task
descriptor of an iRMX-51 task. If no expression is provided, a value of 0 will be
used.

ORG Expression Directive

The ORG expression directive adjusts the value of the location pointer. The
expression should evaluate to a number and must be greater than or equal to
the current location pointer and contair no forward references. The current lo-
cation pointer will assume the value of expression.

USING Directive

The USING directive defines which register bank is currently in use. The direc-

tive allows the use of AR0O-AR7 to access the absolute registers, based on the
most recent USING statement.

SEGMENT SELECTION DIRECTIVES

The segment selection directives select which segment is to be active. If the
optional AT expression is provided, the current location pointer of the selected
segment will be set to the value of the expression. The expression must evalu-
ate to a number and may contain no forward references.

The current active segment is first closed and then the selected absolute seg-
ment is opened. If no AT expression was provided, the current location pointer
is set to the next available address within the new segment, initially 0.

CHAPTER 3 CROSSASSEMBLER AND DOWNLOAD UTILITIES 39

ASM44 ASSEMBLER CONTROLS

ASM44 operation is controlled by a series of assembler controls in the user's
source file. The following sections describe how to invoke the assembler and the
functions of the individual controls.

INVOCATION

ASM44 ma; be invoked with a combination of command line and user prompt
specifications. Unless the command line satisfies all the prompt items the
prompts will be issued.

Define ASM44 with the following:

ASM44:=="SYSSYSTEM:IBQ$ASM44"

The general form of invocation is:
ASM44 sourcefile <,objectfile> < listfile> </switch /switch...>

The scurce file must be specified. If no extension is provided, the default is
extension .A44. The object file defaults to the source file with the extension
.HEX. The list file defaults to NUL.LST.

To skip a field, enter two consecutive commas °,,’. To force remaining unspeci-
fied fields to their default values, enter a semicolon ":'".

When switches are entered, each must be preceded with a slash '/’, and allow
toggling the default values of the binary controls described below. The switches
may be entered at any point in a command or prompt line and include the
following.

Switch Control Default
L LIST ON

C CLIST OFF

M MLIST OFF

S SLIST ON

X XLIST OFF

P PAGE ON

E EPRINT ON

1 PASS1 OFF

D DEBUG OFF

40 CHAPTER 3 CROSSASSEMBLER AND DOWNLOAD UTILITIES

If the command line does not fully specify the three filenames, and does not
contain a "', the following prompts are issued:

SOURCE FILE [.A44] <-IF SOURCE NOT SPECIFIED
OBJECT FILE [sourcefile. HEX] <-IF OBJECT NOT SPECIFIED
LIST FILE [NUL.LST] <-IF LIST NOT SPECIFIED

In response to a prompt, you may enter any or all of the remaining file specifi-
cations, any combination of switch values or a ;' to terminate the prompts. File

names may be up to 44 characters long if no extension is specified, or 47 char-
acters if the file extension is included.

If an invalid switch is specified, the system displays the message:

INVALID CONTROL SWITCH ?, IGNORED

where ? is the switch character.

After loading, ASM44 will sign on with the message:

DATEM ASM44 - 8044/8051 Cross Assembler, Version 1.1
Copyright © 1985, 1986, 1987 DATEM Ltd.
Copyright © 1987 Digital Equipment Corporation

ASM44 then processes the command and prompt lines, determines the invoca-
tion arguments, and then displays:

PASS1

Following PASS1 processing, the message:

PASS2
Assembly complete
Errors 0 Warnings 0

is displayed and the object and the list files are generated. The assembler ter-
minates by displaying a summary of errors and warnings detected and returns

to the DOS shell with the number of errors as the ERRORLEVEL return
value.

CHAPTER 3 CROSSASSEMBLER AND DOWNLOAD UTILITIES 41

ASSEMBLER CONTROLS

The following section defines the various controls available for ASM44. All con-
trols will default to a logical set of values.

Binary Controls

The binary control directives cct or clear a set of assembler flags. which control
the listing formats and the information contained in the output files. The
default values may be redefined using /switch arguments during invocation. The
general format is:

binary_control <expr>

where the optional <expr>, if supplied, may contain any valid combination of
symbols and numbers must evaluate to a number. If the <expr> evaluates to
a non-zero value, the corresponding binary_control is enabled. If the <expr>
evaluates to zero, the control is disabled. The predefined values ON (equal to 1)
and OFF (equal to 0) may be used as the expression. If no expression is pro-
vided, the binary control will assume the value ON, enabling the associated
control.

In the following control list, items marked with * are included for future com-
patibility. They have no effect in the current release of ASM44.

Control Default Function

LIST ON Enables listing to the list file

* CLIST OFF Enables listing of false conditionals

* MLIST OFF Enables listing of expanded macros
SLIST ON Enables listing of symbol table

* XLIST OFF Enables generation of cref file

PAGE ON Enables formfeed/header at each page
EPRINT OFF Enables error line display

PASS1 OFF Enables error display during PASS1
* DEBUG OFF Outputs debug symbol information

The LIST control enables or disables the generation of the LIST file. If
disabled, the CLIST and MLIST controls are implicitly disabled. The LIST con-
trol may be used to selectively enable the listing of all or part of a user’s
program.

42 CHAPTER 3 CROSSASSEMBLER AND DOWNLOAD UTILITIES

{The CLIST control enables the listing of false conditional source lines. In
normal operations, ASM44 will only include in the list file source which is
responsible for generating or modifying the object code records. If CLIST is
enabled, all source, including that which is embedded in false conditional seg-
ments of code, will be included in the list file.]

{MLIST enables the inclusion of all macro e..pansions within the list file. If
disabled,only the macro invocation line will be included in the list file.)

SLIST controls the generation of a symbol table listing. If enabled, the symbol
table is appended to the list file and will include all user defined symbols. If
disabled, no user symbol is generated.

The PAGE control enables or disables the generation of the header lines at the
top of each page. If enabled, the assembler generates a form feed and three
header lines at the top of each new page. If disabled, only the first page will
include the headers and no other paging functions will be in effect.

The EPRINT control enables or disables the display of errors on the user’s
console. While EPRINT is enabled, each error will generate an error message

on the console consisting of the line number, error number and a short descrip-
tion of the error.

In normal operation, errors are only reported during PASS2 of the assembly.
The PASSI1 control enables the user to view the PASS1 errors on the system
console, The EPRINT control must be enabled for PASS1 to have effect.

[The DEBUG control instructs the assembler to include all user defined
symbols to the OBJECT file. Since dDCM844 only supports absolute HEX
output files, this control will have no effect.]

CHAPTER 3 CROSSASSEMBLER AND DOWNLOAD UTILITIES 43

Parameter Controls

The paraiaeter contrel directives establish the current parameters used for
page formatting and the default RADIX. The general format is:

Parameter_control <expr>

where the optional <expr>, if supplied, may contain any valid combination of
symbols and numbers must evaluate to a number. The value of <expr> is then
used to established the corresponding value for the parameter. Each parameter
has a minimum/maximum range, and if the optional <expr> is not supplied,
the parameter will be reset to its default value.

Control Default Range Function

PAGELENGTH 60 10-32767 -Set page length in lines
PAGEWIDTH 120 80-255 -Set page width in characters
RADIX 10 2-16 -Default radix for constants
TAB 8 1-32 -Tab stops

The pagelength and pagewidth controls set the format for each page and may
be reset at any time, If the PAGE control is disabled, the pagelength control
will set the corresponding parameter but will have no other effect.

The RADIX control sets the default radix for numbers. For radix between 11-
16, the constant must begin with a digit and may consist to the standard he-
xidecimal characters 0-9 and A-F, subject to the digit range set by the radix
value. The explicit radix overrides (T, O. Q. B, and H) will still override the
default radix. The RADIX control does not take effect until the next source
statement.

The TAB control will allow the user to set the tab stop length for use in the
list file. Values range from 1 to 32 character spaces.

44 CHAPTER 3 CROSSASSEMBLER AND DOWNLOAD UTILITIES

General Controls

The general controls allow saving and restoring the binary control states as
well as generating arbitrary page feeds. The format of the controls is:

general_control <expr>

where the optional <expr> may contain any valid combination of symbols and
numbers but must evaluate to a number.

The value of <expr> is used as an iteration count to allow repetitions of the
control. If no <expr> is specified, the value will default to 1.

Control Default Range Function

EJECT 1 1-5 Generate form feeds in list file
SAVE 1 1-16 Save state of binary controls
RESTORE 1 1-16 Recover previous binary controls

The EJECT control allows the generation of form feeds (1 to 5) within th: list
file. If the PAGE switch is disabled, EJECT will have no effect. If the iteration
count is greater than 1, only the last page will have the header information.

The SAVE and RESTORE commands allow saving and restoring the state of
the binary controls. The maximum stack depth is 16,

CHAPTER 3 CROSSASSEMBLER AND DOWNLOAD UTILITIES 45

String Controls

The string controls allow the specification of various test strings used within
the list file and the inclusion of external source files through the INCLUDE
facility. The general format is:

string_control < {(} text {}}>

where the optional text may be any user specified text string. The delimiters

for the text may be explicitly defined as parenthesis by having the first non-

blank character a '(". If an opening parenthesis is used, the text must be bal-

anced with a closing parenthesis. If no opening parenthesis is found, the text
string begins with the first non-blank character and extends to the end of the
line. If no text is specified, a null string (all blanks) will be used.

Control Max Length Function

DATE 9 Defines date field in list file
INCLUDE 47 Specifies user include filename
NAME 31 Defines name field in list file
TIME 6 Defines time field in list file
TITLE 60 Defines title field in list file
SUBTITLE 60 Defines subtitle field in list file

The DATE field is printed at the top of each page when the PAGE switch is
enabled. Initially it is set to the system DATE maintained by VMS. This text
string may be replaced by any user text string.

The INCLUDE command allows the inclusion of external files into the current
assembly, with a maximum nesting depth of 4. The text string must be a valid
VMS pathname, with a maximum length of NN characters. During the process-
ing of an INCLUDE file the END directive will be ignored. If no INCLUDE
file is specified, an indication of the current include nesting level and file name
will be displayed on the standard error output device.

The NAME control allows specifying the NAME of the output module, which
also appears in the list file. The NAME directive should only be used at the
ctart of the program and should precede any object code generation or symbol
definition directives. The default name will be the source file name.

46 CHAPTER 3 CROSSASSEMBLER AND DOWNLOAD UTILITIES

The TIME field is printed at the top of each page when the PAGE switch is
enabled. Initially it is set to to the system TIME maintained by VMS. This
text string may be replaced by any user test string.

The TITLE field is printed at the top of each page when the PAGE switch is

enabled The text string may be replaced by any user defined string. The
default TITLE is the name of the source file.

The SUBTITLE field is printed at the top of each page when the PAGE switch
is enabled. Initially it is set to all blanks, and may be replaced by any user
defined text string.

ASM44 ERROR MESSAGES

The following sections describe the errors which are reported by ASM44. The
error number, line number and brief error message will be included in the list
file using the following format:

**+«* ERROR ##, LINE LL (PP), ERROR MESSAGE

where

® ## is the error number
. LL is the current line number
. PP is the last line which contained an error.

In addition, if EPRINT is active, the error number, line number, and error
message will be displayed on the user console.

CHAPTER 3 CROSSASSEMBLER AND DOWNLOAD UTILITIES 47

SOURCE FILE ERRORS

Errors in the range 0-99 result from errors detected when evaluating the user
source program.

1 SYNTAX ERROR

A syntax error is reported whenever the assembler cannot determine the mean-
ing of a source line. The remainder of the line is ignored.

2 SOURCE FILE PROCESSING TERMINATED AT 25656 CHARACTERS

The naximum length of a source line is 255 characters. The line will be ig-
nored, and the remainder of the line will be treated as the next line.

3 ARITHMETIC OVERFLOW IN NUMERIC CONSTANT
The maximum value of a constant is 65535. All values will be truncated.
4 ATTEMPT TO DIVIDE BY ZERO

An attempt to divide by 0 was detected. Note that undefined symbols will
evaluate to 0, possibly causing this error during PASS1. If the error occurs
during PASS2, the expression is in error.

5 FORWARD REFERENCE IN EXPRESSION NOT ALLOWED

Forward references are not allowed in any expression which defines the value
of a symbol or the current location pointer of a segment.

6 SYMBOL PREVIOUSLY DEFINED MAY NOT BE SET

The symbol has been previously defined. Only symbols defined using the SET
directive may be redefined.

7 SYMBOL PREVIOUSLY DEFINED

The symbol has been previously defined. Only symbols defined using the SET
directive may be redefined.

8 ATTEMPT TO ADDRESS NON-BIT ADDRESSABLE BIT

The expression used to reference a bit address does not evaluate to a valid bit
address.

48 CHAPTER 3 CROSSASSEMBLER AND DOWNLOAD UTILITIES

9 BAD BIT OFFSET IN BIT ADDRESS EXPRESSION

The offset value used in base_address.offset structures must evaluate to a
NUMBER in the range 0-7.

10 TEXT FOUND BEYOND END STATEMENT - IGNORED
This is a warning only.
11 PREMATURE END-QOF-FILE NO END STATEMENT

The assembler did not detect an END statement. This is treated as a warning
only.

12 ILLEGAL CHARACTER IN NUMERIC CONSTANT

An illegal character was detected in a numeric constant. Check the the default

RADIX, if applicable, corresponds to the requirements of the constant
characters.

13 ILLEGAL USE OF REGISTER NAME IN EXPRESSION

Registers, and symbols EQUATED or SET to registers, may not be combined
in arithmetic expressions.

14 SYMBOL IN LABEL FIELD ALREADY DEFINED

The symbol appearing in a label field can be previously defined, either as a
symbol or as a label.

15 ILLEGAL CHARACTER
An illegal character was detected in the source program.
16 MORE ERRORS DETECTED NOT REPORTED

A maximum of nine errors are reported on a single source statement. The re-
maining errors are tallied in the ERROR count, but are not displayed.

17 LOCATION COUNTER EXCEEDS SEGMENT BOUNDARY

An attempt to increment beyond a segment boundary.
18 UNDEFINED SYMBOL

A symbol appears in an expression which has not been defined. Processing con-
tinues using a NUMBER with a value of 0, which may cause further errors.

CHAPTER 3 CROSSASSEMBLER AND DOWNLOAD UTILITIES 49

19 VALUE WILL NOT FIT INTO A BYTE
The expression must evaluate to a value in the range -256 to +255.
20 ILLEGAL OPERATION IN THIS SEGMENT

An attempt was made to generate object code in a segment othe: than the
CODE segment.

21 STRING TERMINATED BY END-OF-LINE

This warning indicates that no closing quote mark was detected on a string
constant.

22 STRING CONSTANT GREATER THAN 2 CHARACTERS

String constants may be used as arithmetic values if they are less than three
characters long. Strings three or more characters long may only be used in the
DB directive.

23 STRING NUMBER OR IDENTIFIER EXCEEDS 255 CHARACTERS
The maximum length of a string constant is 2565 characters.
24 DESTINATION ADDRESS EXCEEDS INBLOCK ADDRESS RANGE

The upper 5 bits of the target address the address of the NEXT instruction are
not the same. Rewrite the program using a LJMP or LCALL.

25 DESTINATION ADDRESS EXCEEDS RELATIVE ADDRESS RANGE

The maximum address range of a relative transfer is -128 to +127 from the
address of the NEXT instruction. Rewrite the program to use a combination of
a relative transfer and an absolute or long transfer.

28 REFERENCE NOT TO CURRENT SEGMENT

The expression used in a segment select directive does not evaluate to the cur-
rent segment type.

29 IDATA SEGMENT ADDRESS EXPECTED
An idata segment address was expected.
35 LOCATION COUNTER MAY NOT POINT BELOW SEGMENT BASE

An attempt to ORG below the value set using the segment select directive was
detected. When an 'AT expression’ is used, it sets the minimum value which
the ORG directive may reference in the absolute segment.

50 CHAPTER 3 CROSSASSEMBLER AND DOWNLOAD UTILITIES

36 CODE SEGMENT ADDRESS EXPECTED

37 DATA SEGMENT ADDRESS EXPECTED

38 XDATA SEGMENT ADDRESS EXPECTED

39 BIT SEGMENT ADDRESS EXPECTED

The operand must be a NUMBER or an ADDRESS in the indicated segment.
40 BYTE OF BIT ADDRESS NOT BIT ADDRESSABLE

The base_address of a base_address.offset structure is not in the range 0-255.
41 INVALID HARDWARE REGISTER

Reserved for future use. Contact DATEM if this error occurs.

42 INVALID REGISTER BANK NUMBER

The register bank specified in the USING directive must be in the range 0-3.
50 EXPRESSION STACK ERROR

An error was detected due to an invalid expression structure. This error should
seldom occur.

51 OPERATOR STACK ERROR
A poorly formed expression such as MOV A, #5+ was detected.
52 SYMBOL TABLE OVERFLOW

The user has exceeded the symbol table space. Please contact DATEM if this
error occurs.

563 PHASE ERROR BETWEEN PASS1 AND PASS2

The address assigned to a symbol or label has changed between PASS1 and
PASS2 processing. This error is usually a by-product of other errors.

CHAPTER 3 CROSSASSEMBLER AND DOWNLOAD UTILITIES 51

ASSEMBLER CONTROL ERRORS

The following errors are generated while processing the assembler control
directives.

100 CONTROL EXPRESSION NON-NUMERIC

A non-numeric value was detected in a directive expecting the form:

directive <expr>

101 CONTROL STRING TOO LONG

The <string> expression exceeds the allowable length for the associated
directive.

102 UNBALANCED CONTROL STRING PARENTHESIS

The first non-blank character fcllowing the control was an opening parenthesis.
No closing parenthesis was found. The string is terminated at the end of the
line.

104 INVALID INCLUDE FILE

The user specified INCLUDE file could not be opened for reading. Processing
continues, but multiple errors usually result.

105 INVALID PAGEWIDTH

The pagewidth specified is outside of the MIN or MAX range allowed.
106 INVALID PAGELENGTH

The pagelength specified is outside of the MIN or MAX range allowed.
107 INVALID RADIX

The default RADIX is outside of the MIN or MAX range allowed.

108 INVALID TAB SIZE

The tab size specified is outside of the allowable MIN to MAX range.
109 EJECT COUNT EXCEEDS MAXIMUM

The maximum EJECT iteration count has been exceeded.

52 CHAPTER & CROSSASSEMBLER AND DOWNLOAD UTILITIES

110 CONTROL STACK OVERFLOW
The user has atitempted to SAVE the control environment on too deep a level.
111 CONTROL STACK UNDERFLOW

The user has attempted to RESTORE the control environment more often
than SAVING it.

112 INCLUDE FILE NESTING LEVEL EXCEEDE :*

The user has exceeded the maximum nesting level for INCLUDE statements.

OTHER ERRORS

ASM44 may report errors in the range 1000-1999. If these occur, it indicates
an internal error. These can occur as a secondary effect of the above errors,
and are usually coirected when initial error is corrected.

CHAPTER 3 CROSSASSEMBLER AND DOWNLGAD UTILITIES 53

RESERVED SYMBOL NAMES

AB AC ACALL ACC ADD ADDC AJMP AM AND ANL ARO ARl AR2 AR3
AR4 AR5 AR6 AR7 AT

B BIT BSEG BV

C CJNE CLIST CLR CODE CPB CPL CSEG CY

DA DATA DATE DB DBIT DEBUG DEC DIV DJNZ DPH DPL DPTR DS
DSEG DW

EA END EJECT EPRINT EQ EQU ES ETO ET1 EX0 EX1 EXTRN

FO

GE GT

HIGH

IDATA 1E0O IE1 IE IEC INCLUDE IP ITO IT1

JB JBC JC JMP JNB JNC JNZ JZ

LE LCALL LIST LJMP LOW LT

MLIST MUL MOD MOV MOVC MOVX

NAME NE NOP NRO NR1 NR2 NSO NS1 NS2 NSNR NOT

OFF ON OR ORG ORL OV

P PO P1 P2 P3 PAGE PAGEWIDTH PASS1 PC POP PS PSW PT0 PT1
PUBLIC

PUSH PXO PX1

RO R1 R2 R3 R4 R5 R6 R7 RADIX RBL RBS RBP RCB RE RESTORE RET
RETI

RFL RL RLC RR RRC RS0 RS1 RSEG RTS

SAVE SER SES SET SETB SEGMENT SHL SLIST SHR SI SJMP SMD
SP STAD

STS SUBB SUBTITLE SWAP

TAB TBL TBS TBF TCB TCON TF0 TF1 THO TH1 TIME TITLE TLO TL1
TMOD

TRO TR1
USING

XDATA XCH XCHD SLIST XOR XRL XSEG

54 CHAPTER 3 CROSSASSEMBLER AND DOWNLOAD UTILITIES

DATEM HEX FILE FORMAT

The DATEM HEX file format is identical to the Intel 8051/8044 HEX file
format, except that it uses a feature found in the 8080 HEX file format which
allows the indication of the file start address.

Each record may consist of up to 256 data bytes. When data records are writ-
ten, the will consists of 26 data bytes, representing two RAC task
DOWNLOAD messages. A data record consists of the following fields:

:<length > <load address > <record type > <record data > <checksum>

: -indicates start of record
length -length of record (BYTE)

load address -data load address for data records (WORD)
start address for end-of-file records (WORD)
record type -0 for data records
1 for end-of-file records
record data -multiple data bytes for data record
ignored for end-of-file records
checksum -2's complement of sum of all record bytes

CHAPTER 3 CROSSASSEMBLER AND DOWNLOAD UTILITIES 55

MEMORY MAP REQUIREMENTS

The ability to dynamically load and execute 8044 software across the BITBUS
network relies on a slightly modified memory partition at the destination node.
The 8061 architecture, on which the 8044 BITBUS processor is based, sup-
ports a non Von-Neuman machine structure in which the DATA space is
independent from the CODE space. This supports a more efficient control
oriented address structure.

The download utilities make use of the RAC facility which supports transfer-
ring data into the DATA space of the remote node. Note that there is no
instruction within the 8051/8344 which allows writing to the CODE space.

In order to support downloading RMX51 tasks, it is necessary that the CODE
and DATA spaces physically overlap, allowing the RAC facilities to write to the
DATA space and the processor to execute from the (same) CODE space.

DATEM modules which support downloadable code provide three JEDEC
memory sites, configured with the following address decode.

Memory

Site Code/Data Address Function

1 CODE 0-3FFFH -Datem/user firmware (ePROM)
2 DATA 0-3FFFH -RMX/Datem/user data (RAM)
3 COMBINATION 4000-BFFFH -Loadable data space

The appropriate users manual describe how to configure the third memory site
as DATA only or CODE only. If the socket is not configured as
COMBINATION, the download utilities will not operate correctly. If the socket
is configured as CODE, it is not possible to write data into the RAM. If the
socket is configured as DATA, it is possible to transfer files to the RAM, but it
is not possible to execute from it,

Other manufactures modules must have equivalent COMBINATION memory to
permit downloads.

56 CHAPTER 3 CROSSASSEMBLER AND DOWNLOAD UTILITIES

RMXS511.EXT FILE CONTENTS

dseg

org 030h
rgtaskid: ds
rgtaskpriority: ds
rqclockunit: ds

cseg

org 083h
rqcreatetask: ds
rqdeletetask ds
rqgetfunctionids: ds
rqdisableinterrupt: ds
rqenableinterrupt: ds
rqsendmessage: ds
rqsetinterval: ds
rqwait: ds
rqallocate: ds
rqdeallocate: ds

CHAPTER 3 CROSSASSEMBLER AND DOWNLOAD UTILITIES 57

o WO W WL WwWwWwWwWw

currently running task id
;priority of currently running task
;clock tick counts

create task entry
;delete task entry

;get function ids entry
;disable interrupt entry
:enable interrupt entry
:.send message entry
;set time interval

;wait for event entry
.allocate freespace
.deallocate freespace

PAGE 58 INTENTIONALLY LEFT BLANK

PGP LG 000000 000000000000 008006600.0006088800080084

PUPOE OO E PP L0 P b 000000000 000000004000004
PO I NSt N G h O N0 0000060 00000006000080000¢
PO NI E P0G 0000000000 0008000808080804090804¢4
J30.66060060 080600000000 00000006¢008060800091

P00 PO VP00 0004000000000 080.00680080000044

PO DI IE 00080000000t 000000 804000006044
AXXKAXUXXXARKKKKXXKAG HAAXKXAKKAOHARXX

P8 0.6000000000 09000008 000050.8.0090¢6¢4

PRIV 4900408 048089 00400800.9908849
00X NOONNOON0O0NIXX KX XX XK XXX
10.9.6.6.¢0.66.000806060006060005009
D6 09006000000 00808060¢84844
JOOOOOOOIXX XX XXX XXX XX K

p oSt 8000 4606608050000.4
OKOOOOOOODIXX XX XX XXX

XXX XXX XX XX XA KXXXK

b4 $.4.4068.8.60.06000¢4
p00.0.0.40.04.00.009¢6¢

AAXXXX AKX AAXXX

XXX AXXXXAX

XAAAXXXXX

XXXXXXX

XXXXX

XXX

X

XXXAXXXKX
XXXXXXXX XXX
XAXXUXXXXAXAX
XXXAXAAXAAXKXXX
XXEXXAXXAXXXAXXXXK

X

XXX
XXXXX
KXAXXXX

}0.6.0.0.0.4.4.6,09.66.66.66.694
f00.4.0.6.0.98.0.0.9.60$¢9.94944

p.0.0.6.0.9.6.0.80.00808660460446949

p40.00.0.09.000.96900.0060498¢094

b 0.0.0.6.00.0.09600060000490.09090¢¢
p19.8.0.0.0.8.0.9.00.0009050.90904¢69.904¢¢

D0.0.0.0.4 6090900040908 0066.040040¢4
p0.00.6.00.0¢04.000544009.00.00856860891449

DO 0000 048.0.00.09600890809950998000404

P8¢ ¢040000000.40.0000000.06 4800060064004

P00 468000 80.600000046800869.090969.6¢699904

PP 0N G 0000000900 80.0308.08.09000090049
D0.8.49.0.0.0990600500.0080.005980000806006800044¢¢9

P 0000000 80808000.090000840800800,400.900860800008
P9.0.0.9.0.0.0.0 0008000 00006.04000.090000506.99.0060000¢004

P .0.00.0.4 0000 P et 0000000600069 0000000008.0008000008¢004
pO40.$9068.0004 00000000000 0.0909460408669686068009¢54

CHAPTER 4
VMS SOFTWARE

INTRODUCTION

This chapter describes the BCS interactive interface and command set and the
BITBUS QIO set.

INTERACTIVE INTERFACE

The Interactive Interface is a BITBUS Control Service (BCS) command line
facility. You can select any one of the VMS editors to generate a configuration
file. You can use the BCS command line facility to generate and modify the
configuration file. With either, you can define the BITBUS nodes (devices/
positions connected to the serial BITBUS line). Also, with the command line
facility you can interact with the Program Interface.

BCS OVERVIEW

The following sections contain a detailed description of the BITBUS Control
Service (BCS). This includes a description of the command set available to you
for exchanging, adding or deleting modules, or for testing the modules.

The BITBUS Control Service is a command line facility. You can use BCS or

any VMS editor to create and modify a program. With the command line facil-
ity, you have direct access to the Program Interface in an easy-to-use interac-

tive format that allows you to test the system and to modify the configuration
files.

CHAPTER 4 VMS SOFTWARE 59

BITBUS CONTROL SERVICE CONFIGURATION
UTILITY

This section discusses the BITBUS Control Service (BCS) configuration utility
and the association of logical names to processes running at remote nodes. You

can use BCS to change the definition of a BITBUS node or the entire BITBUS
configuration.

There is a help file available for the BITBUS Control Service command set. To
use BCS or to run the help file you type:

$ RUN SYS$SYSTEM:IBQSBCS.RXE
Then enter

$ BCS <RETURN>
The host system responds with

$ BCS>

The command set for BCS follows:

DEFINE DELETE EXIT QUIT
READ RESET SHOW WRITE
DIAGNOSE DOWNLOAD EXCHANGE OFFLINE
ONLINE RECEIVE REPEAT SCANON
SEARCH SEND

You use the first group of commands in the handling of the configuration file.
These commands let you read and write files to VMS storage, add and delete
information in the files, and display the contents of the files.

You use the second group of commands to test and exchange information with
BITBUS slave nodes. These commands let you load programs into slave nodes.
send data to and receive data from slave nodes. and place slave units on-line or
off-line. Many of these BCS commands have a corresponding QIO command.

60 CHAPTER 4 VMS SOFTWARE

With BCS, you can change the operation to verbose mode or simulate mode.
Also you can run in both verbose and simulate modes. The commands for the
mode changes are:

-V enter verbose mode
S enter simulate mode
-V exit verbose mode
--S exit simulate mode
The BCS commands are described on the following pages in alphabetical order.

Included at the end of the BCS command set are descriptions of the BCS com-
mand and radix and range.

CHAPTER 4 VMS SOFTWARE 61

DEFINE Command Line

Syntax

where

Description

Example 1

Example 2

Example 3

DEFINE node task logical [comments])

node is the number (1-260) of the slave node on the
BITBUS

task is the task number (0-7) of the operation at the
slave node on the BITBUS

logical is the name (1 to 31 characters) you associate
with the task (it must be unique)

comments is any comment (1 to 25 characters) you want
to relate to the task

The DEFINE command enters tasks, their logical
names, and optional comments into the configuration file
in BCS memory. You cannot repeat logical names in the
other tasks. When you EXIT BCS after performing
DEFINE operations, BCS WRITES a new configuration
file to IBQSDEFCONFIG.

BCS> DEFINE 1 1 CHILLER_FAN TURN_ON_FAN

This command associates the name CHILLER_FAN
(logical) to task 1 on BITBUS slave node number 1 and
enters it into BCS memory. The comment describes the
task operation.

BCS> DEFINE 1 2 CHILLER_OFF TURN FAN OFF

This command associates the name CHILLER_OFF
(logical) to task 2 on BITBUS slave node number 1 and
enters it into BCS memory. The comment describes the
task operation.

BCS> DEFINE 100 7 HEATER_TEMP MEASURE T

This command associates the name HEATER_TEMP
(logical) to task 7 on BITBUS slave node number 100
and enters it into BCS memory. The comment describes
the task operation.

862 CHAPTER 4 VMS SOFTWARE

DELETE Command Line

Syntax

where

Description

Example 1

Example 2

DELETE node [task]

node is the number (1-250) of the slave node on the
BITBUS

task is the task number (0-7) on the slave node

The DELETE command removes nodes and tasks from
the BITBUS configuration file in BCS memory. The
number is available for reassignment. When you EXIT
BCS after performing DELETE operations, BCS
WRITES a new configuration file to IBQSDEFCONFIG.

BCS> DELETE 1

Removes node 1 and its associated tasks from the
configuration file in BCS memory.

BCS> DELETE 1 2

Removes task 2 of node 1 from the configuration file in
BCS memory.

CHAPTER 4 VMS SOFTWARE 63

DIAGNOSE Command Line

Syntax

where

Description

Example 1

Example 2

DIAGNOSE [/IBQ=A])

IBQ=A is optional and is the identity (A through H) of
the BITBUS Controller. The default value is A.

The DIAGNOSE command causes the IBQ to run its
self diagnostics. Allow up to one minute for this com-
mand to complete.

BCS> DIAGNOSE
BCS»>

Runs the BITBUS self-diagnostics for IBQ A and indi-
cates that they were successfully completed.

BCS> DIAGNOSE /1BQ=C
BCS> ERROR (error message)
BCS>

Runs the BITBUS self-diagnostics for IBQ C and indi-
cates that there was a failure.

64 CHAPTER 4 VMS SOFTWARE

DOWNLOAD Command Line

Syntax

where

Description

Example 1

Example 2

DOWNLOAD [/IBQ=A] logical address filename

IBQ=A is optional and is the IBQ identification (A
through H) — the default value is A.

logical is the name of the task on the slave node.

address is the external address location (0 - 65635) in the
slave node to load the file.

filename is the name of the VMS file to be downloaded
to slave node.

The DOWNLOAD command sends a file to the selected
logical device.

BCS> DOWNLOAD CHILLER_FAN 200 AFILE.DAT

This command loads the file AFILE.DAT to location 200
on IBQ A in the BITBUS slave nodes with a task
CHILLER_FAN.

BCS> DOWNLOAD /1BQ=B HEATER_TEMP 209
BFILE.DAT

This command loads the file BFILE.DAT to location 209
on IBQ B in the BITBUS slave node with a task
HEATER _TEMP.

CHAPTER 4 VMS SOFTWARE 65

EXCHANGE Command Line

Syntax EXCHANGE [/IBQ=A] logical appcom (datal,,,datal2)

where NIBQ=A is optional and is the IBQ identification (A
through H). The default is A.

logical is the name of task on the BITBUS slave node
the data is being sent to.

appcom is the application command — the command
that is delivered to the slave node and is acted upon by
the slave node.

datal through datal2 is the numeric data, in bytes, to be
sent from BCS to the slave node — see radix descrip-
tion in the physical unit numbers section. There must be
an even number of bytes.

Description The EXCHANGE command sends a data packet of up to
twelve bytes to the named nodes on the selected 1BQ
and receives the data from the named nodes. If a data
entry exceeds a byte length, BCS truncates the most
significant bits.

Example 1 BCS> EXCHANGE /1BQ=B DRILL 9 (4.4,9,XD)
Received the following data back from logical DRILL

Byte # Data
1 4

2 4

3 9

4 D

This command sends the formatted data to the node
with task named DRILL on IBQ B. The named node
then sends the data back to BCS (the display is
hexadecimal).

66 CHAPTER 4 VMS SOFTWARE

Example 2 BCS> EXCHANGE WELD 12 (12,446,XFF,’X99)
Received the following data back from logical WELD

Byte # Liata
| C

2 iB
3 FF

4 99

This command sends the formatted data to the node on
IBQ A with the task named WELD. The named node
then sends the data back to BCS (the display is
hexadecimal).

CHAPTER 4 VMS SOFTWARE 67

EXIT Command Line

Syntax EXIT

Description The EXIT command returns you to the DCL prompt in
VMS. If you have made any modiiications to the
configuration file in BCS memory during the current
BCS session, EXIT writes a new VMS configuration file
to IBQSDEFCONFIG.

Example 1 $ BCS
BCS>READ
BCS >DIAGNOSE
BCS> EXIT
$

With this session, there were no changes to the file.
BCS closes the session without creating a VMS file.

Example 2 $ BCS
BCS>READ
BCS> DEFINE 2 3 DRILL
BCS> ..
BCS > EXIT
$

With this session BCS creates a new VMS file named
IBQ$DEFCONFIG with the adds and deletes you made
through the DEFINE and DELETE commands.

68 CHAPTER 4 VMS SOFTWARE

HELP Command Line
Syntax HELP [topic]

where topic is one of the topics covered in the HELP file.

Description The HELP command, without the optional topic, pro-
duces a display of all of the HELP topics. This includes
the command-line set and related items. If you type in
one of the topics, HELP displays information about that
topic.

Example 1 BCS> HELP
Additional information

BCS DEFINE DELETE DIAGNOSE DOWNLOAD EXCHANGE
EXIT HELP OFFLINE ONLINE QUIT radix

range READ RECEIVE REPEAT RESET SCANON
SEARCH SEND SHOW WRITE

To obtain further help type '"HELP topic'.

This command displays the BCS commands and ancillary
information on which there is a help fiie.

Example 2 BCS> HELP EXIT
EXIT

Usage: EXIT
Description: The EXIT command returns to VMS

e If the configuration in memory was
changed during the BCS session, the
new configuration will be written to
the configuration file prior to exiting.

Example EXIT return to VMS
BCS>

CHAPTER 4 VMS SOFTWARE 69

OFFLINE Command Line

Syntax

where

Description

Example 1

Example 2

Example 3

OFFLINE [/IBQ=A] [node)

IBQ=A is optional and is the IBQ identification (A
through H) — the default value is A.

node is optional and is the number (1 - 250) of the slave
node on the BITBUS — the default value is the IBQO1
Controller itself.

The OFFLINE command places the selected slave node
off-line. The node is not available for sending or receiving
and the slave node does not report to the host.

BCS> OFFLINE /1BQ=B 2
BCS>

This command places IBQ B slave node 2 off-line.

BCS> OFFLINE 1
BCS >

This command places IBQ A slave node 1 off-line.

BCS> OFFLINE
BCS>

This command places Controller IBQ A off-line.

70 CHAPTER 4 VMS SOFTWARE

ONLINE Command Line

Syntax ONLINE [/IBQ=A] [node]

where IBQ=A is optional and is the identification (A through
H) of the IBQ — the defauli is A.

node is optional and is the number (1-250) of the slave
node on the BITBUS — the default is the IBQ
Controller itself.

Description The ONLINE command places the selected slave node

on line. The slave node begins reporting to the host; it
can send and receive.

Example 1 BCS> ONLINE /IBQ=B 2
BCS>

This command places slave node 2 for IBQ B on-line.

Example 2 BCS> ONLINE 1
BCS>

This command places slave node 1 for IBQ A on-line.

Example 3 BCS> ONLINE
BCS>

This command places controller IBQ A cn-line.

CHAPTER 4 VMS SOFTWARE 71

QUIT Command Line

72

Syntax

Description

Example

QUIT

The QUIT command returns you immediately to the
DCL level prompt in VMS. Nothing is modified in the
configuration files.

$ BCS

BCS> READ

BCS> DEFINE 12 7 TEST
BCS> EXCHANGE TEST 4 (8,6

Received the following data back from the logical
'TEST".

Byte # Data
1 8
2 6
BCS> QUIT

$

ZHAPTER 4 VMS SOFTWARE

READ Command Line

Syntax

where

Description

Example 1

READ |[filename]

filename is optional and is a valid VMS file specification
containing the following information:

File format: node task logical [comments]
where:

node is the BITBUS node number (1-250)
task is the task number (0-7)

logical is the task name (1 to 31 characters)
comments is any comment (1 to 25 characters)

The READ command reads the selected configuratiun
file — loads the file in BCS memory. You can then
display the file through the SHOW command and modify
it through the DELETE and DEFINE commands. File
IBQSDEFCONFIG is the default value. You may have
several configuration files, one or more for each of the
IBQ BITBUS Controllers.

BCS defines the logical names based on the information
in the file. Reading a file erases any data currently in
BCS memory.

BCS> READ

BCS memory contains valid data, do you want to over-
write it [Y/N]? < N> <Return>

WARNING, READ command not execute

The question response occurs when you have entered
data in BCS memory through either another READ com-
mand or DEFINE commands. If you answer N (or
<Return>), the file is not copied into BCS. If you
answer Y, BCS clears the contents of memory as in the
QUIT command and places a copy of the configuration
file IBQSDEFCONFIG in BCS. You can then use the
file for test or you can modify the file using the other
BCS commands.

CHAPTER 4 VMS SOFTWARE 73

Example 2 BCS> READ IBQ$DEFCONFIG2
BCS»>

This command places a copy of the configuration file
IBQSDEFCONFIG2 in BCS. You can then use the file
for test or you can modify the file using the other BCS
commands.

74 CHAPTER 4 VMS SOFTWARE

RECEIVE Command Line

Syntax RECEIVE [/noscreen] |[/IBQ=A] logical appcom [count]

where Inoscreen is the optional VTxxx mode disable switch, and
is specified when running a non-VTxxx terminal. The
default value is VTxxx mode.

IBQ=A is optional and is the IBQ identification (A
through H). The default is A.

logical is a task name on the BITBUS slave node BCS
is to receive from.

appcom is the application command — the command
that is delivered to the slave node and is acted upon by
the slave node.

count is optional and is the number of bytes (2 to 12} to
receive. The default is 2. There must be an even number
of bytes.

Description The RECEIVE command sets BCS to receive from a
logical device (slave node) on the BITBUS. When you
have two or more slave nodes with the same logical. the
highest numbered of those slave nodes sends to BCS.

Example 1 BCS> RECEIVE CHILLER_FAN 3 2
** BITBUS CONTROL SERVICE **
DATA MONITORING SCREEN

Node Task Logical-Name Command Byte # Data
22 5 CHILLER _FAN 3 1 78
2 9A

This command sets up BCS to receive 2 bytes from the
slave node on IBQ A which has a task with the logical
CHILLER _FAN. The application command is 3.

CHAPTER 4 VMS SOFTWARE 75

Example 2 BCS> RECEIVE /noscreen 1BQ=B HEATER_TEMP
14 6

** BITBUS CONTROL SERVICE **
DATA MONITORING SCREEN
Node Task Logical-Name Command Byte # Data

5 3 HEATER_TEMP 14 1 78
FO
43
09
EO0
02

This command sets up BCS to receive 6 bytes from the
slave node node on IBQ B which has a task with the
logical HEATER_TEMP. The received data will be for-
matted for a non-VT device. The application command is
14.

D AW

76 CHAPTER 4 VMS SOFTWARE

REPEAT Command Line

Syntax

where

Description

Example 1

Example 2

REPEAT count command

count is the number of times to repeat the selected com-
mand.

command is any valid BCS BITBUS control command
with its parameters.

The REPEAT command repeats the valid BITBUS con-
trol command count times.

BCS> REPEAT 10 RECEIVE HEATER TEMP 14 6

With this command, the receive command for
HEATER _TEMP node task on IBQ is repeated 10
times. See the RECEIVE command for details.

BCS> REPEAT 6 SEND CHILLER_FAN 10 (1,2)

With this command, the send command for
CHILLER_FAN node task on 1BQ is repeated six times.
See the SEND command for details.

RESET Command Line

Syntax

where

Description

Example 1

Example 2

RESET [/IBQ=A] node

/IBQ=A is optional and is the IBQ identification (A
through H). The default is A.

node is the number (1-250) of the slave node to be reset.

The RESET command resets the selected slave node to
the initialized state.

BCS> RESET/IBQ=B 2
BCS>

This command resets slave node 2 on 1BQ B to the in-
itialized state.

BCS> RESET 1
BCS>

This command resets slave node 1 on IBQ A to the in-
itialized state.

CHAPTER 4 VMS SOFTWARE 77

SCANON Command Line

Syntax SCANON {/noscreen] [/IBQ=A] logical appcom [countn].

where Inoscreen is the optional VTxxx mode disable switch
specified when running on a non-VTxxx terminal. The
default is VTxxx mode.

IBQ=A is optional and is the IBQ identification (A
through H). The default is A.

logical is the task name on the BITBUS slave node BCS
is to receive from.

appcom is the application command — the command
that is delivered to the slave node and is acted upon by
the slave node.

countn is optional and is the number of bytes (2 to 12)
BCS is to receive, the default is 2. There must be an
even number of bytes.

Description The SCANON command puts BCS in the continuous re-
ceive operation from a slave node with the named task.
To turn off SCANON, press the <Return> key.

Example 1 BCS> SCANON CHILLER _FAN 1 4

** BITBUS CONTROL SERVICE **
DATA MONITORING SCREEN

Node Task Logical-Name Command Byte # Data
22 5 CHILLER FAN ! 1 78
2 96
3 E3
4 1A

This command sets the BCS to receive 4 bytes from the
slave node with task CHILLER_FAN on IBQ A and
sends the application command 1 to the slave node. BCS
displays the memory locations once every second. The
data is displayed in hexadecimal.

78 CHAPTER 4 VMS SOFTWARE

Example 2

Node
22

Task
5

BCS> SCANON /noscreen IBQ=B HEATER_TEMP 6
2

Logical-Name Command Byte # Data
HEATER_TEMP 6 1 AF
2 00

This command sets the BCS to receive 2 bytes from the
slave node with task HEATER_TEMP on IBQ B and
sends the application command 6 to the slave node. The
data is formatted for display on a non VTxxx device.
BCS displays the data once every second. The data is
displayed in hexadecimal.

CHAPTER 4 VMS SOFTWARE 79

SEARCH Command Line

Syntax SEARCH [/IBQ=A]

where IBQ=A is optional and is the identification (A through
H) of the IBQ. The default value is A.

Description A SEARCH command instructs the selected IBQ to
search all BITBUS addresses for devices at those ad-
dresses. The SEARCH command will display all the
nodes that respond. Please allow up to one minute for
this command to complete.

You should do a SEARCH at system startup to verify
the configured devices. Also, you should do a SEARCH
after you modify the BITBUS connections.

Example 1 BCS> SEARCH
BITBUS Addresses

Device Code {16): 99, Version Number (16): 1
Node List (10):

0 1 5 6 1 12 13 15
16 17 19 20

BCS > Exit

BCS performs a search of the 250 node addresses and
displays those that were found on the BITBUS network.

80 CHAPTER 4 VMS SOFTWARE

SEND Command Line

Syntux

where

Description

Example 1

Example 2

SEND [/IBQ=A] logical appcom (datal, ..., datal2)

IBQ=A is optional and is the identification (A through
H) of the IBQ BITBUS Controller. The default is A.

logical is a task name on the slave node BCS is to send
data to.

appcom is the application command — the command
that is delivered to the node and is acted upon by the
slave node.

datal through datal2 are the numeric data bytes to be
sent from BCS to the slave node. There must be an even
number of bytes.

The SEND command sends data to the BITBUS slave
node with the named task.

3CS> SEND CHILLER FAN 10 (1,2)

This command sends the data (1,2) to the slave node
with a task named CHILLER_FAN on IB@ A with the
application command 10.

BCS> SEND HEATER TEMP 6 (2,4,6,’XES8)

This command sends the data (2,4,6,E8) to the slave
node with a task named HEATER_TEMP on IBQ A
with the application command 6.

CHAPTER 4 VMS SOFTWARE 81

SHOW Command Line

82

Syntax

where

Description

Example 1

Node
22

Task

SHOW |[range|logical]

range is any valid node address (physical unit number) or
range of addresses — see physical unit numbers descrip-
tion (if you use range BCS ignores logical).

logical is any task name — when you append an * to
the logical name, BCS performs a wild card search for
all nodes with logical names matching the first charac-
ters given.

The SHOW command shows the configuration of the se-
lected slave nodes from the current active file. SHOW
does not affect any operations on the BITBUS.

BCS> SHOW COMPRESSOR_RPM

This command displays the configuration of the slave
node containing a task with the logical
COMPRESSOR_RPM.

CONFIGURATION
Logical Name Comments
DRILL TWO CM
COMPRESSOR_RPM SIXTY

CHAPTER 4 VMS SOFTWARE

Example 2

Node Task
22 1
3
29 4
Example 3

Example 4

Node

BCS> SHOW COMPRESSOR_*

This command displays the configuration of all slave
nodes ti:=t have tasks that begin with the logical
COMPRESSOR .

CONFiGURATION

Logical Name Comments

DRILL TWO

COMPRESSOR_RPM SIXTY

COMPRESSOR PRESSURE EIGHTY
BCS> SHOW

This command displays the configuration of all of the
BITBUS slave noudes.

BCS> SHOW 3 5

This command displays the configuration of slave nodes
3. 4. and 5.

CONFIGURATION
Task Logical Name Comments
1 DRILL ONE
2 TEMP_ON SEVENTY
1 DRILL THREE THREE
3 COMPRESSOR_RPM SIXTY TWO
2 TEMP_OFF EIGHTY

CHAPTER 4 VMS SOFTWARE 83

WRITE Command Line

84

Syntax
where

Description

Example 1

Example 2

WRITE [filename]
filename is a valid VMS file specification.

If you specify the filename, BCS writes the file gener-
ated during this session into the VMS file system. If you
do not specify the filename BCS writes to the defauit
filename, IBQSDEFCONFIG.

File format: node task logical [comments]
where

node - is the BITBUS node number (1-250)
task - is the task number (0-7) on the node

logical - is the name (1 to 31 characters) assigned to a
task on the node - without spaces

comment - is any comment (1 to 25 characters) about the
task - spaces are permitted

WRITE

This command writes the contents of the configuration
file in BCS memory to VMS file IBQSDEFCONFIG.

WRITE CONFIG.DAT

This command writes the contents of the configuration
file in BCS memory to VMS file CONFIG.DAT.

CHAPTER 4 VMS SOFTWARE

BCS Command l.ine Facility

Syntax

Description

Example 1

Example 2

Example 3

L'?xample 4

Example 5

BCS

Places you at the BCS level prompt (BCS >) if you have
entered in your LOGIN.COM file the following:

$BCS :== SYSSYSTEM:IBQ$BCS.EXE

Before you run BCS, you can define the logical name
IBQSDEFCONFIG as the default configuration file. BCS
uses this as the default file for the READ and WRITE
commands.

$BCS
BCS>

This command places you in the BCS utility in the
normal operating mode and opens a configuration file.

$BCS -V
BCS>

This command places you in the BCS utility verbose
mode. In the verbose mode, BCS prints status informa-
tion on your terminal as the commands you select are
being executed. You can enter verbose mode at any time.

BCS> - -V

This command places you in the non verbose mode of op-
eration (either normal or simulate).

$BCS -S
BCS>

This command places you in the BCS utility simulate
mode. In the simulate mode, BCS simulates the execu-
tion of the commands without actually accessing the
hardware. You can enter simulate mode at any time.

BCS> - -S

This command places you in the non-simulate mode of
operation (either normal or verbose).

CHAPTER 4 VMS SOFTWARE 85

PHYSICAL UNIT NUMBERS

Range Parameter

Range

Description

Example

Radix

Description

Examples

A physical unit number or range of numbers from 1
through 250.

1 specifies the physical unit 1
200 specifies the physical unit 200
8 10 specifies the physical units 8, 9, and 10

In BCS, all user input numbers are assumed to be in
base 10. All displayed data is in hexadecimal unless oth-
erwise specified in the output as NUM(base), {15(10) is
the number 15 in the base 10). You can override the
radix for input data by using one of the following:

X The next number input is in base 16

‘0 The next number input is in base 8

‘D The next number input is in base 10

9 Specifies a base 10 number of 9

"X01 Specifies a base 16 number of 16 decimal
‘077 Specifies a base 8 number of 63 decin. -’

86 CHAPTER 4 VMS SOFTWARE

PROGRAM INTERFACE OVERVIEW

The following sections describe the interface between your BITBUS program
and the IBQO1 BITBUS Controller through the VMS QIO system service. It

describes the 14 VMS QIOs used in this interface and the parameters of these
QIOs.

QliOs

The VMS Queue 1/0 Request system service queues an I/O request to a chan-
nel associated with a device. The QIO service completes asynchronously; that
is, it returns to the caller immediately after queuing the I/0 request. The QIO
service performs device-independent preprocessing of the request. Each QIO
call consists of up to 12 parameters; six device-independent and six device-
dependent (the IBQO1 device driver uses up to six dependent parameters).

The format for a QIO call is:

SYS$QIO [EFN][CHAN][FUNCT].[IOSB}|ASTADR),[ASTPRM],
[P1].[P2},[P3].{P4]|P5].[P6]

where The six device-independent parameters are (see the VMS
System Service Manual for details on how to address QI10Os and
use the device-independent parameters):

EFN An event flag that is set when the QIO completes.
The default is event flag 0.

CHAN The 1/0 channel assigned to the device.

FUNCT The device-specific function codes and function
modifiers specifying the operation to be performed.
{For a listing of the functions, see the section on
QIO functions.)

10SB The I/O status block to receive the final completion
status of the I/0 operation and is derived from
codes returned from the driver. The IOSB contains
the condition value. the transfer count, and device-
specific information which includes IBQO1 reply,
node reply, and application command. (See Chapter
6 for a description of the contents of IOSB.)

CHAPTER 4 VMS SOFTWARE 87

ASTADR The AST service routine to be executed when the
1/0 completes. The ASTADR argument is the ad-
dress of a longword value that is the entry mask to
the AST routine.

ASTPRM The AST parameter to be passed to the AST serv-
ice routine. The ASTPRM argument is a longword
value containing the AST parameter.

The six device-dependent parameters are {all 32-bit values):

Pl The address of the user DMA buffer. This is used for all
functions which can do a DMA transfer — SEND,
RECEIVE, XCHANGE. TRADE, UPLOAD,
DOWNLOAD, SCANON, and ONLINE. Must be an even
address.

Address of the AST routine to be called upon network
event. Used by the SETAST command.

P2 The value of the length of DMA transfer in even-
numbered bytes by value. This is used by SEND,
RECEIVE. XCHANGE. TRADE, UPLOAD,
DOWNLOAD, SCANON, and ONLINE. The maximum
length is 60 kbytes normally. For SCANON and ONLINE
to nodes other than 0, the maximum length is 12 bytes.

P3 A combination of the physical node address (0 through
250 - where 0 is the IBQO01) and the task number (0
through 7) which identify a node on the BITBUS. Used
by OFFLINE, ONLINE, RESET, SEND, RECEIVE,
DOWNLOAD. TRADE. UPLOAD. SCANOFF, and
SCANON when the node number is not 0. Used by
SCANOFF, SCANON, RESET, ONLINE, and OFFLINE
when the node number is 0. The format for the word is:

15 14 121 8 7 0

0 SOURCE TASK 0 DEST TASK NODE

55735

88 CHAPTER 4 VMS SOFTWARE

P4

P5

P6

Node is in the lower byte of the lower word; destination is
in the lower half of the upper byte of the lower word; and,
source is in the upper half of the upper byte of the lower

word. You can use the source field (which can be used for
anything) to further identify the source of the request (as

when the same function is sent to the same task).

The value of the download address. An address in the
node from which the IBQ01 BITBUS Controller will read
from for the UPLOAD function and write to for the

DOWNLOAD command. The address is in the upper
word.

31 16 15 0

DOWNLOAD ADDRESS APPLICATION COMMAND

55639

Application command - Identifies function to destination
task. The application function is in the lower word. See
Chapter 2 for application command examples.

The value of the timeout parameter in seconds. Specifies
the length of time in which the operation must be com-
pleted. A timeout error is generated if the operation does
not complete in this time. A parameter which is used for
SEND, RECEIVE, EXCHANGE. TRADE, UPLOAD, and
DOWNLOAD. When you specify P5=0, you specify an in-
finite timeout. Timeouts are generated on one-second
boundaries; therefore, do not use a time of one second.

Optional input buffer. Valid only for the TRADE and
XCHANGE function. A write buffer protects the data
being sent. When P6 is specified, P1 only refers to the
output buffer. When P6 is not specified, P1 refers to both
the input and output buffer. A value of 0 indicates no op-
tional input buffer.

NOTE

An improper parameter entry returns an error message,
SS$ BADPARAM.

CHAPTER 4 VMS SOFTWARE 89

™1 TA FORMATS

For most communications functions, data contained in the DMA buffer must
correspond to certain formats. In particular, RAC defines constructs for
message data (see Chapter 2). In order to communicate with this and other
protocols, you must be careful to format data in the DMA transferred buffers
to conform to the protocol.

Since the IBQO1 does not recognize any particular format it does not change
the data received (either from the host or a slav~ node). However, the partition-
ing performed by the IBQO1 for messages larger than the standard Intel
message size of 13 bytes varies with different IBQO1 function types. To aid the
user in formatting data buffers for remote nodes. A description of this parti-
tioning is contained in the function descriptions.

QIO FUNCTIONS

There are 14 QIO function codes used by the BITBUS driver. With virtual 1/0
privileges. you can use all of these commands except the TESTIBQ and
UPLOAD commands, for which you must have physical 1/0 privileges t- use.
The function codes, which are described in the following sections, are show.. in
the following table in alphabetical order.

IBQO01 /O Functions

Function Code Arguments Function

IBQ$_BUSSEARCH Search bus

IBQS_DOWNLOAD P1,P2,P3,P4,P5 Sends data to node memory

IBQ$_OFFLINE P3 Sets nodes inactive

IBQ$ ONLINE P1,P2.P3.P4 Sets nodes active

IBQ$_RECEIVE P1,P2,P3,P4,P5 Receive node information

IBQ$_RESET P3 Resets nodes

IBQ$ _SCANOFF P3 Sets nodes off to receive

IBQ$_SCANON P1,P2,P3,P4 Sets nodes on to receive

IBQ$_SEND P1,P2,P3,P4,P5 Sends a message to a node

IBQ$ SETAST P1 Inform process by AST on net-
work event

IBQ$ _TESTIBQ Tests the IBQO1 board

IBQ$_TRADE P1.P2,P3,P5,P6 Does a SEND and RECEIVE

IBQ$_UPLOAD P1,P2,P3,P4,P5 Loads data from node memory

IBQ$_XCHANGE P1,P2,P3,P4,P5,P6 Does a SEND and RECEIVE

9¢ CHAPTER 4 VMS SOFTWARE

IBQ$_BUSSEARCH

Performs a search of the BITBUS and makes a tai:ie in the IBQO! listing all

of the nodes available. Allow one minute for this command to complete. Use an
IBQ$_ONLINE to node 0 to obtain this table.

IBQS_DOWNLOAD

Sends information to be loaded into the internal memory of a slave node (8044
external),

The QIO arguments for this function are:

P1 - the address of the host VAX data area
P2 - the length of the host VAX data area
P3 - the address of the node/task

P4 - the address of the external RAM in the receiving node which is the
upper word and the application command in the lower word

P5 - the value of the timeout parameter

DOWNLOAD makes use of the application-specific field in the PIO for
downloading data to a slave node. The application-specific field holds the down-
load start address (16 bits) (within the slave node). The IBQO1 delivers data to
the slave node up to 13 bytes, with the starting address in the first two
message data bytes. For data lengths greater than 13 bytes, the IBQO1 loads a
start address (16 bits) into the first two message bytes of each packet and fills
the remaining bytes (11 for a full packet) with the data in its buffer. The slave
task must read the first two bytes as starting offset and write the data to its
RAM space. All subsequent packets sent within the same download request will
have an updated start address in the first two bytes of the message.

This command type is patterned after RAC DOWNLOAD aithough other com-
mands can be issued as long as the receiving task recognizes the command and
can respond appropriately. The IBQO1 checks the BITBUS command field and
inserts a RAC DOWNLOAD command if a 0 is loaded.

CHAPTER 4 VMS SOFTWARE 91

IBQS_OFFLINE
Selects one node or the IBQ0O1 BITBUS Controller to be inactive.

The QIO argument for the function is:

P3 - the address of the node (0 to 250)

IBQ$_ONLINE
Selects one slave node or the IBQ01 BITBUS Controller node to be active.

The QIO arguments for this function are:

P1 - the address of the host VAX data area

P2 - the length of the host VAX data area - DMA length must be <=
12 for node # 0. for ONLINE 0 length must be <= 60 kbytes, only
the first 254 bytes contain meaningful data

P3 - the address of the node (0 to 250)

P4 - the number of the application command

ONLINE performs a single packet transmission to the designated node to de-
termine if it is present on the BITBUS. The IBQO1 uses an exchange format
with the exception that no DMA occurs from the host to the IBQO1. The
IBQO1 will format a single packet and pack zeroes into the specified buffer
length. The command field is definable and will default to 'OF" hex if the field

is left open. Any return data is loaded into the buffer and DMA transferred
back to the host VAX.

A special ONLINE case occurs when the node address is set to 0. The IBQO1
transfers the contents of its node table into the allocated buffer, and DMA
transfers it back to the host VAX. Data returned includes the device code and
revision number (first two bytes) and the chronological sequence of node ad-
dresses (byte integers) that are online. Unused bytes are packed with zeros.

NOTE
When a remote node loses power and recycles back up, issue the
ONLINE command twice. Since the controller and the node will
not be synchronized, the first ONLINE will return an error. Ignore
the first error. The first ONLINE will resynchronize the nodes and
the second ONLINE should then proceed normally.

92 CHAPTER 4 VMS SOFTWARE

IBQS_RECEIVE

Receives information from a slave node.

The QIO arguments for this function are:

P1 - the address of the VAX data area
P2 - the length of the host VAX data area
P3 - the address of the node/task

P4 - the number of the application command

P56 - the value of the timeout parameter

A RECEIVE commands a slave to return a message with data. No data is sent
on transmit to the slave node, only the packet header and user-defined com-
mand field. This function assumes a user-defined command that instructs the
slave task to return data. The length of the data returned is dependent on the
responding slave and is captured as follows:

L The PIO DMA length defines the maximum data length receivable
during a command. If a 100-byte buffer is allocated, no more than
100 bytes are requested (implied by number of command packets).

] The IBQO1 calculates the number (n) of 13-byte packets needed to
retrieve the buffer length and delivers a command packet (no data)
n times to the slave node.

° The slave node response can return up to 13 data bytes per com-
mand packet (up to the DMA buffer size). The IBQO1 collects and
buffers the slave node responses and delivers them to the host
after the final command packet is finished.

CHAPTER 4 VMS SOFTWARE 93

IBQ$S_RESET
Resets slave node or the IBQO1 BITBUS Controller (node 0).

The QIO argument for this function is:

P3 - the address of the node (0 to 250)

No data is handled on this command. IBQO1 delivers an 8-byte command
packet to the node and does not wait for an acknowledge. A RESET 0 takes
20 seconds, cancels any current activity and locks out any new activity during
that period. Any QIO issued during a RESET 0 operation will return with the
error code SS$ DEVOFFLINE. Any RESET 0 issued during operation of any
other command will return with error code SS§$_INTERLOCK.

A RESET 0 puts the controller back into its power-up state and clears any

hung nodes. If there are pending QIO operations, a RESET 0 should be pre-
ceded by a call to the System Services $CANCEL.

IBQ$S_SCANON

Receives information from a node continuously.

The QIO arguments for this function are:

P1 - the address of the host VAX data area
P2 - the length of the host VAX data area
P3 - the address of the node/task

P’4 - the number of the application command

SCANON sends a command packet with no data to the designated node/task.
The frequency of this continuous scan is determined by the response time of
the slave node. Data is returned in the slave node’s reply packet and DMA
transferred to the host. The data cannot be longer than 12 bytes and is in the
format of the replying slave node. Only one task-per-node can be scanned. Data
will be placed continuously in the host data area and the QIO will remain
active until a SCANOFF is issued to that node/task.

When P3 is 0 , SCANON turns the master scanning function on initiating or
resuming any node/task scans in progress.

94 CHAPTER 4 VMS SOFTWARE

IBQS_SCANOFF
Turns off the SCANON command.

The QIO arguments for this function are:

P3 - the address of node/task

CAUTION

SCANON remains active until you issue a SCANOFF to the same
destination. A QIOW call will not return a until corresponding
SCANOFTF is issued from another program. When only one pro-
gram is being run, it is necessary to use the QIO call so that fur-
ther processing, including the SCANOFF, can continue.

When P3 is 0, SCANOFF turns the master scanning function off, halting any
data update until a SCANON to node 0 is issued. Pending SCANONSs will
remain in queue.

IBQ$_SEND

Sends a message to a node.

The QIO arguments for this function are:

P1 - the address of the host VAX data

P2 - the length of the host data area

P3 - the address of the node/task

P4 - the number of the application command (see Chapter 2)

P5 - the value of the timeout parameter

Data is partitioned on 13-byte boundaries such that a 50-bte data buffer re-
quires four message packets; the first three have 13 data bytes and the last
ore 11 data bytes. No Data replies are expected for SEND. The IBQO1 indi-
cates completion to the host upon receipt of the fourth packet acknowledgment
received from the slave.

CHAPTER 4 VMS SOFTWARE 95

IBQ$S_SETAST

Informs the process by AST on network event (an unsolicited message from a
node/task). For example, when a node is unable to respond a network event is
generated.

The QIO arguments for this function are:

P-1 - the address to be executed upon AST delivery

With SETAST, a longword parameter passed by value to the AST routine will
contain the node/task address in the upper word, the node application com-
mand in the lower half of the lower word, and the node reply in the upper half
of the lower word.

3 27 23 16 15 8 7 0

SOURCE DEST NODE APPLICATION
0)
TASK € TASK NODE REPLY COMMAND

IBQ$_TESTIBQ

Tests the IBQO1 board by performing a series of tests:

. testcpu - test the 80186 CPU
U testram - tests the controller ram
. testclock - tests the on-board clock

° testmaster - tests the 8044 CPU

96 CHAPTER 4 VMS SOFTWARE

IBQ$S_TRADE

Combines the tunctionality of the SEND and RECEIVE command and allows

you to retain the SEND data.
The QIO arguments for this function:

P1 - the address of the host data area

P2 - the length of the host data area
P3 - the address of the node/task

P5 - the value of the timeout parameter

P6 - the address of the optional input buffer in the host VAX

TRADE is similar to EXCHANGE except that the data field is formatted dif-

ferently. For single commands, the following format must be used:

LENGTH{n)=DATA+FF

CONTROL

COMMAND

DATA

DATA

DATA

FF

FF

BYTE 1

BYTE 2

BYTE 3

BYTE 4

CS-5640

CHAPTER 4 VMS SOFTWARE

97

The parameter definitions are as follows.
LENGTH: Total number of data bytes to transmit excluding
CONTROL, COMMAND, LENGTH.
CONTROL: Four MSBs of the byte as follows:

a. TYPE: A single bit (bit 7) that indicates whether message is an
order or reply.

b. SRC: A bit value (bit 6) that indicates whether the source task re-
sides on an extension or BITBUS controller.

c. DEST: A bit value (bit 5) that indicates whether the destination
task resides on an extension or BITBUS controller.

d. TRK: A bit value (bit 4) used to track a message during a TRADE
transfer. TRK must be set to 0 before sending an order message.

The typical value for the CONTROL Byte is 40H.
COMMAND: BITBUS application command.
DATA: Up to 13 bytes of data ~ he delivered to a remote
node.

The IBQO1 reads the LENGTH field and formats a TRADE message packet
with a data length of (LENGTH) bytes. This length can be less than 13 bytes,

thus allowing for transmissions of unequal lengths within the same command
sequence.

Response data is returned as follows:
a. LENGTH: This field contains the return data iength.
b. CONTROL: The IBQO01 response control field is returned here.
c. COMMAND: The node response status is returned here.
d. DATA: The response data (up to 13 bytes) is returned here.

88 CHAPTER 4 VMS SOFTWARE

These fields will change as shown on response, and must be reinitialized if “he
buffer is to be reused in another TRADE command.

NOTE
The DMA length determines the maximum buffer size and hence
the maximum message response. When a DMA length of 10 bytes
is requested, 7 data bytes can be returned to the IBQOL. Responses
larger than the DMA buffer are truncated to that DMA buffer
length and the remaining data is lost!

Extra space allocated for return data bytes (uv to 13-per-packet) must be filled

with -1 (FF). For multiple BITBUS commands in one trade operation, the fol-
lowing format must be used.

CHAPTER 4 VMS SOFTWARE 99

LENGTH (3) BYTE 1
CONTROL BYTE 2
COMMAND BYTE 3
DATA BYTE 4
DATA BYTE 5
DATA BYTE 6
B . |
d SOME FFs .
Ft BYTE n (UP TO 16)
LENGTH (4 IBX‘;”TTEERnTEL‘sGTTquJ (FF) BYTE
CONTROL BYTE n + 2
COMMAND BYTE n + 3
DATA BYTE n +4
DATA BYTE 45
DATA BYTE n+ 6
pafa BYTE n+ 7
T SOME FFs -~
i BYTE m (UP TO n+ 16}
LENGTH (5 BYTE m=1 1ST NON -1 (FF) BYTE
AfTER LENGTH 2+
CONTROL BYTE m+ 2
COMMAND BYTE m + 3
NATA BYTE m + 4
vara BYTE m+ 5
JalA BYTE m + 6
DATA BYTE m + 7
i DATA BYTE m + 8
¥ SOME FFs -
F¥ BYTE x (UP TO m + 16)
€S 564!

100 CHAPTER 4 VMS SOFTWARE

IBQ$_UPLOAD

Sends the information from a node’s internal memory (8044 external) to the
MicroVAX.

The QIO arguments for this function are:

P1 - the address of the host VAX data area
P2 - the length of the host VAX data area
P3 - the address of the node/task

P4 - the address of the external RAM of the sending node which is the
upper word and the application command in the lower word

P5 - the value of the timeout parameter

UPLOAD uses the application-specific field in the PIO for uploading data from
a slave node. The application-specific field hoids the start address (16 bits) for
the upload. The IBQO1 collects data starting at this address up to the DMA
length specified — up to 13 bytes. For data lengths greater than 13 bytes, the
IBQO1 will load a start address (16 bits) into the first two message bytes of
each packet and fill the remaining bytes (11 for a full packet) with zeros. The
slave task must read the first two bytes as offset and collect the data needed
to fill the remaining message area. All subsequent packets sent within the

same upload request will have an updated start address in the first two bytes
of the message.

This function is patterned after RAC UPLOAD although other commands can
be issued as long as the receiving task recognizes the command and can

respond. The IBQO1 checks the BITBUS command field and inserts a RAC
UPLOAD command if a 0 is loaded.

CHAPTER 4 VMS SOFTWARE 101

IBQ$_XCHANGE
Combines the functionality of the SEND and RECEIVE commands.
The QIO arguments for this function are:

P1 - the address of the host VAX data area
P2 - the length of thie host VAX data

P3 - the address of the node/task

P4 - the number of the application command
P5 - the value of the timeout parameter

P6 - the address of the optional input buffer in the host VAX

XCHANGE assumes a bilateral data transfer of commands from the master
node to a slave node and back to the master node. The commands include slave
addressing directives within the message data field (RAC — see Chapter 2).
The IBQO1 assumes the same message size is returned in the slave’s response.
For data lengths greater than a single packet size, the IBQO1 divides the

entire buffer into data packets 13 bytes long. This partition may cause the
need for byte stuffing in order to obtain data alignment from packet to packet
in a multi-packet exchange.

The major difference between the TRADE and the XCHANGE command is the
format of the data buffers. IBQ$_XCHANGE is potentially easier to use as the
header data for each BITBUS packet is constructed by the IBQO1 Controller
from information in the QIO parameters. IBQ$_TRADE is constructed from
information in the DMA input buffer.

102 CHAPTER 4 VMS SOFTWARE

EXAMPLES

This section contains programming examples of device communication
commands.

Example 1

In this example, SCANON/SCANOFF functions are tested. The IBQ0O1 scans
slave node 10 for a period equal to 100,000 loops (about six seconds) and
displays the output generated.

C
¢ IMPLICIT INTEGER*4 (A-Z)

INCLUDE 'SYS$SYSROOT:[SYSHLP.EXAMPLESJ]IBQ$FUNC.FOR’
'IBQ constants
INTEGER*2 BQ_CHAN !stores channel assigned
INTEGER*2 I0SB(4) !stores return status
BYTE DBUF(6) 'buffer area in which data is received
PARAMETER LENGTH=6 'number of bytes to input
PARAMETER NODE =10 'node number + task since
'number is <256, task=0
PARAMETER 'time in which node should
TIMEOUT=6
'respond + 1

Assign the channel number

(o TN o N o NN o]

STAT = SYS$ASSIGN (' BQA:,BQ CHAN,)
IF ((NOT. STAT) CALL LIB$STOP (% VAL(STAT)) 'if can’t
'assign stop
c
c
¢ Scan node 10 for a period of time, then turn the scan off
c
STAT= SYS$QIO (%VAL(1),%VAL(BQ_CHAN),%VAL{IBQ$_SCANON)
1 .IOSB,,,DBUF(1),%VAL(LENGTH),%VAL(NODE)
1 ,%VAL(IBQ$_RAC_WRITE),% VALTIMEOUT),,)

CHAPTER 4 VMS SOFTWARE 103

¢ Output data received, loop symbolizes additional processing to
¢ be performed.

c
DO 100 1=1,100000
TYPE 1000,DBUF !continually output scanned data
100 CONTINUE
STAT= SYS$QIOW (%VAL(1),%VAL(BQ CHAN),%VAL(SCANOFF)
1 ,10SB,,.DBUF(1),,%VAL{10),,,,)
IF (.NOT. STAT) CALL LIB$STOP (%VAL(STAT)

IF ((NOT. I0SB(1)) CALL LIB$STOP (% VAL{IOSB(1)))
1000 FORMAT ('DATA = '\I2)

END

104 CHAPTER 4 YMS SOFTWARE

Example 2

In this example, ONLINE function is tested, the IBQ01 places slave node 34
online.

C
c

IMPLICIT INTEGER*4 (A-Z)
INCLUDE 'SYS$SYSROOT:[SYSHLP.EXAMPLES]JIBQ$FUNC.FOR’
'IBQ constants
INTEGER*2 BQ_CHAN !stores channel assigned
INTEGER*2 10SB(4) !stores return status
BYTE DBUF(6) 'buffer area in which data is received
PARAMETER LENGTH=0 'no data exchanged
PARAMETER NODE =34 'node number + task since
'number is <256, task=0
PARAMETER TIMEQUT=10 !'time in which node should respond + 1

c Assign the channel number

STAT = SYS$SASSIGN ('_BQA:.BQ_CHAN,)
IF (NOT. STAT) CALL LIB$STOP (% VAL(STAT)) !if can’t
lassign stop
C
¢ Place node 34 on line
c
STAT= SYS$QIOW
(%VAL{1),%VAL(BQ CHANL%VAL(IBQ$_ONLINE)
1 ,IOSB.,.DBUF(1),%VAL({0),%VAL(NODE)
1 . %VAL(IBQ$ RAC_WRITE),%VAL(TIMEQUT),,)
c
¢ Verify correct return
c
IF (NOT. STAT) CALL LIB$STOP (% VAL(STAT))

IF (NOT. I0SB({1)) CALL LIB$STOP (%VAL{IOSB(1)))
END

CHAPTER 4 VMS SOFTWARE 105

Example 3

In this example, the EXCHANGE function is tested with slave node 10.
c

Cc
Cc

IMPLICIT INTEGER*4 (A-Z)
INCLUDE 'SYS$SYSROOT:[SYSHLP.EXAMPLESI|IBQ$FUNC.FOR'
'IBQ constants
INTEGER*2 BQ_CHAN !stores channel assigned
INTEGER*2 10SB(4) !stores return status
BYTE DBUF(6) 'buffer area in which data is received
PARAMETER LENGTH=4 'number of bytes to input
PARAMETER NODE =10 'node number + task since
'number is <256, task=0
PARAMETER TIMEOUT=6 'time in which node should

'respond + 1

c
c
c Assign the channel number
c

STAT = SYSSASSIGN ('_BQA:'.BQ_CHAN.,)

IF (NOT. STAT) CALL LIB$STOP (%VAL(STAT)) !if can't

lassign stop

c
c Transfer 4 bytes of data to node 10 task 0 and receive that 4
c bytes of data from that node
c

STAT= SYS$QIOW
(% VALI1,%VALIBQ CHAN).%VAL{IBQ$_EXCHANGE)
1 .IOSB...DBUF(1). %VALILENGTH).%VALINODE)
1 . %VALIBQ$ _RAC_WRITE),%VALITIMEOUT),.)
IF (NOT. STAT) CALL LIB$STOP (%VAL(STAT))
IF ((NOT. IOSB(1)) CALL LIB$STOP (% VAL(IOSB(1)))
c
¢ Do something with the data received in DBUF
c
END

106 CHAPTER 4 VMS SOFTWARE

IBQSLD44V DOWNLOAD UTILITY

IBQ3LD44V is a VMS utility to download to a node tasks created with the
ASM44 8044 assembler. You invoke IBQ$LD44V as an image and run it once
for each task you want to send to the node. IBQ$LD44V requests the device
name of the IBQO1 controller, the file name of the ASM44 hex output file con-
taining the assembled task code, and the BITBUS node number, which will
receive the download. IBQ$LD44V prints the hexa-decimal lines as it processes
them and displays any e.rors (a sample is shown below). Your 8044 source file
should have a start address in the END statement (address of the initial task

descriptor (ITD)). If no start address is given, the download operation will not
complete.

$ RUN SYS$SYSTEM:IBQ$LD44V

LD44V Version V1.1
Copyright (C) 1987, Digital Equipment Corporation

Enter controller name [default = 'BQAO0’]: <CR>

Enter the name of the hex file: { . DEMO|FLASH.HEX

Enter the downloadable node number (decimal): 250

Beginning data download (hex file lines displayed) ...
:1a400000c249d24ac290740175f0fe12009820e00411500106ef2406{8b678
:1a401a0000041144012ab60104114a012a75f011eff8080870v0708e644802b
:1a4034001f6080808a6f08f827583001200920106¢c24a75f00022d24a75f006
:13404e00002230420d304906¢c290c2498004d290d24922b7
:0b450000aa550500060503000000019d

:00450001ba

Download complete, starting task...

Task started, assigned task number 2

$

CHAPTER 4 VMS SOFTWARE 107

TROUBLESHOOTING

Failures you may encounter in using the IBQ01 BITBUS Controller and the
corrective steps are described in the following sections.

DEVICE COMMUNICATIONS FAILURE

This section describes the two types of device communications failures that can
occur;

° System failures - these are failures that occur in the system.
o Operator failures - these are failures that are related to operator
fault.

System Failures

SS$PROTOCOL - VMS Driver/IBQ01 controller communication failure. May in-

dicate controller problem. If this happens contaci your DIGITAL representa-
tive.

108 CHAPTER 4 VMS SOFTWARE

Operator Failures

There are two major sources of errors which can happen from the programmer
generating a QIO call to the IBQ01 BITBUS Controller.

1.

A bad device-independent parameter. The QIO system service
rejects the call by returning an error code as the function value (see
VMS System Service Manual.

All other errors. By returning an error code in the function value or
I/O status block (see codes below).

The /0 status block is a quad word (64 bits) with the following information.

16 15 0
TRANSFER COUNT CONDITION VALUE
NOT BB(NODE APPLICATION
USED 00t REPLY COMMAND
S

(5-5643

IBQO1 VMS Driver Return Codes

The QIO system service returns errors based on whether the QIO call is set up
correctly or due to run time 1/O errors (see the QIO System Service Manual.
The IBQO1 Driver can return the following codes:

1.

SS$ _ACCVIO - The DMA function is specifying an inaccessible
buffer for reading or writing.

SS$ EXQUOTA - The SETAST function exceeds the quota al-
lotted to the process for specifying AST requests.

SS$_INSFMEM - There is not enough system memory to complete
the operation. This can happen during any operation.

SS$ DEVOFFLINE - Device offline, communications could not be
initiated.

SS$ POWERFAIL - Power fail. Power fail condition detected on at-
tempted write to device. This may effect all outstanding messages.

SS$ BADPARAM - Bad parameter, such as invalid DMA length
(too large, or odd).

SS$ DEVOFFLINE - A QIO was issued during a RESET 0
operation.

CHAPTER 4 VMS SOFTWARE 109

10.

11.

12

13.

SS$ INTERLOCK - A RESET 0 was issued during another QIO
operation.

S CANCEL - Cancel. Cancel is invoked before request
completes.

SS$_TIMEOUT - A timeout occurred while waiting for a response
from the device.

SS$ UNREACHABLE - The IBQO1 BITBUS Controller returned a
transmission problem code.

SS$ PROTOCOL - Control information received from the slave
node does not match the data sent.

SS$ NORMAL - Normal. Normal return.

BITBUS Errors and 1IBQO01 BITBUS Controller Errors
See Chapter 2 for a list of these errors.

110 CHAPTER 4 VMS SOFTWARE

XXX AKX XA KA XA UK XK KK KX KA KX KKK XX XXX XA KA XK LXK XK KKK
PO PP 0808000000008 00000 400880000 006680008000
POt P 0000000000000 0000 00008000 Pt et etssveededd
XAXAKAXX KX KA XK XK KA KL AX AU XX R XK AKX KKK N

f e 0080000000000 00000 80008080600.000000806064

P08t 08003450800 0.0000000000008.080000640604

f 0,080,060 000900008 08.0000000¢0800.00606.0604044

P00 0000080080 000¢0000 0000006909044

PSR G800 0000000000000 00 00080604800
p0.9.0.0.0.0.000808000069¢96000800¢6.060¢4
P90 000000000080.9¢90080066608004

PO OG0 00008 08 08000000080¢ 04

PP 0000000000009 600000¢]

XXX XX KA XX XXX XX XXXXAX XXX
p.0.0.6.0060.0406¢6660808¢49

AXA XA XA XX XA XA XXAXKAX
ARXAAXXXXAXK XK KA AKX
XXAXXX XA AR XX XAN

XXAXXAXXXAXK AKX

AXXXKAXKA XXX

AXAXXXXXXXX

XXAXXAXXX

XXXXXXX

AXXXX
XXX

X

X

XXX

XXXXX

AXXAXXX

AXAXAXKXXX

EXXXXXXANKX
p.0.6.0.0.6.9.0.4.4.9.9.9.4
$.0.8.4.0.0.6.0.9.0.9.0.6¢04
p.9.6.0.0.0.6.0.8.0.0.0.4.0.9.¢4
$.0.0.8.6.0.80846.09.0.9.04¢¢4
1.$.9.0.0.0.0.0866.0.9 000004004
XAXXKAXAXXXXKXX XX KA XAKXAK
§£.9.0.96006080608089.90¢4.0¢94
2.0.6.4.9.0.9.6.0000008080.0.056¢400¢4
p.0.8.6.6.0.6.0,0.6.9.00.0.0.0.605¢.9¢.960.00.064
i0.0,06.0.0.0,6.0.0.0.0.00.¢0.0.00450.09096006044
$8.8.0.8.08.0.00.60900086096:9006.0650600.84
P90.0.0.006.96.0.0.0.9900.6.0.8.9.6000600880¢00044
0,0,0.4.0.0.06,00.0.8.0.9069.008:9$088906¢.9080666
$.0.900.0.80000090.090.0.00009.64900.0000600.66.0.69.0¢4

D09 $808000000000000.0.60060.90.08.9000000609000¢4
B8 8.0.0.0.000000.00.0006005906980688080060.8000000¢4
D O.0.0.8.06000¢008040.0840000¢000800¢60086000649994

PO GO 808 000 0.000000.68380806008660080806080686000904

POV 90800 40000080000 800000.900006.0000000 0846680690

§ 6000000808 060.609000000900006.90006¢00.0000600.00009004

CHAPTER 5
VAXELN SOFTWARE

INTRODUCTION

This chapter describes the interface between your program and the 1BQ01
BITBUS Controller through the VAXELN service. It describes the related com-
mands used in this interface and how they are used.

OVERVIEW

The VAXELN driver for the IBQO1 provides the functionality of the DECscan
IBQO1 Q-bus-BITBUS board with a friendly program interface. In using this
manual the following conventions are used.

1. All parameters are required unless enclosed with brackets
[PARAMETER:=].

2. All parameters requiring byte values should be of type
IBQ$ BYTE _TYPE.

3. All parameters requiring word values should be of type
IBQ$ WORD_TYPE.

4. All parameters input to the IOSB field should be of type
IBQ$ 10SB.

CHAPTER 5 VAXELN SOFTWARE 111

To build your application please observe the following rules:

1. When compiling, include in the compilation statement:;
ELNS$:IBQSELNLIB/LIB. The names of any IBQ$ subroutines used
should be specified by way of the INCLUDE option with the com-
piler or in your code.

2. When linking, include in the link statement: ELN$:1BQ$SELNLIB/
LIB before the normally required ELN$:RTLSHARE/LIB,
ENL$ RTL/LIB.

3. The program being built should be in the kernel mode.

4. The .DAT generated should have the following information if the
hardware is installed as shipped:

DEVICE BQAO/REGISTER=%0760770/VECTOR=%03C0/PRIORITY=1
INO AUTOLOAD

All variables are passed by reference unless otherwise noted.

112 CHAP/(ER 5§ VAXELN SCFTWARE

IBQELN 1/0O Functions

Function Code
IBQ$_ABORT

IBQ$ BUSSEARCH
IBQ$_DOWNLOAD
IBQ$_INIT
1BQ$_LOAD44
IBQ$_MAP

IBQ$_NONODEINFO

IBQS_NOTIFY
IBQ$_OFFLINE
IBQ$_ONLINE
IBQ$_RECEIVE
IBQ$_RESET
IBQ$_SEND
IBQ$_SHUTDOWN
IBQ$_SYSINFO

IBQ$ TESTIBQ
IBQ$_TRADE
IBQS_UNMAP
IBQ$_UPLOAD
IBQ$_XCHANGE

Function

Aborts last command
Search bus

Sends data to node memory

Assigns and initializes device

Downloads a task to node memory

Maps user area DMA buffers to Q-

bus

Loads entry index of pending
requests

Signals a network event
Sets node offline

Sets node online

Receive node information
Resets nodes

Sends a message to a node
Deassigns node

Returns info about pending
requests

Tests the IBQ board

Does a SEND and a RECEIVE
Unmaps user DMA buffers
Sends from slave node memory
Does a SEND and a RECEIVE

CHAPTER 5 VAXELN SOFTWARE 113

IBQ$_ABORT

Terminates execution of any outstanding device operation. This procedure finds
the last command sent to the node and task specified and aborts it. If the
operation does not complete successfully, an error is returned.

Format

IBQS_ABORT (Device_pointer,
Node_number,
Task_number,
[STATUS:=));

Arguments

Device_pointer - An identifier, of type IBQ$_DEVPTR, returned by the
IBQ$_INIT procedure.

Node_number - A byte, defining the physical location of the node to be ac-
cessed, that is passed by value.

Task_number - A byte, defining which task on the node is to be accessed,
that is passed by value.

Status - A variable, of type INTEGER, that indicates the completion of the
device operations.

114 CHAPTER § VAXELN SOFTWARE

Status Values
IBQ$_SUCCESS - The procedure was able to initiate device operations.

IBQS_INSUFFIENT_MEMORY - Could not begin operations because there are
too many outstanding requests. There are probably outstanding aborts in the
system and your process must wait until they are completed. Synchronizing

aborts through the user of MUTEXS, EVENTS OR SEMAPHORES will avoid
this condition.

IBQ$_INVALID PARAMETER - One of the input parameters was not specified
correctly. No device operations were initiated.

IBQS_NO_EVENT_CREATED - Routine could not create an event so that it
could be informed upon Zevice completion. Check system resources.

IBQ$_NO_ENTRY _ABORTED - Abort failed, probably because the device had al-
ready responded to the outstanding operation.

IBQ$ INVALID_DEVICE - The user specified an invalid device nointer.

IBQ$S_DRIVER_ON_HOLD - Another operation is being performed on the device
at this time which does not allow other users to access it. This condition is
only temporary.

IBQ$_DRIVER_NOT AVAILABLE - The driver process has signaled that an ab-

normality has previously occurred which renders it unreachable. Check the
device-status field for more information.

CHAPTER 5§ VAXELN SOFTWARE 115

IBQ$_BUSSEARCH

Pzrforms a search of the BITBUS and makes a table in the IBQO1 listing all
of the nodes available. Allow one minute for this command to complete. Use
and IBQ$_ONLINE to node 0 to obtain this table. Please allow one minute for
a full bus search to be completed.

Format

IBQ$_BUSSEARCH (Device_pointer,
[TRIGGER:=]
(I0SB:=,]
[STATUS: =)

Arguments

Device pointer - An identifier, of type IBQ$_DEVPTR, returned by the
IBQ$_INIT procedure.

Trigger - A variable, of type EVENT, which identifies the return mechanism of
the request. When the operation completes, the driver issues a SIGNAL with
this parameter. If you do not include this argument the driver does not inform
the user when this operation is complete and erases all information pertaining
to this request.

I0OSB - A data structure that optionally returns a status code. number of bytes
transferred, and device- and function-dependent information. The variable
assigned to I0SB:= must be of type IBQ$ 10SB. Refer to the Device Data
Structures section at the end of this chapter for the fields of this structure.

Status - A variable, of type INTEGER. that indicates success or failure of

procedure call only. Success or failure of device operations may be examined in
the IOSB after the TRIGGER event is satisfied.

116 CHAPTER 5 VAXELN SOFTWARE

Status Values

IBQ$ SUCCESS - Indicates procedure was able to initiate device operations.

IBQ$_INVALID PARAMETER - One of the input parameters was not specified
correctly. No device operations were initiated.

IBQS_INSUFFIENT_MEMORY - Could not begin operations because there are
too many outstanding requests.

IBQS INVALID DEVICE - The user specified an invalid device pointer.

iIBQ$ DRIVER_ON_HOLD - Another operation is being performed on the device

at thns time which does not allow other users to access it. This condition is
only temporary

IBQ$ DRIVER _NOT_AVAILABLE - The driver process has signaled that an ab-

normality has previously occurred which renders it unreachable. Check the
Device Status field for more information.

CHAPTER 5 VAXELN SOFTWARE 117

IBQ$ DOWNLOAD

Sends information to be loaded into the internal memory (8044 external) of a
slave node. The IBQO1 delivers data to the slave node up to 13 bytes, with the
starting address in the first two message data bytes. For data lengths greater
than 13 bytes. the IBQO1 loads a start address (16 bits) into the first two
message bytes of each packet and fills the remaining bytes (11 for a full
packet) with the data in its buffer. The slave task must read the first two bytes
as starting offset and write the data to its RAM space. All subsequent packets
sent within the same download request will have an updated start address in
the first two bytes of the message.

This command is patterned after RAC DOWNLOAD command (you can use
other commands as long as the receiving task recognizes the command and can

respond appropriately). The IBQO1 checks the node command field and inserts
a RAC DOWNLOAD command if a 0 is loaded.

Format

IBQ$_DOWNLOAD (Device_pointer,
Node number,
Task number,

Node_command,
Node_address,
[QBUS_ADDRESS:=]
[BUFFER_LENGTH:=]
[I0OSB:=.}
[TRIGGER:=,]
[STATUS:=|);

118 CHAPTER 5 VAXELN SOFTWARE

Arguments

Device_pointer - An identifier, of type IBQ$_DEVPTR. returned by the
IBQ$_INIT procedure.

Node number - A byte, defining the physical location of the node to be ac-
cessed, that is passed by value.

Task_number - A byte, defining which task on the node is to be accessed, that
is passed by value.

Node_command - A byte, identifying the command which the IBQO1 is to
send to the node, that is passed by value.

Node address - A word (16 bits), identifying the location in external memory
of the node (slave) from which the buffer is to be loaded, that is passed by
value.

Qbus_address - A variable, of type INTEGER, that contains a 22-bit Q-bus
address of the buffer. This address was obtained by adding an offset to the
address obtained from the IBQ$ MAP procedure. This buffer must be on a
word boundary, its value must be even.

Buffer_length - An integer. in the range 0 to 60000, that specifies the buffer
length in bytes. The number of bytes must be an even number. If you specify a
buffer length greater than 60000 bytes or an odd buffer length the procedure
returns an error. The default value of this optional argument is zero, which
implies no DMA, even if a buffer address is given.

I0SB - A data structure that optionally returns a status code. number of bytes
transferred. and device- and function-dependent information. The variable
assigned to IOSB:= must be of type IBQ$ IOSB. Refer to the Device Data
Structures section at the end of this chapter for the fields of this structure.

Trigger - A variable, of type EVENT, which identifies the return mechanism of
the request When the operation completes the driver issues a SIGNAL with
this parameter. Failure to include this optional argument will cause the driver
not to inform the user when this operation is complete and erases all the infor-
mation pertaining to this request. '

Status - A variable, of type INTEGER. that indicates success or failure of
procedure call only. Success or failure of device operations may be examined in
the IOSB after the TRIGGER event is satisfied.

CHAPTER § VAXELN SOFTWARE 119

Status Values
IBQ$_SUCCESS - Indicates procedure was able to initiate device operations.

IBQS_INVALID PARAMETER - One of the parameters specified in this call was
unacceptable. Most likely to be a bad Qbus_Address or Buffer length. No
device operations were initiated.

IBQ$_INSUFFIENT_MEMORY - Could not begin operations because there are
too many outstanding requests.

IBQ$ _INVALID_DEVICE - The user specified an invalid device pointer.

IBQ$ DRIVER_ON HOLD - Another operation is being performed on the device
which does not allow other users to access it. This condition is temporary.

IBQ$_DRIVER_NOT_AVAILABLE - The driver process has signaled that an ab-

normality has occurred which renders it unreachable. Check the Device Status
field for more information.

120 CHAPTER 5 VAXELN SOFTWARE

IBQ$_INIT

This procedure assigns the device and initializes it. The user supplies the
device name and is returned the device pointer which he then uses in calls to
other IBQ procedures. This procedure exits when the operation is completea.

This variable must be defined and loaded at the module level. For example:

Module FOO
VER Devname: STRING(4):= 'BQA0’
PROGRAM BAS

Format

IBQ$_INIT (Dev_Name,
Device_pointer,
[STATUS:=]);

Arguments

Dev_name - A string of four characters specifying the name of the device to
be initialized. This string must have its first two characters as BQ and its last
character as 0 (zero). The third character identifies the device and is in the
range ¢f A through P. Legal strings are BQA0,BQB0,BQCO...BQPO.

Device pointer - An identifier returned of type IBQ$ DEVPTR which the
caller must use to further access this device.

Status - A variable, of type INTEGER, that indicates success or failure of the
initialize operation.

CHAPTER 5 VAXELN SOFTWARE 121

Status Values

1IBQ$_SUCCESS - The procedure was able to initialize device.

IBQ$ DEVICE_ALREADY_INITIALIZED - Alternate success, indicating that the
user is mapped to a device which has been initialized.

IBG$_NO_PROCESS_CREATED - Driver was unable to create the driver proc-
ess. Check system resources.

IBQ$S_NO_EVENT CREATED - Driver was unable to create an event necessary

for the user process to communicate with the driver process. Check system
resources.

IBO$_NO_SEMAPHORE_CREATED - Driver was unable to create a semaphcre

necessary for the user process to communicate with the driver process. Check
system resources.

IBQS_NO_AREA CREATED - Driver was unable to create an event necessary
for the user process to share data with the driver process. Check system
resources.

IBQS_INVALID_NAME - User specified a device name which was not within the
limits specified above.

122 CHAPTER § VAXELN SOFTWARE

IBQS_LOAD44

Downloads a task or data into the internal memory of a slave node. This proce-
dure uses the IBQ$_ONLINE, IBQ$ MAP, IBQ$ TRADE, and IBQ$_UNMAP
driver commands to send the data to the slave node. The task or data is sup-
plitd in the module IBQ$ DNLD_DAT.PAS, created by the utility IBQSLD44E
on VMS. IBQ$LD44E in turn, receives its inputs from hex files created by the
8044 cross assembler IBQ$ASM44 on VMS. The hexadecimal files are con-
verted and grouped together in a PASCAL data structure in the module
IBO$_DNLD_DAT.PAS. The input to IBQSASM44 are 8044 assembly lan-
guage programs created on VMS, which are either tasks or data to be loaded
into BITBUS node memory. See the section titled “IBQSLD44E Download
Utility” for more details on the full downloading sequence.

Each call to IBQ$ LOAD44 chooses one of the files in the PASCAL data
structure. It also chooses a BITBUS node which will receive the data into its
memory. Any file can be sen! to muitiple nodes, through multiple calls to
IBQ$ LOADA44. If the file is a wz:sk and has a start address (specified in the
assemuly language program), (BQ$ LOAD44 issues a create task command to
the RAC task on the node, after loading the task data. If there is no start
address, the data will only be loaded into node memory. The node response is
returned, which in the case of a started task will be the assigned task-1D
number. In the case of a data download, the node response should be zero. If
vhere were problems at the node, such as no buffers available to start the task,

the node response will contain an error code. See Chapter 3 for a list of node
error codes.

Format

IBQ$_LOAD44 (Device_pointer,
File_number.
Node number.
[NODE RESPONSE:=,]
[STATUS: =),

CHAPTEP 5 VAXELN SOFTWARE 123

Arguments

Device pointer - An identifier, of type IBQ$_DEVPTR, returned by the
IBQ$_INIT procedure.

File_number - An integer specifying which data file in the data module
IBQ$_DNLD_DAT to send to the node. The first file is number 1 and the
value increases by 1 for each subsequent file. The order of files is as specified
when IBQ$_DNLD DAT was cireated using the utility IBQ$_LD44E.

Node _number - A byte definiag, the physical location of the node tc be ac-
cessed, that is passed by value.

Node response - A variable, of type IBQS_BYTE_TYPE, that will receive the
response from the nude receiving the download daca. in the case of a down-
loaded and started task, this value will contain the task_ID number assigned
by RAC when the task was created. Gtherwise, the value will be 0 for no
errors, or contain an error code.

Status - A variable, of type INTEGER, that indicates success or failure of the

complete download operations. This is unlike most of the other driver calls,
which only return the results of the procedure call in this field.

124 CHAPTER 5 VAXELN SOFTWARE

Status Values

1BQ$_SUCCESS - Indicates procedure was able to successfully download the
data file.

IBQS_INVALID_PARAMETER - One of the parameters specified in this call was

unacceptable. Most likely to be a bad Qbus_Address or Buffer_length. No
device operations were initiated.

IBQS_INSUFFIENT_MEMORY - Could not begin operations because there are
too many outstanding requests.

IBQS_INVALID_DEVICE - User specified an invalid device pointer.

IBQ$_DRIVER_ON HOLD - Another operation is being performed on the device
which does not allow other users from accessing it. This condition is only
temporary.

IBQ$_DRIVER_NOT_AVAILABLE - The driver process has signaled that an ab-

normality has occurred which renders it unreachable. Check the Device Status
field for more information.

IBQS_FILE_NOT_FOUND - The value specified in File_number was outside the

ordinal range of data files in the module IBQ$_DNLD_DAT. The download
could not proceed.

IBQ$_BAD_COMMUNICATIONS - Communications with the node specified in

Node_number encountered problems, and the download did not complete.
Node_response may provide more specifics.

CHAPTER 5 VAXELN SOFTWARE 125

IBQS_MAP

Maps user area DMA buffers to Q-bus space. This procedure must be done
prior to invoking any IBQ DMA operations. The user supplies the pointer to
the area and the size of that area. The procedure synchronously returns the
Q-bus address of that region which the user inputs into the IBQ DMA
procedures.

Format

IBQ$ MAP (Device_pointer,
Area_pointer,
Buffer_size,
Qbus_address,
[STATUS:=))

Arguments

Device_pointer - An identifier, of type IBQ$_DEVPTR, returned by the
IBQ$_INIT procedure.

Area_pointer - A variable, of type ANYTYPE, representing an 1/O buffer.

Buffer_size - An integer, in the range 0 to 65535, containing the buffer size in
bytes.

Qbus_address - A variable, of type INTEGER, that returns a 22-bit Q-bus
address of the buffer mapped.

Status - An INTEGER receiving completion status of this call.
Status Values
IBQ$_SUCCESS - Indicates procedure was able to initialize device.

IBQS_INVALID_DEVICE - The user specified an invalid device pointer.

126 CHAPTER 5 VAXELN SOFTWARE

IBQS_NODEINFO

The user will provide this routine with a buffer and a node number. The routine
will load this buffer with the entry index of all pending requests to that node.
The buffer input must have allocation for an array of eight integers. When
IBQ$ NODEINFO finds a request outstanding to that node, the entry_index of
that package will get loaded into the array position corresponding to the task
number indicated in the request package. Additional information about this
request can be found by examining the IBQ Common Data Structure as
described later in this chapter. If more than one request is outstanding to the
same node and task. the one presently being waited for is reported.

Format

IBQ$ NODEINFO(Device_pointer,
Node_number,
Node_Array.
[STATUS:=]

Arguments

Device_pointer - An identifier, of type IBQ$_DEVPTR, returned by the
IBQ$_INIT procedure.

Node number - A byte identifying the node for which the information is
desired.

Node array - A buffer defined as:
ARRAY [0..7] of INTEGER

which holds the entry indices of all outstanding requests to the node.
Status - An INTEGER receiving completion status of this call.
Status Values

IBQ$ SUCCESS - The procedure was able to initialize device.

IBQ$_INVALID DEVICE - The user specified an invalid device pointer.

CHAPTER 5 VAXELN SOFTWARE 127

IBQS_NOTIFY

Requests the driver to signal the outstanding process when a network event
occurs. The driver — > application signaling mechanism for this command
should be similar to that of any other device operation command, with the ex-
ception that the calling process here will get signaled upon an event anywhere
in the system and that no actual command is sent to the device to evoke this
reply.

Format

IBQ$_NOTIFY (device_pointer,
trigger,
[IOSB:=,]
[STATUS:=}));

Arguments

Device_pointer - An identifier, of type IBQ$ DEVPTR, returned by the
IBQ$_INIT procedure.

Trigger - A variable, of type EVENT, which identifies the return mechanism of
the request. When the operation completes the driver will issue a SIGNAL with
this parameter. This parameter is required for this routine.

I0SB - A data structure that optionally returns a status code, number of bytes
transferred, and device- and function-dependent information. The variable
assigned to 10SB:= must be of type IBQ$_IOSB. Refer to the Device Data
Structures section at the end of this chapter for the fields of this structure.

Status - A variable, of type INTEGER. that indicates success or failure of

procedure call only. Success or failure of device operations may be examined in
the IOSB after the TRIGGER event is satisfied.

128 CHAPTER 5§ VAXELN SOFTWARE

Status Values

IBQ$ SUCCESS - Indicates procedure was able to initiate device operations.

IBQS_INVALID PARAMETER - One of the input parameters was not specified
correctly. No device operations were initiated.

IBQ$_INSUFFIENT_MEMORY - Could not begin operations because there are
too many outstanding requests.

1BQ$_INVALID DEVICE - User specified an invalid device pointer.

IBQ$_DRIVER_ON_HOLD - Another operation is being performed on the device

at this time which does not allow other users from accessing it. This condition
is only temporary.

IBQ$_DRIVER _NOT_AVAILABLE - The driver process has signaled that an ab-

normality has previously occurred which renders it unreachable. Check the
Device Status field for more information.

CHAPTER 5§ VAXELN SGFTWARE 129

IBQS_OFFLINE
Selects one node or the IBQ01 BITBUS Controller to be inactive.

Format

IBQ$_OFFLINE (Device_pointer,
Node_number,
[TRIGGER:=,]
[10SB:=))
[STATUS:=));

Arguments

Device_pointer - An identifier, of type IBQ$_DEVPTR, returned by the
IBQ$_INIT procedure.

Node number - A byte, defining the physical location of the node to be ac-
cessed, that is passed by value.

Trigger - A variable, of type EVENT, which identifies t1e return mechanism of
the request. When the operation completes the driver will issue a SIGNAL with
this parameter. If this optional argument is not included, the driver does not
inform the user when this operation is complete and erases the information
pertaining to this request.

I0SB - A data structure that optionally returns a status code, number of bytes
transferred, and device- and function-dependent information. The variable
assigned to I0SB:= must be of type IBQ$_10SB. Refer to the Device Data
Structures section at the end of this chapter for the fields of this structure.

Status - A variable, of type INTEGER, that indicates success or failure of

procedure call only. Success or failure of device operations may be examined in
the IOSB after the TRIGGER event is satisfied.

130 CHAPTER § VAXELN SOFTWARE

Status Values

IBG$_SUCCESS - Procedure was able to initiate device operations.

IBQS_INVALID PARAMETER - One of the input parameters was not specified
correctly. No device operations were initiated.

IBQ$_INSUFFIENT_MEMORY - Could not begin operations because there are
too many outstanding requests.

IBQ$_INVALID_DEVICE - The user specified an invalid device pointer.

IBQ$S_DRIVER_ON_HOLD - Another operation is being performed on the device
at this time which does not allow other users to access it. This condition is
only temporary.

IBQ$_DRIVER_NOT_AVAILABLE - The driver process has signaled that an ab-

normality has occurred which renders it unreachable. Check the Device Status
field for more information.

CHAPTER 5 VAXELN SOFTWARE 131

IBQ$_ONLINE

ONLINE performs a single packet transmission to the designated node to de-
termine if it is present on the BITBUS. The IBQO1 uses an exchange format
with the exception that no DMA occurs from the host to the IBQO1. The
IBQO1 formats a single packet and pack zeroes into the specified buffer length.
The command field is definable and will default to 'OF' hex if the field is left
open. Return data is loaded into the buffer and DMA transferred to the host.

A special ONLINE case occurs when the node address is set to 0. The IBQO1
transfers the contents of its node table into the allocated buffer, and DMA
transfers it back to the host. Data returned includes device code and revision
number (first two bytes) and the chronological sequence of node addresses (byte
integers) that are online. Unused bytes are packed with zeros.

Format

IBQ$ ONLINE (Device_pointer,
Node number,
Task number,
(NODE_COMMAND: =]
[QBUS_ADDRESS: =]
[BUFFER_LENGTH:=]
[TRIGGER: =}
[I0SB:=\]
[STATUS:=])

NOTE
When a remote node loses power and recycles back up, issue the
ONLINE command twice. Since the controller and the node will
not be synchronized, the first ONLINE will return an error. Ignore
the first error. The first ONLINE will resynchronize the nodes and
the second ONLINE should then proceed normally.

132 CHAPTER 5 VAXELN SOFTWARE

Arguments

Device _pointer - An identifier, of type IBQ$_DEVPTR, returned by the
IBQ$_INIT procedure.

Node number - A byte, defining the physical location of the node to be ac-
cessed, that is passed by value.

Task_number - A byte, defining which task on the node is to be accessed, that
is passed by value.

Node_command - A byte, identifying the command which the IBQO1 is to
send to the node, that is passed by value.

Qbus_address - A variable, of type INTEGER, that contains a 22-bit Q-bus
address of the buffer. This was obtained by adding an offset to the address
obtained from the IBQ$_MAP procedure. This buffer must be on a word
boundary, its value must be even. Failure to include this optional argument
means that no DMA will be performed.

Buffer_length - An integer, in the range 0 to 60000 if the node is 0 or 0 to 12
for all other nodes, supplying the buffer length in bytes. The number of bytes
must be an even number. If you specify a buffer length greater than 60000
bytes or an odd buffer length the procedure returns an error. The default value
is zero, which implies no DMA, even if a buffer address is given.

Trigger - A variable, of type EVENT, which identifies the return mechanism of
the request. When the operation completes the driver will issue a SIGNAL with
this parameter. If this optional argurient is not included the driver will not to
inform the user when this operation is complete and it erases all information
pertaining to this request.

IOSB - A data structure that optionally returns a status code, number of bytes
transferred. and device- and function-dependent information. The variable
assigned to IOSB:= must be of type IBQ$_ I0SB. Refer to the Device Data
Structures section at the .nd of this chapter for the fields of this structure.

Status - A variable, of type INTEGER. that indicates success or failure of the
procedure call. Success or failure of device operations may be examined in the
I0SB after the TRIGGER event is satisfied.

k3

CHAPTER 5 VAXELN SOFTWARE 133

Status Values

IBQ$_SUCCESS - Indicates procedure was able to initiate device operations.

IBQ$_INVALID_PARAMETER - One of the parameters specified in this call was
unacceptable. Most likely to be a bad Qbus_Address or Buffer_length. No
device operations were initiated.

IBQ$_INSUFFIENT_MEMORY - Could not begin operations because there are
too many outstanding requests.

IBQS INVALID DEVICE - The user specified an invalid device pointer.
IBQS DRIVER_ON_HOLD - Another operation is being performed on the device
which does not allow other users from accessing it. This condition is only

temporary.

IBQ$ DRIVER_NOT_AVAILABLE - The driver process has signaled that an ab-
normality has occurred which renders it unreachable. Check the Device Status
field for more information.

134 CHAPTER 5 VAXELN SOFTWARE

IBQS_RECEIVE

Commands a slave node to return a message with data. No data is sent on
transmit to the slave node, only the packet header and user-defined command
field. This function assumes a user-defined command that instructs the slave
task to return data. The length of the data returned is dependent on the
responding slave node and is captured as follows.

The buffer_length defines the maximum data length receivable during a com-
mand. The IBQO1 calculates the number (n) of 13-byte packets needed to
retrieve the buffer length and delivers a command packet (no data) n times to
the slave. The slave response can return up to 13 bytes per command packet
(up to the DMA buffer size). The IBQO1 collect and buffers the slave-node

responses and delivers them to the host after the final command packet is
finished.

Format

IBQ$_RECEIVE (Device_pointer,
Node number,
Task _number,
Node _command,
[QBUS_ADDRESS: =]
[BUFFER_LENGTH:=]
[TRIGGER:=]
[I0SB:=]
[STATUS: =)

CHAPTER 5 VAXELN SOFTWARE 135

Arguments

Device_pointer - An identifier, of type IBQS DEVPTR, returned by the
IBQ$_INIT procedure.

Node_number - A byte, defining the physical location of the node to be ac-
cessed, that is passed by value.

Task_number - A byte, defining which task on the node is to be accessed, that
is passed by value.

Node command - A byte, identifying the command which the IBQO1 is to
send to the node, that is passed by value.

Qbus_address - A variable, of type INTEGER, that contains a 22-bit Q-bus
address of the buffer. This address was obtained by adding an offset tc the
address obtained from the IBQ$ MAP procedure. This buffer must be on a
word boundary, its value must be even. If this argument is not included, no
DMA will be performed.

Buffer_length - An integer, in the range 0 to 60000, containing the buffer
length in bytes. The number of bytes must be an even number. If you specify a
buffer length greater than 60000 bytes or an odd buffer length the procedure
returns an error. The default value for this >ptional argument is zero, which
implies no DMA even if a buffer address is given.

Trigger - A variable, of type EVENT. which identifies the return mechanism of
the request. When the operation completes the driver issues a SIGNAL with
this parameter. If this optional argument is not included, the driver does not
inform the user when this operation is complete and it erases information per-
taining to this request.

I0SB - A data structure that optionally returns a status code, number of bytes
transferred, and device- and function-dependent information. The variable
assigned to IOSB:= must be of type IBQ$ 10SB. Refer to che Device Data
Structures section at the end of this chapter for the fields ot this structure.

Status - A variable, of type INTEGER, that indicates success or failure of
procedure call only. Success or failure of device opera:ions may be examined in
the I0S3 after the TRIGGER event is satisfied.

136 CHAPTER 5 VAXELN SOFTWARE

Status Values

IBQS_SUCCESS - Procedure was able to initiate device operations.

IBQS_INVALID_PARAMETER - One of the parameters specified in this call was

not acceptable. Most likely to be « bad Qbus_Address or Buffer_length. No
device operations were initiated.

IBQS_INSUFFIENT_MEMORY - Could not begin operations because there are
too many outstanding requests.

IBQ$_INVALID_DEVICE - User specified an invalid device pointer.

IBQS . DRIVER_ON_HOLD - Another operation is being performed on the device
at this time which does not allow other users from accessing it. This condition
is only temporary.

IBQ$ DRIVER_NOT AVAILABLE - The driver process has signaled that an ab-

normality has occurred which renders it unreachable. Check the Device Status
field for more information.

CHAPTER 5 VAXELN SOFTWARE 137

IBQ$ RESET

This procedure resets slave node or the IBQ01 BITBUS controller (node 0). no
data is handled on this command. The IBQ01 delivers an eight-byte command
packet to the node. If reset is to the Controller (node 0) the routine will wait
for the device to recover before returning to the caller. This will cause an
IBQ$_DRIVER_ON_HOLD status for any other processes attempting to
access the driver while this is happening.

Format

IBQ$_RESET (Device_pointer,
Node_number,
[TRIGGER: =]
[IOSB:=]
[STATUS: =)

Arguments

Device pointer - An identifier, of type 1BQ$_DEVPTR, returned by the
IBQ$_INIT procedure.

Node number - A byte, defining the physical location of the ~ode to be ac-
cessed, that is passed by number.

Trigger - A variable, of type EVENT, which identifies the return mechanism of
the request. When the operation completes the driver issues a SIGNAL with
this parameter. If this optional argument is not included, the driver does not

inform the user when *‘“is operation is complete and it erases information per-
taining to this request.

I0SB - A data structute that optionally returns a status code, number of bytes
transierred, and device- and function-dependent information. The variable
assigned to IOSB:= must be of type IBQ$ I0SB. Refer to the Device Data
Structures section at the end of this chapter for the fields of this structure.

Status - A variable, of type INTEGER, that indicates success or failure of

procedure call only. Success or failure of device operations may be examined in
the 10SB after the TRIGGER event is satisfied.

138 CHAPTER 5§ VAXELN SOFTWARE

Status Values
IBQ$ SUCCESS - Procedure was able to initiate device operations.

IBQ$ _INVALID PARAMETER - One of the input parameters was not specified
correctly. No device operations were initiated.

IBQ$_INSUFFIENT_MEMORY - Could not begin operations because there are
too many outstanding requests.

IBQ$_INVALID DEVICE - User specified an invalid device pointer.

IBQ$ DRIVER_ON_HOLD - Another operation is being performed on the device
at this time which does not allow other users to access it. This condition is
only temporary.

IBQ$ DRIVER_NOT_AVAILABLE - The driver process has signaled that an ab-

normality has previously occurred which renders it unreachable. Check the
Device Status field for more information.

CHAPTER 5 VAXELN SOFTWARE 139

IBQ$_SEND

Sends a message to a node. Data is partitioned on 13-byte boundaries such
that a 50-byte data buffer requires four message packets; the first three have
13 data bytes and the last one 11 data bytes. No Data replies are expected for
SEND. The IBQO1 indicates completion to the host upon receipt of the fourth
packet-acknowledgment from the slave node.

Format

IBQ$ SEND (Device_pointer,
Node_number,
Task _number,

Node_command,
[QBUS_ADDRESS: =]
[BUFFER_LENGTH: =}
[TRIGGER:=]
[I0SB:=]

[STATUS: =)

140 CHAPTER 5 VAXELN SOFTWARE

Arguments

Device_pointer - An identifier, of type IBQ$_DEVPTR, returned by the
IBQ$_INIT procedure.

Node_number - A byte, defining the physical location of the node to be ac-
cessed, that is passed by value.

Task_number - A byte, defining which task on the node is to be accessed, that
is passed by value.

Node command - A byte, identifying the command which the 1BQOL1 is to
send to the node, that is passed by value.

Qbus_address - A variable, of type INTEGER. that contains a 22-bit Q-bus
address of the buffer. This was obtained by adding an offset to the address
obtained from the IBQ$_MAP procedure. This buffer must be on a word
boundary, its value must be even. Failure to include this optional argument
means that no DMA will be performed.

Buffer_length - An integer, in the range 0 to 60000, supplying the buffer
length in bytes. The number of bytes must be an even number. If you specify a
buffer length greater than 60000 bytes or an odd buffer length the procedure
returns an error. The default value is zero, which implies no DMA, even if a
buffer address is given.

Trigger - A variable, of type EVENT, which identifies the return mechanism of
the request. When the operation completes the driver issues a SIGNAL with
this parameter. If this argument is not included, the driver will not inform the

user when this operation is complete and it erases all information pertaining to
this request.

I0SB - A data structure that optionally returns a status code, number of bytes
transferred, and device- and function-dependent information. The variable
assigned to I0SB:= must be of type IBQ$ IOSB. Refer to the Device Data
Structures section at the end of this chapter for the fields of this structure.

Status - A variable, of type INTEGER, that indicates success or failure of

procedure call. Success or failure of device operations may be examined in the
I0SB after the TRIGGER event is satisfied.

CHAPTER 5 VAXELN SOFTWARE 141

Status Values
IBQ$_SUCCESS - Indicates procedure was able to initiate device operations.

IBQ$_INVALID PARAMETER - One of the parameters specified in this call was

unacceptable. Most likely to be a bad Qbus_Address or Buffer_length. No
device operations were initiated.

IBQ$_INSUFFIENT_MEMORY - Could not begin operations because there are
too many outstanding requests.

IBQ$_INVALID_DEVICE - The user specified an invalid device puinter.

IBQ$ DRIVER_ON_HOLD - Another operation is being performed on the device
at this time which does not allow other users from accessing it. This condition
is only temporary.

IBQS_DRIVER_NOT_AVAILABLE - The driver process has signaled that an ab-

normality has occurred which renders it unreachable. Check the Device Status
field for more information.

142 CHAPTER 5 VAXELN SOFTWARE

iIBQS_SHUTDOWN

Deassigns device and aborts any pending driver calls. This operation completes
after the operation is complete.

Format

IBQ$_SHUTDOWN (Device_pointer,
[STATUS:=])

Arguments

Device_pointer - An identifier, of type IBQ$_DEVPTR, obtained from the
IBQ$_INIT procedure.

Status - A variable, of type INTEGER, that indicates success or failure of the
initialize operation.

Status Values
IBQ$_SUCCESS - Procedure was able to shutdown device.

IBGE .C_"eLETE - Could not delete one of the following: Device Precess,
Device Interiace Area, Device Init Semaphore, Device. Check system resources.

IBQS INSUFFIENT_MEMORY - Could nut begin operations because there were
too many outstanding requests.

IBQS INVALID_PARAMETER - One of the input parameters was not specified
correctly. No device operations were initiated.

IBQ$ NO_EVENT_CREATED - Routine could not create an event so that it
conld be informed upon device completion. Check system resources.

IBGS_NO ENTRY _ABORTED - Abort failed probably because the device already
responded to the outstanding operation.

IBQS_INVALID _DEVICE - The user specified an invalid device pointer.

CHAPTER 5 VAXELN SOFTWARE 143

IBQS_DRIVER_ON_HOLD - Another operation is being performed on the device
at this time which does not allow other users to access it. This condition is
only temporary.

IBQ$_DRIVER_NOT_AVAILABLE - The driver process has signaled that an ab-

normality has previously occurred which renders it unreachable. Check the
Device Status field for more information.

144 CHAPTER 5 VAXELN SOFTWARE

IBQ$S_SYSINFO

This routine returns .nformation about all pending requests to the device. The
caller supplies the area address. The routine writes a series of condensed

request packets into this area until there is either no more information to write
or the area is full.

Format

IBQ$_SYSINFO (Device_pointer,
Info_Area,
[ENTRY_COUNT: =],
[STATUS:=))

Arguments

Device_pointer - An identifier, of type IBQ$_DEVPTR, returned by the
IBQ$_INIT procedure.

Info_area - Area defined as IBQ$_SYS_ARRAY. IBQ$_ SYS_ARRAY is a
record containing the following fields:

1. command : Byte
2. node : Byte
3. Task : Byte

4. Index : Integer

The size of the array should be at least equal to the number of outstanding
requests for which the caller desires information. These fields form a unique
identifier for any outstanding request.

Entry_Count - A variable. of the type INTEGER. that returns the number of
pending request packets written to the info area.

Status - A variable, of type INTEGER, that indicates the success or failure of
the operation.

CHAPTER § VAXELN SOFTWARE 145

Status Values
IBQ$_SUCCESS - Indicates the procedure was able to perform the operation.

IBQ$_INVALID_DEVICE - The user specified an invalid device pointer.

146 CHAPTER 5 VAXZLN SOFTWARE

IBQ$ TESTIBQ
Tests the IBQO1 board by performing a series of tests:

1. testcpu - tests the 80186 CPU

2. testram - tests the controller ram
3. testclock - tests the on-board clock
4. testmaster - tests the 8044 CPU

Please allow one minute for this operation to complete
Format

IBQ$_TESTIBQ (Device_ pointer,
[TRIGGER: =}
{IOSB:=,]
[STATUS:=});

Rrguments

Device_pointer - An identifier. of type IBQ$_DEVPTR, returned by the
IBQ$_INIT procedure.

Trigger - A variable, of type EVENT, which identifies the return mechanism of
the request. When the operation completes the driver will issue a SIGNAL with
this parameter. If this optional argument is not included, the driver will not
inform the user when this operation is complete and it erases all information
pertaining to this request.

IOSB - A data structure that optionally returns a status code, number of bytes
transferred, and device- and function-dependent information. The variable
assigned to IOSB:= must be of type IBQ$_IOSB. Refer to the Device Data
Structures section at the end of this chapter for the fields of this structure.

Status - A variable, of type INTEGER. that indicates success or failure of

procedure call only. Success or failure of device operations may be examined in
the IOSB after the TRIGGER event is satisfied.

CHAPTER 5 VAXELN SOFTWARE 147

Status Values
IBQ$_SUCCESS - Indicates procedure was able to initiate device operations.

IBQS _INVALID PARAMETER - One of the parameters specified in this call was
unacceptable. No device operations were initiated.

IBQS_INSUFFIENT_MEMORY - Could not begin operations because there are
too many outstanding requests.

IBQ$_INVALID_DEVICE - The user specified an invalid device pointer.

IBQ$ DRIVER_ON_HOLD - Another operation is being performed on the device
at this time which does not allow other users to access it. This condition is
only temporary.

IBQ$_DRIVER_NOT_AVAILABLE - The driver process has signaled that an ab-

normality has occurred which renders it unreachable. Check the Device Status
field for more information.

148 CHAPTER 5 VAXELN SOFTWARE

IBQS_TRADE

Similar to the XCHANGE procedure except that the data buffer is formatted

as a BITBUS message packet. The format will be the same as that used for
«ne VMS driver.

Format

IBQ$_TRADE (Device_pointer,

Node_number,
Task_number,
Qbus_address,
Buffer length,
[TRIGGER:=.]
(I0SB:=,]
[STATUS:=|);

Arguments

Device pointer - An identifier, of type IBQ$ DEVPTR, returned by the
IBQ$_INIT procedure.

Node_number - A byte, defining the physical location of the node to be ac-
cessed, that is passed by value.

Task_number - A byte, defining which task on the node is to be accessed, that
is passed by value.

Qbus_address - A variable, of type INTEGER. that contains a 22-bit Q-bus
address of the buffer. This was obtained by adding an offset to the address
obtained from the IBQ$_MAP procedure. This buffer must be on a word
boundary, its value must be even. This parameter is required for the trade
command.

Buffer_length - An integer, in the range 4 to 60000, containing the buffer
length in bytes. The number of bytes must be an even number. If you specify a
» uffer length greater than 60000 bytes or an odd buffer length or a length of
less than 4 bytes, the procedure returns an error. This parameter is required
for the trade command.

CHAPTER 5 VAXELN SOFTWARE 149

Trigger - A variable, of type EVENT, which identifies the return mechanism of
the request. When the operation completes the driver will issue a SIGNAL with
this parameter. If you do not include this optional argument, the driver does
not inform the user when this operation is complete and erases information
pertaining to this request.

I0SB - A data structure that optionally returns a status code, number of bytes
transferred, and device- and function-dependent information. The variable
assigned to IOSB:= must be of type IBQ$_IOSB. Refer to the Device Data
Structures section at the end of this chapter for the fields of this structure.

Status - A variable, of type INTEGER, that indicates success or failure of
procedure call only. Success or failure of device operations may be examined in
the I0SB after the TRIGGER event is satisfied.

Status Values
IBQS_SUCCESS - Indicates procedure was able to initiate device operations.

IBQS_INVALID_PARAMETER - One of the parameters specified in this call was
unacceptable. Most likely to be a bad Qbus_Addrzss or Buffer_length. No
device operations were initiated.

IBQS_INSUFFIENT_MEMORY - Could not begin operations because there are
too many outstanding requests.

IBQS _INVALID_DEVICE - The user specified an invalid device pointer.

IBQS_DRIVER _ON_HOLD - Another operation is being performed on the
device at this time which does not allow other users from accessing it. This
conditicn is only temporary.

IBQ$_DRIVER_NOT_AVAILABLE - The driver process has signaled that an ab-

normality has occurred which renders it unreachable. Check the Device Status
field for more information.

150 CHAPTER 5 VAXELN SOFTWARE

IBQS_UNMAP

Unmaps user area DMA buffers from Q-bus space. The user inputs all informa-
tion described below.

Format

IBQ$ UNMAP (Device_pointer,
Area_pointer,
Buffer_size,
Qbus_address,
Status)

Arguments

Device_pointer - An identifier, of type IBQ$_DEVPTR, returned by the
IBQ$ INIT procedure.

Area_pointer - A variable, of type ANYTYPE, representing an 1/O buffer.

Buffer_size - An integer, in the range from 0 to 65535, containing the buffer
size in bytes.

Qbus_address - A variable, of type INTEGER, that contains a 22-bit Q-bus
address of the buffer mapped.

Status - An INTEGER defining the success or failure of the operation.
Status Values

IBQ$ SUCCESS - Indicates the procedure was able to unmap registers.

IBQS_INVALID _DEVICE - The user specified an invalid device pointer.

CHAPTER 5 VAXELN SOFTWARE 151

IBQS_UPLOAD

Sends information from the internal memory (8044 external) of a slave node,
using the slave node address. The IBQO1 collects data starting at this address
up to the buffer length specified, up to 13 bytes. For data lengths greater than
13 bytes, the IBQO1 loads a start address (16 bits) into the first two message
bytes of each packet and fills the remaining bytes (11 for a full packet) with
zeros. The siave-node task must read the first two bytes as starting offset and
write the data to its RAM space. All subsequent packets send within the same

upload request will have an updated start address in the first two bytes of the
message.

This proceJure is patterned after RAC UPLOAD: other commzands can be
issued as icng as the receiving task recognizes the command and can respond

apropriately. The IBQO1 checks the node command field and inserts a RAC
UPLOAD command if a 0 is loaded.

Format

IBQ$ UPLOAD (Device_pointer,
Node_number,
Task_number,
Node_command,
Node_address,
[QBUS_ADDRESS:=,]
[BUFFER_LENGTH:=]
[TRIGGER: =]
[IOSB:=]
[STATUS: =)

152 CHAPTER 5§ VAXELN SOFTWARE

Arguments

Device_pointer - An identifier, of type IBQS_DEVPTR, returned by the
IBQ$_INIT procedure.

Node number - A byte, defining the physical location of the node to be ac-
cessed, that is passed by value.

Task_number - A byte, defining which task on the node is to be accessed, that
is passed by value.

Node command - A byte, identifying the command which the 1BQ01 is to
send to the node, that is passed by value.

Node address - A word (16 bits) identifying the location in external memory
of the node (slave) in which the buffer is to be loaded from.

Qbus_address - A variable, of type INTEGER, that contains a 22-bit Q-bus
address of the buffer. This was obtained by adding an offset to the address
obtained from the IBQ$ MAP procedure. This buffer must be on a word
boundary, its value must be even. Failure to include this optional argument
means that no DMA will be performed.

Buffer_length - An integer, in the range 0 to 60000, continuing the buffer
length in bytes. The number of bytes must be an even number. If you specify a
buffer length greater than 60000 bytes or an odd buffer length the procedure
returns an error. The default value is zero. which implies no DMA, even if a
buffer address is given.

Trigger - A variable, of type EVENT, which identifies the return mechanism of
the request. When the operation completes the driver issues a SIGNAL with
this parameter. If this argument is not included, the driver will not inform the

user when this operation is complete and erases all information pertaining to
this request.

I0OSB - A data structure that optionally returns a status code, number of bytes
transferred, and device- and function-dependent information. The variable
assigned to IOSB:= must be of type IBQ$_10SB. Refer to the Device Data
Structures section at the end of this chapter for the fields of this structure.

Status - A variable, of type INTEGER., that indicates success or failure of

procedure call only. Success or failure of device operations may be examined in
the I0OSB after the TRIGGER event is satisfied.

CHAPTER 5 VAXELN SOFTWARE 153

Status Values
IBQ$_SUCCESS - Indicates procedure was able to initiate device operations.

IBQS_INVALID_PARAMETER - One of the parameters specified in this call was
unacceptable. Most likely to be a bad Qbus_Address or Buffer length. No
device operations were initiated.

IBQ$_INSUFFIENT_MEMORY - Could not begin operations because there are
too many outstanding requests.

IBQS INVALID _DEVICE - The user specified an invalid device pointer.

IBQS DRIVER_ON_HOLD - Another operation is being performed on the device
at this time which does not allow other users to access it. This condition is
only temporary.

IBQS_DRIVER_NOT AVAILABLE - The driver process has signaled that an ab-

normality has occurred which renders it unreachable. Check the Device Status
field for more information.

154 CHAPTER 5 VAXELN SOFTWARE

IBQ$_XCHANGE

Combines the functionality of the SEND and RECEIVE commands.
XCHANGE assumes 2 bilateral data transfer of commands from the master
node to a slave node and back to the master node. The commands include
slave-node addressing directives within the message data field. The IBQO1
assumes the same message size is returned in the slave-nodes response. For
data lengths greater than a single packet size, the IBQO1 divides the entire
buffer into data packets 13 bytes long. This partition may cause the need for

hyte stuffing in order to obtain data alignment from packet-to-packet in a
multi-packet exchange.

The major difference between the TRADE and XCHANGE command is the
format of the data buffers. IBQ$_XCHANGE is potentially easier to use as the
header for each BITBUS packet is constructed by the IBQO1 controller from

information in the input parameters. IBQ$_TRADE is constructed from infor-
mation in the DMA input buffer.

Format

IBQ$_XCHANGE (Device_pointer,
Node_number,
Task_number,

Node_command,
[QBUS_ADDRESS:= |
[BUFFER_LENGTH:=]
[TRIGGER:=,]
{IOSB:=]

[STATUS: =)

CHAPTER 5 VAXELN SOFTWARE 15§

Arguments

Device_pointer - An identifier, of type IBQ$_DEVPTR, returned by the
IBQ$_INIT procedure.

Node_number - A byte, defining the physical location of the node to be ac-
cessed, that is passed by value.

Task_number - A byte, defining which task on the node is to be accessed, that
is passed by value.

Node command - A byte, identifying the command which the IBQO1 is to
send to the node, that is passed by value.

Qbus_address - A variable, of type INTEGER. that contains a 22-bit Q-bus
address of the buffer. This was obtained by adding an offset to the address
obtained from the IBQ$ MAP procedure. This buffer must be on a word
boundary, its value must be even. Failure to include this optional argument
means that no DMA will be performed.

Buffer_length - An integer, in the range 0 to 60000, supplying the buffer
length in bytes. The number of bytes must be an even number. If you specify a
buffer length greater than 60000 bytes or an odd buffer length the procedure
returns an error. The default value is zero, which implies no DMA, even if a
buffer address is given.

Trigger - A variable, of type EVENT, which identifies the return mechanism of
the request. When the operation completes the driver will issue a SIGNAL with
this parameter. If this optional argument is not included, the driver will not
inform the user when this operation is complete and it erases information per-
taining to this request.

I0OSB - A data structure that optionally returns a status code, number of bytes
transferred, and device- and function-dependent information. The variable
assigned to IOSB:= must be of type IBQ$ IOSB. Refer to the Device Data
Structures section at the end of this chapter for the fields of this structure.

Status - A variable, of type INTEGER, that indicates success or failure of
procedure call only. Success or failure of device operations may be examined in
the IOSB after the TRIGGER event is satisfied.

156 CHAPTER 5 VAXELN SOFTWARE

Status Values

IBQ$_SUCCESS - Indicates procedure was able to initiate device operations.

IBQS_INVALID PARAMETER - One of the parameters specified in this call was

unacceptable. Most likely to be a bad Qbus_Address or Buffer_length. No
device operations were initiated.

1BAS_INSUFFIENT_MEMORY - Could not begin operations because there are
too many outstanding requests.

IBQ$_INVALID_DEVICE - The user specified an invalid device pointer.
IBQS_DRIVER_ON_HOLD - Another operation is being performed on the device
at this time which does not allow other users to access it. This condition is
only temporary.

IBQ$_DRIVER_NOT_AVAILABLE - The driver process has signaled that an ab-

normality has previously occurred which renders it unreachable. Check the
Device Status field for more information.

CHAPTER 5 VAXELN SOFTWARE 157

DEVICE DATA STRUCTURES

Although mainly intended for use by the driver, these structures contain infor-
mation that may be useful for applications. We therefore provide definition of
some of these fields. These fields are intended to be READ ONLY, any writing
to these fields will produce unpredictable results and will render any service
and support agreements void. For all the following assume that the field
“device_pointer” refers to the value returned from IBQ$_INIT. Users may sub-
stitute their own pointers if they are defined as type IBQ$_DEVPTR.

Device Wide Parameters

Device Pointer.DevNam : VARYING STRING(4) - This string contains a four-
character name of the device which this structure refers to. The first three
characters will be in the range of 'BQA’ to 'BQP’, the last one must be '0".

Note: The field IBQ$_QUEUE_ENTRY consists of the following:

F_LINK: INTEGER
B_LINK: INTEGER

It is similar to the standard QUEUE _ENTRY field except that the elements
are of type INTEGER and represent the index of the first and the last queue
element rather than their addresses. This way they can be accessed across
process boundaries by the driver.

Device_Pointer.lOSR_Q_Hd : IBQ$_QUEUE_ENTRY - This represents the
header of the queue of requests which have not been sent to the device.

Device_Pointer.OP_Q Hd : IBQS_QUEUE_ENTRY - This represents the header
of the queue of requests that have been sent to the device but have not re-
ceived responses from the device.

Device_Pointer.idle_Q_hd : IBQ$_QUEUE_ENTRY - This represents the header
of the queue of unused request entries. The driver subroutines will remove an
entry from this queue when the application requests a device operation.

Device_pointer.Abort_Q_hd : IBQ$_QUEUE ENTRY - This represents the
header of a special queue to be used only for IBQ$_ABORT requests. This is
kept separate from the Idle_Q to allow aborts to continue when no other
requests are outstanding. This eliminates a condition where memory cannot be
freed because there is no memory to service the request.

158 CHAPTER 5 VAXELN SOFTWARE

Driver_Status - Indicates the current health of the driver. If an asynchronous
exception forced the driver into a state which renders it unable to function, the
driver process will write an error into this field.

Q_entry - Defined as:

Q_entry: ARRAY [0..IBQ$_Max_headroom+1BQ$_Reserve_Headroom] OF
IBQ$_I0_Q_ENTRY

Each of these fields defines the full context of a request. The number of these
fields that are initiated in the Idle_Q is IBQ$_Max_headroom. The additional
reserve placed in the Abort_Q is IBQ$_Reserve_Headroom. These values are
set to 64 and 2, respectively, for now, but can be changed by DIGITAL at any

time. IBQ%_I0_Q_ENTRY is a record whose fields are defined in the next
section.

Request Fields

This section defines the fields of user interest in any outstanding call to an
IBQ$ function. Each request is assigned a block of memory called a Q_entry.
Fach Q_entry is defined by an entry_index which can have a value of 0 to
IBQ$_Max_headroom-1 for most requests and IBQ$_Max_headroom to
IBQ$_Reserve_Headroom-1 for the IBQS_ABORT request.

Device_pointer.Q_entry[entry_index].Q _Link : IBQ$_QUEUE_ENTRY - This
consists of the forward and backward link of the entry in relation to the queue

in which it currently resides. Please see the note above for a description of
IBQ$ QUEUE_ENTRY.

Device_pointer.Q_entry[entry _index].DMA_Address : INTEGER - The Q-bus
address (if an_ ') of the DMA area in which the operation is to occur.

Device_pointer.C:_entry[entry index].Dma_Length: 0..255 - The length of the
DMA area in which the nneration is to occur.

Device_pointer.Q_entry[entry_index].Node number: [byte] 0..255 - The
physical location of the node in which the operation is to occur.

Device_pointer.Q_entry[entry_index].Task_number: [byte] 0..255 - The task
on the node in which the operation is to occur.

CHAPTER 5 VAXELN SOFTWARE 159

Device_pointer.Q_entry[entry index].node_command: [byte] 0..255 - The
command to be sent to the task on the slave node. For the RAC task the
following codes are used:

IBQ$_RAC_RESET - 00
IBQ$_RAC_CREATE - 01
IBQ$_RAC DELETE - 02
IBQ$_RAC_GETID - 03
IBQ$_RAC_PROTECT -04
IBQ$_RAC_READIO - 05
IBQ$S_RAC_WRITEIO - 06
IBQ$S_RAC_UPDATE - 07
IBQ$_RAC_UPLOAD - 08
IBQ$_RAC_DOWNLOAD - 09
IBQ$_RAC _OR - 0A
IBQS_RAC_AND - 0B

IBQ$ RAC_XOR - 0C
IBQ$_RAC_READ - 0D
IBQ$S_RAC_RDSTATUS - OE
IBQS_RAC_WRITE - OF

17 IBQ$S_RAC_WRSTATUS - 00

B 0 =3 M e W N -

Pk e pemd ek et ek e
[« > TR -GN - SR - T GRS -

Device_pointer.Q_entry[entry index].Download address: [word] 0..65535 -
Relevant for IBQ$ DOWNLOAD and IBQ$_UPLOAD functions only. It is the
address of memory on the node in which these operations are to occur.

160 CHAPTER 5 VAXELN SOFTWARE

Device_pointer.Q_entry[entry index].lbq_command: [byte] 0..255 - This field
is loaded with a unique field corresponding to the subroutine called and the
command to send to the device. The various commands and their correspond-
ing values are as follows (in hex):

$SEND - 02
$RECEIVE - 01
$XCHANGE - 03
$TRADE - 07
$DOWNLOAD - 06
$UPLOAD - 05
$RESET - 08
$ONLINE - 0D
$OFFLINE - 8D
$TESTIBQ - CF
$ABORT - 80
$NOTIFY - 00
13. $SEARCH - C7

© ® NPT R W

[S
A

All other commands do not communicate with the device process and thus do
not require this field to be set.

CHAPTER 5 VAXELN SOFTWARE 161

Device_pointer.Q_entry[entry _index).Async_requested: BOOLEAN - Indicates
whether this call includes a TRIGGER := parameter. If it did not, then the
user requires no notification of operation completion and no completion infor-
mation is stored in the entry. Upon completion, this entry goes straight from

the pending queue to the abort or idle queue without going into the response
queue.

Note: The following fields are valid only if

Device_pointer.Q_entry[entry index].Async_requested = TRUE.

Device_pointer.Q_entry[entry index].Async : EVENT - User defined event ac-
cessed through the TRIGGER:= parameter in the subroutine call. The driver
process will signal this event upon operation completion.

IBQ$ 10SB - The I0SB structure incorporates all the responses from the com-
ponents of the DECscan system. In particular, these fields are:

Driver_reply : INTEGER,;
IBQ reply : [byte] 0..255:
Node_reply : [byte] 0..255:
Node number: [byte 0..255;

The Node_number field is valid only for responses to the IBQ$_NOTIFY com-
mand. All commands return entries in the Driver_reply. IBQ_reply and

Node reply fields. For information on the Driver_reply codes, see the Error
Values section of this chapter. For information on the IBQ_reply and

Node_reply codes, see the Troubleshooting section of the BITBUS Controller
chapter.

Device_pointer.Q_entry[entry index].Node Reply - Reply of the device to the

current request. Please refer to the BITBUS Controller Overview chapter under
BITBUS Errors for a complete list of these responses.

162 CHAPTER 5 VAXELN SOFTWARE

IBQSLD44E DOWNLOAD UTILITY

IBQSLD44E is a VMS based utility which facilitates the downloading to nodes
under VAXELN of tasks created with the ASMd44 cross-asse.nbler. You invoke
IBQSLD44E as an image and run it when you want to send data to a node.
The process for downloading a task to a BITBUS node under ELN is described
in the following sections.

The IBQO1 ELN driver package contains utilities and subroutines for the
creation of tasks and data that may be downloaded to BITBUS nodes using the

Intel 8044 processor. The tasks or data are generated in 8044 assembly lan-
guage under VMS,

The steps necessary to successfully perform a download to a node from an
ELN application follow.

1. Create assembly language programe containing the tasks or data
intended for download. Use a VMS editor.

If the task is to be started automatically by the driver, the starting
address (address of the Initial Task Descriptor (ITD)) must be
specified in the final END statement of the program. If the start
address is left out, the file will be downloaded only.

2, Assemble these programs with the 8044 cross assembly utility
IBQ$ASM44 under VMS. The output of the assembler is an ASCII
hex file in Intel hex format for each task.

To invoke the assembler, first issue the following command:
ASM44 ;== "SYSSYSTEM:IBQSASM44"

The assembler may now be invoked as described in Chapter 3 of
this manual, such as:

ASM44 TASK source, TASK obj, TASK _list

The hex file contents are described in the 8044 cross assembler
manual, If a starting address is specified, it will appear in the final
EOF record (the last line). Otherwise, the address field there is
zero. You may leave out the EOF record completely if you desire to
edit the hexadecimal file manually. If it is zero or absent, the file is
downloaded, but not started as a task. If you wish to download sev-
eral tasks to one node and start them all at once, leave out the
start address in the assembler programs for all but the last task.

CHAPTER 5 VAXELLN SOFTWARE 162

Make sure the ITDs link together properly (see Intel documentation
for RMX51). The last task download issues the create task com-
mand to RAC, which will follow the ITD chain and start them all.
Otherwise, include the start address for each task, and they will be
started at download time individually.

3. Convert and package the hex files into a PASCAL data structure
using the utility IBQSLD44E under VMS. The user specifi s each
hex file to include for the ELN application. and their ordering.
IBQSLD44E creates a PASCAL module IBQ$_DNLD_DAT.PAS
which contains the hex files converted to PASCAL data state-
ments, in the order specified. Separator records are included so
that the proper task can be located later during download.

To invoke, issue the following command:
RUN SYS$SYSTEM:IBQSLD44E

IBQ$LD44E requests the path name of each hex file in order. It
processes them after the input of each name. If a checksum or
other error is found, it will be reported to the user. A CTRL-Z ter-
minates the input. If an invalid file name is entered, the user will
be reprompted for the name. The aggregate total of hex-data byte=
for all files cannot exceed 65535. This is due to the limitation of
initialization size of a single PASCAL data structure.

Two files are created: IBQ$_DNLD_DAT.PAS and
IBQ$_DNLD_DAT.INC. The latter is simply an include file for the
former containing the total number of bytes of data. The format of
the PASCAL data structure is in records. Each record starts with a
descriptor value. The values are: 0 = data record. 1 = start ad-
dress record and comes after all data records for a file, 2 = EO7F
records after the data and start address records, 3 = EOT at the
end of the structure. Each data record contains the number of
bytes, 2 bytes containing the load address, and then the data b stes.
A start address contains the number of bytes (2), and 2 bytes con-
taining the start address (ITD address).

4. Compile the module from step 3, using the statement:
EPASCAL IBQ$ DNLD DAT

The output of this is an object module IBQ$ DNLD_ DAT.OBJ,
which should be included in the LINK of the ELN application.

Be sure the file IEQ$_DNLD_DAT.INC is also present when com-
piling, as it is an include file for IBQ$_DNLD_ DAT.PAS.

164 CHAPTER 5 VAXELN SOFTWARE

Write an application program using the IBQ01 ELN driver
subroutine IBQ$_LOAD44. Each call to this routine specifies the
file number of the task to download. The ordering is the same as
when using IBQSLD44E (the first task nuniber is 1). Also the node
to receive the download data is specified. The same file may be
sent to multiple nodes by multiple calls to IBQE_LOAD44. The
task ID assigned to each started task is returned.

The IBQELI User’'s Manual contains a detailed description of the
call to IBQ$ LOAD44. The returned task ID may be used in the
application program to specify the task number if communications
to the task/node pair is necessary.

It is necessary to first initialize the driver using IBQ$_INIT prior
to calling IBQ$_LOAD44. but no other driver calls are required to
perform the download.

Link the application with the driver and the module
IBQ$_DNLD_DAT.OBJ.

This will u.~d the data from the hex files to the ELN application
and satisfy an external reference in IBQ$ LOAD44 to the
PASCAL data structure in the module IBQ$ DNLD DAT.
IBQ$_1.0OAD44 traverses the data structure for each call to find
the requested file (by ordinal number, as created using
IBQSLD44E), builds TRADE command buffers containing the hex
data, sends these down to the node, and then issues an RAC
CREATE_TASK command if there is a start address record.

Download the ELN application to the target VAX and let it down-
load the 8044 BITBUS tasks and data files to the nodes.

Status returns provide the application with information as to
whether downloads were successful. and also task ID numbers for
further communications using other driver commands.

CHAPTER § VAXELN SOFTWARE 165

TROUBLESHOOTING
BITBUS errors and IBQ01 BITBUS controller errors are listed at the end of
Chapter 2.

Common Errors Made

1 TRADE does not have a DMA length of at least 2.

2 Using the same buffer for multiple TRADES and XCHANGES.
3. Failure to create or clear events used in TRIGGER:=parameter.
4

Failure to initialize driver (through IBQ$_INIT) before performing
operations.

Devices initialized must be defined at build time.

(g}

ERROR VALUES

Success
1 - IBQ$ SUCCLCSS (nermal return)

5 - IBQ$_DEVICE_ALREADY_INITIALIZED (alternate success for
IBQ$_INIT)

Error Values

6 - 1BQ$_INVALID_NAME

8 - IBQ$_INSUFFIENT MEMORY
10 - IBQ$ INVALID PARAMETER
12 - IBQ$_DRIVER_NOT_AVAILABLE
14 - IBQ$_INVALID DEVICE

16 - IBQ$_NC_ENTRY ABORTED
18 - IBQ$_DEVICE ON_HOLD

20 - IBQ$_NO DELETE

22 - iBQ$_NO_PROCESS_CREATED
24 - IBQ$_NO_AREA CREATED

166 CHAPTER 5 VAXEL:* SOFTWARE

26 - IBQ$_NO_EVENT CREATED

30 - IBQS_NO DEVICE_CREATED

32 - IBQ$_NO_DEVICE ACCESSED

34 - IBQ$_NO_SEMAPHORE_CREATED

36 - IBQ$_FILE_NOT FOUND

38 - IBQ$_BAD_COMMUNICATIONS

Returned in the DRIVER_REPLY field of the IOSB
1- IBQ$_SUCCESS

1002 - IBQ$_ABORTED

CHAPTER 5 VAXELN SOFTWARE 167

PAGE 168 INTENTIONALLY LEFT BLANK

XAXAX
XXXXXXX
p8.9.9.9.6.6.9.4.4

XXXAXXKAXKX

.9.0.00.0.9.¢.9.0¢.444

P 0648400409 04404¢

P O.0.00.0.6+60.00.089 004

$8.0,000606000$0409044
.9.9.0.8.0.60400.40.04.0:000.004
BOE000800060000060000.90

XX XXAA XX AX XX XA XNKKKXKKEX

D 0.9.8.0.0.0.0.4.06.0.0.0.00.6.0,0:4.9.0.0.0% 098
O9.09.0.0.6.00.0.014.0/00,006.0010:0:66.9% 904
2280000006 60.00/09.6.0600.06.0.0000000

L3 20.0.0.9,09.0.0.6.0.0.0.0.0.016.0.0'06:1010'0.0 070 070’0 ¢'3

BOOS L0.8,0,0.0.8.09.0.0.04.0700:0100:0.096090 00000
2004 0.00.0.00.09.00.0.50760600060.6000000% 0%
XXX)(XXXX)D(HXXXXJ(X)D(XXXX)(XXXXXXXXXXKXXX
)O(XXXXXX}D(XXXX)G(}OCXX)(XXXXXXXXXXXX)DQ(XXX)(X
mmnnmxxxxnxxummxxmx
XX)O()D(XXXXXXXX)O(XX}O(XXXXXXXXXXXXXXXXXXXXXXXXX
:mnxxuxxnmﬂmnrxxxxmnnxxmnmnxxx
XX)D(XXHXX)D(XXWXXXXHWXXXX}M}G{XXWHXXX
mnmmmzmmnxxumnmxxnx

GLOSSARY

ASM44 — DATEM IDDCMS844 absolute assembler.

Asynchronous System Trap (AST) — A software-simulated interrupt to a user-
defined service routine.

BCS — BITBUS Control Service

BCS commands — BITBUS Control Service set of commands supported by
the BCS utility.

BITBUS — A serial control bus
BITBUS Control Service — The interactive interface for the IBQO1.

BITBUS Master Controller — An 8-bit microprocessor with built in communi-
cations control.

bit-cell-time — The time interval required to transfer one bit of datu on a
serial line.

command — An instruction that instructs some part of the system to perform
some will defined activity.

Command Status Register (CSR) — A portion of memory used to give com-
mands to and obtain information from an I/O device.

Direct Memory Access (DMA) — The accessing of memory without CPU
intervention.

DOWNLOAD Utilities — IBQ$LD44V for VAX/VMS, and IBQ$SLD44E for
VAXELN.

GLOSSARY 169

DRAM — Dynamic Random Access Memory.
EPROM — Electrically Programmable Read Only Memory.

interactive interface — An environment in which an operator and a program
communicate mutually. See BITBUS Control Service

interface — A shared boundary between two elements within a system.

master controller — That part of the IBQO1 which controls the operations be-
tween the IBQO1 and the slave nodes.

master node -- Controls all BITBUS interconnect operations. See node.

message passing — The transfer and control of structured data between two
tasks.

node — A node is a member of a BITBUS interconnect system. Each node
requires RS-485 transceivers and an SDLC controller to support the data-link-
protocol requirements defined in the BITBUS specifications. There are two
types of nodes:

master node This node initiates all communications interactions. The
IBQO1 acts as a master node and can support up to 250
slave nodes.

slave node These nodes respond to commands or requests from the
master node. A slave node cannot initiate a transaction
without a master node.

operation — The process whereby information is transferred between two ele-
ments across an interface.

Process Input Qutput (PI0) — The basic entity scheduled by the system soft-
ware that provides the context in which an image executes. A process consists
of an address space and both hardware and software context.

protocol — The rules by which information is exchanged across an interface.

RAC commands — The set of commands supported by the RAC utility to
access and control slave nodes.

Remote Access and Control (RAC) — A utility which interfaces between the
BITBUS master controller and the BITBUS slave nodes.

RMX61 — Intel real-time operating system.

170 GLOSSARY

segment — A segment is a length of wire with BITBUS nodes attached. Any
segment can have up to 28 nodes, and depending on speed selection, mulitiple
segments can be attached using repeaters. See Chapter 1 Section 1.5.1 for the
relationship of speed to distance and the number of segments.

slave node — A replier in the BITBUS system. See node.

repeater — A repeater is an RS-485 transceiver pair which rebroadcasts
BITBUS messages from one segment of a BITBUS to another. A repeater rep-
resents the load of one node but is not intelligent.

task — An entity which competes for system resources in order to execute a
program.

GLOSSARY 171

PAGE 172 INTENTIONALLY LEFT BLANK

DO PO P00 000 0000000.00.000.0.60.00.0.0,0.000 00,0990 70 0800000
DR ELOP V0L 0 00 0000.0.000.0000.0000.0.0.000 0000090000000 0N
DR $0.20.0.0.0.8.0.0.00.8,00.0000.9.0.00.0.0.0/09.6:019.0.9°9.9.009 9000004

PO OO LL0000000 0 P00 000000 000080.00.660:0600000 800

RO O PO eI PO SO PII TP 00.000000090 00T

DOPO 200000006000 80 000000000 06.096 009000000
0.2.8.8.0.8.0.8.00.0.0.0.8/0004 0800009008000 80890000
KAXKXXKXAAXK XX KX XA XK XX KA XAKX XL XX KAXKK

DO.00.8.00.00.00080.62900.000048.00¢066500007
P00 000.00.06.0 80804044 00000.09.00:0.0.0.:9.4
O.00.0.00.00.000.80.9.0600.08064899.0.90 64
XXXXKAAAAX XK XX XX XXX XX KK XXX X
XXXAXXXX XK RN XX KX KX KX KX XX XXX

KX AXXAKXAX XX AX XN KK KAXKIXAK

XXX NAX AKX AR XAXXXKRAXKK
AXAXAKXXXXAAXXNKXXKXXKX
KXXANAXKXAXXKAAKXXKAX

XXXE XXXV XXX ARKXX

XEXXXARAXXAXXAX

XAXAXKKKXX XXX

XXXAXAAAXKX

XAXXXXXKX

XAXXXXX

XXXXX
XXX

X

AXXXX

XXXAXXX

XXXXXXXXX

EXXAXAXXXXX

f.0.6.0.9.4.4.6.9.94.0¢4

KXXXXXXXKXAXAXKX

KXUXXAXAKXX XX XXXAX
KXRYXX XX XX XA XAXXXXKX
XXXARXXKAA XX KA XAXK KKK
KAXXHAXA KKK XA XK RAKXKKAX
AXXAXCOON XA XK NXAXK XK XKX

XA XAXARX XA XX XX AKX XNXANAX
AXXRALXAX XXX XX AKX XK XA KA NAXKX
080909080 8080.0980600.66995090001
DO OO O 00000000000 00.490.0.09.0¢0 00
DO.208.0.0.09.0.9.0.0.0.6.0609000.0.0:0,0.9.6.6.0909 904
O090.00.08.08.0.009.0000000800600.0.606000004
000000000000 88+0000.00.00600090.9.000¢0090

DO P0.00.4.0.0080600.0.9.0.0.0.0.0.00:800.60.0.9.0:0.0.9.09 99094

DD P00 00 0000000000 9.0.0000.00.0.06.0.0.000.59060 0000

XXXX XX KX KX XX AKX XX XK XXX XA KKK XK KK KKK KAXKKKKKK
XXRXXXXXKE XA XX KL KK XK KK XX KK KA XA XK IR XXX XK KKK
PRBR20.0.0.9.0000.008.005.00.06.0806.0000.0,6:000.0.9:00 000007600 00
POO02.9.2.0.0.0.9.0.6.0.6.0.00000.00.00.0.60.00:609606.6.0.09090 0060000001

BCS

command line facility 5
configuration utility 5
help file 5

mode exchange commands
physical unit numbers 32
radix 32

range parameter 32

BCS command set

DEFINE 7
DELETE 8
DIAGNOSE 9
DOWNLOAD 10
EXCHANGE 11
EXIT 13
HELP 14
OFFLINE 15
ONLINE 16
QUIT 17
READ 18
RECEIVE 20
REPEAT 22
RESET 23
SCANON 24

31

INDEX

INDEX 173

SEARCH 26
SEND 27

SHOW 28

WRITE 30
S 31

--§ 31

-V 31

--V 31

BITBUS 3
BITBUS communications 1

asynchronous reporting 2
automatic polling 2
message passing 2

BITBUS

control service 5
controller 2, 55
controller errors 64
controller hardware 2
errors 63

interface 55

controller error messages 64
data link protocols 56
driver error messages 62
FCC notice ix

host processor software 3
IBQO1 BITBUS controller 1
IBQO1 control functions 37

BUS SEARCH 37
OFFLINE 39
ONLINE 39
RESET 41
SETAST 43
TESTIBQ 44

IBQO1 firmware 1

174 INDEX

IBQO1 /O functions

DOWNLOAD 38
RECEIVE 40
SCANOFF 42
SCANON 41
SEND 43
TRADE 44
UPLOAD 48
XCHANGE 49

interactive interface 2

message protocols 56

number of IBQO1s per system 2
number of slave nodes per system 2
program interface 33

program languages 3

Q10 call 33

QIO data formats 36

QIO device dependent parameters

Pl 34
P2 34
P3 35
P4 35
P5 36
P6 36

QIO device independent parameters

EFN 33
CHAN 33
FUNCT 34
IOSB 34
ASTADR 34
ASTPRM 34

QIO examples

example 1 50
example 2 52
example 3 53

INDEX 175

QIO message partitioning

BUSSEARCH 37
DOWNLOAD 38
EXCHANGE 40
OFFLINE 39
ONLINE 39
RECEIVE 40
RESET 41
SCANOFF 42
SCANON 41
SEND 43
SETAST 43
TESTIBQ 44
TRADE 44
UPLOAD 48
XCHANGE 49

QIOs 33
RAC 56
RAC access commands 56

AND IO 59

DOWNLOAD EXTERNAL MEMORY 52
OR I/O 59

READ INTERNAL MEMORY 60
UPLOAD EXTERNAL MEMORY 60
WRITE INTERNAL MEMORY 60

XOR VO 60

XREAD IO 59

XUPDATE /0 59

XWRITE 1I/O 59

RAC control commands

CREATE TASK 58
DELETE TASK 58

GET FUNCTION IDs &8
RAC PROTECT 58
RESET 68

RACT1IO 50

176 INDEX

RAC message format 57

command/response 58
data 58

destination extension 57
destination task 58
length 57

message type 57

node address 57
source extension 57
source task 58

track 57

Remote Access and Control 56
Synchronous Data Link Control 56
task-to-task message interface 49
troubleshooting 64

operator failures 62
system failures 61

user's programs 3
VMS QIO system service 33

INDEX 177

