EK-DB86X-TD-002

VAX 8600/8650 SBIA
Technical Description

Prepared by Educational Services
of
Digital Equipment Corporation

1st Edition, May 1985
2nd Edition, January 1986

© Digital Equipment Corporation 1985, 1986.

All Rights Reserved.

The material in this manual is for informational purposes and is subject to change without notice.

Digital Equipment Corporation assumes no responsibility for any errors that may appear in this manual.

Printed in US.A.

The manuscript for this book was created on a VAX-11/780 system and, via a translation program, was
automatically typeset by Digital’s DECset Integrated Publishing System. The book was produced by
Educational Services Development and Publishing in Marlboro, MA.

The following are trademarks of Digital Equipment Corporation.

2020080 PDP

DEC P/OS
DECmate Professional
DECUS Q-Bus
DECwriter Rainbow
DIBOL RSTS

MASSBUS RSX

RT

UNIBUS

VAX

VMS

VT

Work Processor

CHAPTER 1

— b
. .
[\

W o =

Dl T T S U S G U S P Y
[\ I

NoubsabababbLLLLL-

CONTENTS

Page
INTRODUCTION

MANUAL SCOPE AND RELATED DOCUMENTS.........cccoeeviiiiiicieiererene. 1-1
GENERAL DESCRIPTION.........cotiititieteieeeeeteeeeet ettt 1-1
PHYSICAL DESCRIPTIONcooiiiiiiiiiiieieietetetereeete e ess e enis 1-2
Module Partitioning..............ceceeverueeeerinieeeiececese ettt eeere e e 1-2
SBA MOGUIE ...ttt ettt s e en e esne e senens 1-2
SBS MOQUIE ...ttt 1-3
SBIA DATA TRANSFERS ...ttt eve e ensenessesaens 1-3
CPU WIIE ..ottt ettt sttt sbesas b s s enesneenseeresansnsanis 1-3
CPU REAd........coiiiiieeteeeereeesee ettt et eae s et ens s eneanen 1-3
DMA TTanSfersooeoereeinineeieietetetee sttt es e eaeas 1-3
DMA W ..ottt es e bs s as e 1-4
DMA Readooiiiiieiititeteetetetetetete ettt ettt ettt 1-4
PHYSICAL MEMORY ADDRESSESocoo ottt eveeae e 1-4
SBIA ERROR DETECTION........c.coceviitiititerectectecresteeteeseeseesseeesese e esseseeseesseneenees 1-6
SBIA REGISTERS ...ttt e n e ens b saseneens 1-7

FUNCTIONAL DESCRIPTION
CHAPTER OVERVIEW ..ottt st ev et enas 2-1
SBIA BASIC BLOCK DIAGRAMc.coiiieieceeeeeteeeese e 2-2
CPU/SBIA State Machineccooovvveeeeeeeeieeeeereeeeeeeeee ettt eresscessnes 2-2
REGISLEr FilE ..ottt ettt e e 2-2
S-Data ASSEMDBIYccocouiiiiiiiiiieieeceeteeeee ettt e 2-3
SBI INEErfACE ...ttt et ettt nas 2-3
SBI ProtoCOlooiuiiiiiiieciieee ettt ettt et ae et aeens 2-3
A-Data ASSEMDIYccoiiiiiiiiiicicee et 2-4
CLOCK LOBIC . vevveeeieiiiirectisesesies e e st sb et ebs s beeaeereessebsenseneenis 2-4
ABUS ClOCK LOZIC....uviiuiiiieieeiieieeiecieetee ettt e eaeeae e 2-4
SBI Clock Generation............c..ccceeeverieereereereeeereereesieeeeseesssesesseeseesessens 2-5
DMA Buffer Control and Request Synchronizationcccccoeeverieieeennennn. 2-6
ECL Address and Read/Write Controlccccovvvueeieveeeeiceeereeeeeeeeeeienns 2-6
TTL Address and Read/Write Control............c.ooecvvvvievvivveeneeiieceeeeeesnesnns 2-6
INtErrupt LOZIC .couvveiiiiiieeeececcte ettt et 2-6
SBIA REGISLETSccoeiiiiiiiiiiiieiieeeeeeeee et re e enas 2-6
SBI Arbitration CRipPs......cceeeirieriienieeiiitiiciece ettt evs e e eaeenae 2-7
CPU TRANSACTION FLOWCHARTS........ccoootiteierierenienttrenieveeteveresvesaessennens 2-7
Starting the State Machine.........c..cccoevvvirivenininieeeceece e 2-7
CPU WIHE ..ottt sttt e bbbttt bseteeasesaebaebsseens 2-9
CPU ReAd ...ttt ettt sa e s e reeaee 2-10
QUAACIEAT ...t eae e b saresae e sbbesabeeabeesasesnresasens 2-12
Interrupt Summary Read.......c..coooviviniiniiiiiiceeee e 2-13

iii

CHAPTER 3

DN

PLWLWLLWWWW®WWWWWWwWwwWwwwwwww
WN—O

LWLLLLWNRNRNRNPRDRNDRNNDN D= ———

B W —

D—O—l—t-—b———.\om\]@m

o L0 2) 00 L0 L0 L0 0 L) 0
AW —O

PrRrRLLLLLLLLLLWLGL

f—

CONTENTS (Cont)

Page
SBIA TRANSFERS NOT USING STATE MACHINE........cccoiiii 2-15
SBIA Register Writes or Reads.........ccooooiimemnnnniiie, 2-15
UNJAIM..oiitttet ettt bbb 2-15
DMA TTANSACHIONSc.oveeeeeerreitieiireeisesssnesseeesueesaeesseessssessesssseraessnsssssesssasseens 2-15
DMA WL .eeeeeeeiieteeeeeeeeeeeeiieeeeeesttesibesseesnesreeneeenneesesnssasssssnaasssssnsanns 2-16
DMA REAG ..ottt eb ettt sttt ens e e e easeaes 2-16
DETAILED DESCRIPTION
REGISTER FILE ORGANIZATION ...cccoiiiiiiiiieneciceieie i 3-1
CPU Transaction Buffer........coveoueeiieeiieiiienieniecicciicre e 3-1
DMALI Transaction BUufferccoevvvmeeeinniiniiniiiiiinieiieee e 3-2
DMAA, DMAB, or DMAC Transaction Bufferscccocoviviininnnnins 3-2
CPU WRITE SBI NEXUS REGISTERccccceoiiiiiiiiiiiiieeieeieciecies 3-2
Loading CPU Command/Address............oeuevriiireinininininniiniicce 3-2
Loading CPU Write Data..........ccocouiiiiiiiiiiniiniiiiiicicnc, 3-2
Addressing and Unloading the Register File for TTL Read..........c.cccccccceeee 3-3
Valid File REAd......ccoovierieieeieeeieieiesiesiesreseeeeesecsesesseess e s s 3-4
Double UnIOadcocuviiiiiiieieieeie et sitesir st a e s b s 3-5
File Data LatCh ...c.ooouviiiieieieceiiccieeite ettt e crve et sb s 3-5
Loading the Command/Address Latchccoonniiiii, 3-5
Loading the Write Data Latchccovvvvevemiiniiiiiiinccce 3-5
Starting the CPU-SBI State Machine............coooveririniniiiiiicniie, 3-5
CPU ARB WAIT ..ottt ettt snesaesaeeae s s s saa s 3-5
CPU Write SBI Nexus Register: Command/Address Cycle...........c..ccooeeniee 3-6
CPU Write SBI Nexus Register: Write Data Cycle..........cooovveinininincni 3-8
CPU Write SBI Nexus Register: Check ACK Cycle ..o 3-9
CPU Write SBI Nexus Register: Check ACK2 Cycle.......cooviivennicniinen 3-10
CPU Write SBI Nexus Register: Timeoutccoovviovieiiiiniiininiiie 3-10
CPU READ SBI NEXUS REGISTERccccooiiiiiiiiiiitiecce 3-10
Loading CPU Command/Address for CPU Read SBI Nexus Register 3-10
Addressing the Register File for TTL Read Nexus Registercccooeeeeeee. 3-11
File Data LatCh ..co.oeooeeiieiecieeeeeeee ettt 3-11
Loading the Command/Address Latch for CPU Read SBI Nexus
REZISEET ...ttt 3-11
Starting the CPU-SBI State Machine for CPU Read SBI Nexus Register ... 3-11
CPU Read SBI Nexus Register: CPU ARB Wait........ccoooviiniinni 3-11
CPU Read SBI Nexus Register: Command/Address Cycle............ooooenneee 3-12
CPU Read SBI Nexus Register: Wait Cycleccoovoviiiiiiiniiiiiinn 3-14
CPU Read SBI Nexus Register: Check ACK Cycle........ocooiiniiinnicnnn 3-14
CPU Read SBI Nexus Register: Read- Wait Startccoooeveeeiiiiniiniinns 3-15
CPU Read SBI Nexus Register: Read Data Wait........cooviiiineniiniincnn 3-15
Sending Acknowledge for the Read Data Word..........ccccooiiinnnnn. 3-15
CPU Read SBI Nexus Register: Read Data Transfer to Register File.......... 3-16
CPU Read SBI Nexus Register: Register File TTL Write Address............... 3-17
CPU Read SBI Nexus Register: ABUS CPU BUF DONE...........cccccccc.c.... 3-17
CPU Read SBI Nexus Register: MBox Reads the Register File 3-17
CPU WRITE SBIA REGISTERcooiiiiitieieneeeeeiciccicniieie e 3-17
SBIA Address RECOZNILIONcoueuiuiiiiiiiiiiiirieees et 3-18

iv

ww
B
S W

abhbbhinininia
NNV AW -

w w
oo
[\

w
[=))
w

w w
o
AN B W N — @)
DN

WW W ww WL LWL WL wwwwwww
UL Wi —

CONTENTS (Cont)

Page

Selecting and Writing the SBIA Registercccocoveeviivemeeieceeciceeeee, 3-18
CPU Write SBIA Register: ABUS CPU BUF DONEccooeovveeveeenn. 3-18
CPU Write SBIA Register: ABUS CPU BUF ERROR.................ccoone...... 3-19
CPU READ SBIA REGISTERccocoiiiiiiieeeeeereeee et 3-20
Register Data BuUsc.coeveeiviivinieeeeceneeeee et 3-22
ZEr0 Fill....oooiieieeeeeeee ettt et 3-24
Enabling Register Data to File Info Bus.........ccccoevvveiveiveineciieecece, 3-24
Register File TTL Write Address.........ccoceeieiniesieciesieieieieeeece e 3-25
CPU Read SBIA Register: ABUS CPU BUF DONEcccccoovvvvivvnrnnninnne 3-25
CPU Read SBIA Register: MBox Reads the Register File..............c............. 3-26
CPU Read SBIA Register: ABUS CPU BUF ERROR.................cccoeune.. 3-26
INTERRUPT SUMMARY READ ...t 3-26
INterrupt REQUESES......ccvveiiiieiiicietectece ettt eae s 3-26
EBOX IPR ArbItration.......ccccoveviinieeieiiiiieieeeccteeceeeeecreeee et er e 3-26
EBox Microcode Generates the Read Addressccoceevvveveerecieneniereeeenenenn. 3-26
Command/AdAressccuevuerienieneniiciiieieieeteete ettt 3-27
Obtaining the Interrupt Vector for IPR 14-IPR 17.......cccccovvivvniviinicennennnn, 3-27

IPR T4-IPR 17 ettt eb st ea et enn 3-27

ISR CPU ARB Wait CYClEcc.ooeviiriiiriiiiieceee e 3-28

ISR C/A CYCle...uoouiiiiiiiiieieese ettt 3-28

ISR Wait CYCLeouevveniriieieiieieicieeeeie ettt 3-29

ISR Data CyCle......cc.covuiiiiiieiiieieceeeeeeeee et 3-29

SBI CMD DONEoooiiiiiiriiiiccretee ettt 3-29

Vector Transfer to the Register File............ccccoooieiiiiiiiiiiiice, 3-29

ISR: TTL Register File Write Address...........c.cceovrvereiiiverieierineereenn, 3-30

MBox Reads VECtOr.......c.uiiuiiiiiiiiiiiieciiecie ettt 3-30

Local INterrupt VECLOTc.cciiiiiiiiieiieicicecect et 3-30
QUADCLEAR ..ottt sttt b e st ene s 3-30
Quadclear Command/Address Cycleccocooiiieeieeieieiiiceceeeeeeeeee 3-31
Quadclear: Write Data Cycle ©.........c.ocooviiiieieieeieieceeeeeeeeeveeeeee e 3-33
Quadclear: Write Data Cycle 2/ACK 1coooveviveeeieeciiceiceceeceeeee e 3-33
Quadclear ACK2 CyCle....cceeuiiuiiiieiieiiciiieieeeieeeteteeee e 3-35
Quadclear ACK3 CYCle.....coioviiiiieeeieiieeeceeeeeeeeee et 3-35
Quadclear TIMEOUL........c.couvvvirtiiriireeeceieeetee ettt as e eaeeae e 3-35
QUADCLEAR FOR MICRODIAGNOSTICSccooiiieeeceeeeeeer e 3-35
UNJTAM ettt e bbb bbb bbb aeeae e 3-35
DMA OVERVIEW AND BUFFER CONTROLccccecevtmvimiiiieeieieeceeieen, 3-37
DMA Buffer Controlcccocuiiiiiiiiniiiiiieieiee et e 3-37
DMA Transaction Buffer Selection...........cccovverieiiviniininicieneecesceee e 3-40
DMA WRITE ..ottt ettt eaeeneees 3-40
DMA Write: Command/Address Reception...........ccceevevviereevienieniecreenrennnennn, 3-40
DMA Write: Register File TTL Write Address Generation........................... 3-41
DMA Write: A-Data Assembly Command/Address Transfer....................... 3-43
DMA Write: A-Data Assembly Transfer of Write Data 1cccu...... 3-44
DMA Write: A-Data Assembly Transfer of Write Data 2............................ 3-45
DMA Write: ACKNOWIEAZEoovveiieiiiiieiieieeeeeeeeeeee e 3-47
DMA Write: Sending IOA Request to the MBOXcccccoevveviericenieciecrenne, 3-47
DMA Write: MBox Reads the Register File............cccocovoiviiiiiiiiiiiienn 3-47
DMA READ ..ottt ettt et 3-48

CONTENTS (Cont)

Page
3.12.1 DMA Read: Command/Address Reception.........cc.cccceevviuiiiiiiiiiiniinininnnennnns 3-49
3.12.2 DMA Read: Register File TTL Write Address Generationc..cccceue.. 3-49
3.12.3 DMA Read: A-Data Assembly Command/Address Transfer..........c.ccce..... 3-49
3.12.4 DMA Read: ID File....coooiiiiciiiiiteiiniteniesires e seeseesesssesnesns s snssasense s e 3-51
3.12.5 DMA Read: ACKNOWIEAEZE......cc.eeeeueeriereieieciiciicitccitcie e 3-51
3.12.6 DMA Read: IOA REQUESLcceeviiriiiiiiieeeriieiceeieniecscsi et 3-51
3.12.7 DMA Read: MBox Reads the Register Filecccooivviiniinininininne 3-51
3.12.8 DMA Read: DMA DONE/ERRORcccociviniinininiininiiiiiiiinninecnenene 3-52
3.12.9 DMA Read: Register File TTL Read Address..........cccoooveieiiniiiniiiiiinininnns 3-53
3.12.10 DMA Read: DMA Read Data Transfer to the SBIcccccoeiviiiinnnnnins 3-53
3.12.11 DMA Read ClEAT.......c.eoeuiirierietieeerteeeeseeeeseesiesaesse s ssas s e esss s essesas b sae 3-54
3.12.12 DMA Read: Second Read Data Longword..........cccoevvvinmenvecnnenieeeeniecreennnne 3-54
3.13 SBIA SILO .ottt ere e s s e se s et e e ss et s st s s st ssssabsbbera s besberssaressenennesns 3-55
3.13.1 SHIO CONEENLS ..vvereeiereereeereereereerteeisestessessesssesseeseeneebesssesssessesssebsassesssessasssensas 3-55
3.13.2 LOCKING the SHl0cvevevevereeiiiiiiiciiiiiiiie ettt 3-56
3.13.3 Silo During Normal System Operationcooeeveeuiiiinieiiniinninenineneenes 3-56
3.134 Silo During Maintenance.............ccececeiruiinineiniinnisnnneeseesssesssse s snssesens 3-56
3.13.4.1 Silo Unconditional LocKccevvveeericieniienniniiniiciincnnceiesnecee e 3-57
3.134.2 Silo Conditional LOCKcc.coeiuiiiiuinrienierereiececicreneicseec e 3-57
3.14 SBIA REGISTERS ..ottt ettt ettt ettt sas s sn et 3-58
3.14.1 Configuration REGISETccovuiuiiiiiiiinreeieie e 3-58
3.14.2 Control and Status ReZISter.........coovieiiiiiiiiiniiniiiiiicrceee e 3-59
3.14.3 Error Summary ReZIStEr.......ccveeeirireniniiiiiiiiiiiiiiiisesne s 3-61
3.14.4 Diagnostic Control REZISErccocvvuiiiminiiiiiitiiiet e 3-67
3.14.5 DMA Command/Address RegISters........ccccevuirneiiiiiiuriniiniienieeieciecee 3-70
3.14.6 DMA ID REISLETS.....ccvieiiiiieirreieiiienteirteieeteeie et 3-71
3.14.7 SBI Silo REZISIETvcveeverieieieieieiecieteeseene ettt se s a e 3-72
3.14.8 SBI EITOr REZISIETc.veuvevrvieeneeeerceeteteicste sttt sses e ebe e snies 3-74
3.14.9 SBI Timeout Address REZISLErccevveerierieniiieieieininiiiee e 3-76
3.14.10 SBI Fault/Status ReGISter........cccoviviiniiiiiiiiiniriicicreteeee e 3-77
3.14.11 SBI Silo Comparator REGIStErcoeiieiiiiiiininiiiiiiniieeeir e 3-79
3.14.12 SBI Maintenance ReEgISer.......cccvivuerveruerreniiieiiiiniiicienee e 3-82
3.14.13 SBI Unjam REZISLETooueiiiiiiiiiiirienicicirieinieeiete e 3-85
3.14.14 SBI Quadclear RegiSter.........ccc.cvveeiieriniiiiiiiiniiiicicrnnre e 3-85
3.14.15 SBI Vector REZISLETccuivuerieienienieeiiiciiiiiictinitsis et 3-86

APPENDIX A ABUS PROTOCOL
APPENDIX B SBI PROTOCOL
APPENDIX C SBI ARBITRATION

vi

~ Figure No.

NS ESESESE SR S N el
QDN B WN— bW —

1 1 L 1] 1

W W W Wi

B W — oo

PP 90 0 60 G0 0 69 G 60 4 G (0 G L0 10 0 L0 (0 0 L0 LY G L
W WWWWWRNNWLNROODD ——— =2 L L L LD

AP LWNN—~OLOCONITANANUNPAWN—~O VO UNEAWN—D

W LW WWWWWWWWWwWwWw

FIGURES

Title Page
ABUS/SBIA INLEICONNECToveeiveiieeereeeeeteieeeet et eeee oo e e e e esees e ssessesessesesens 1-2
ABUS BaCKPanel..........ccoouiriiiiieieeeeeeteeeeee ettt e e ena 1-2
Physical Memory Address AllOCAtION...........c.c.ceeveevreviueeiecceiereteeeeece e eeseees 1-4
1/0 Adapter Physical Address ANOCAtIONccveveveeeeeereeeeeeeeeeeeeeeeeeeeeeeeeeerernnn 1-5
SBIA Basic BloCk DIagramcccceeeeueuiieuieeiereiieeeeeeeneeeteceeeeeeeteseeee e esese e esesens 2-1
ABUS ClIOCK LOGIC.......ciuiiiriiiiieieieieiieice ettt e s e e e s eaes 2-4
SBI CloCK GENETALION.........cueeverereerrerereeiesseete e sees s s teseseeaeseee e e eneseeseseseesesenens 2-5
Starting the State Machinecococieveiieiiiiieiec et eenne 2-7
State Machine Flowchart: CPU WIIte............coooovvviiueeiiieieeieeeeeeeeeeeee e seeveneeenns 2-9
State Machine Flowchart: CPU Readc.ccooveviiniieiieieeeeeeeeeeeeeeeeee e, 2-11
State Machine Flowchart: Quadclear.................oooovvvevmereeeeeeeeeeeeeeeeeeeeeeeeeereeeeseen, 2-12
State Machine Flowchart: ISRc.c.oovimiioieiiiieiiccceee e 2-14
SBIA REZISLET FilEooviieiieeiieeeeeeieeeee ettt e e e ese e 3-1
CPU Write: ABUS ProtOCOL.........ccoceiiiuiieeiecieeceececeete et ee e eese e s e s 3-3
S-Data Assembly: CPU Write SBI Nexus Register Command/Address Cycle....... 3-6
Command/Address and Write Data Transfer to SBI for CPU Write Nexus
REGISTET 1ottt ettt ee e e e e eese e e e e enenens 3-7
S-Data Assembly: CPU Write SBI Nexus Register Write Data Cycle.................... 3-9
CPU Read SBI Nexus Register: ABus Protocolc.oeeeeeeeveeeeeeeeeeeeeereensnnn. 3-11
S-Data Assembly: CPU Read Nexus RegiSter...........coovevvvivieveveereeeerereereeeeeeennnn. 3-12
Command/Address Transfer to SBI for CPU Read SBI Nexus Register.............. 3-13
A-Data Assembly: CPU Read Nexus Register, Read Data..........ccooevvrevverennn..... 3-16
CPU Write SBIA REZISLETScveueueeuenireeiietcecieeeeeee ettt ee e e e ee e e enens 3-18
Register Address Decode LOICc.ccevurumnmmnineeneriieieecceceeeeeeee e 3-19
Register Selection, Zero Fill, and Write Enablesco.vvvoeviveeeeeeeeieeeeeeeeeeeeeesans 3-21
Read SBIA REGISLETS.......ceciviiiiieiieieieirieeieteeetstee sttt eae e e s e eeenes 3-23
Enabling Register Data Bus and Local Read Done...........c.c.cooveeveeeeeeeeeeeeeeennnn. 3-25
S-Data Assembly: Interrupt Summary Read...........coccoovvmmeeoeneeeeeeeeeeeeeeernn 3-28
VECtor GENETALION.......ccovviieieieiiiiniietetetetcc ettt enee e e eseneeneesenas 3-30
Quadclear Data Transfer to0 SBl...........c.coouiiioiiiiieiieceeeeeeeeeeee e 3-31
S-Data Assembly: Quadclear Command/Address Cycleoccoooveeeeereeveerennnnn. 3-32
S-Data Assembly: Quadclear Write Data Cycle 1cccoevevemeeeeeeeeeeeeererennn. 3-33
S-Data Assembly: Quadclear Write Data Cycle 2..........ocooveemmeeeeeeeeeeeeeeeenennnn, 3-34
UnjJam SEQUENCETccueuiiiiiiiiiieiiieieeeteeetesee ettt ess ettt sssesess st seseeseneeseseens 3-36
DMA Buffer Control........c.coccoviiiiininirieiesesesseeseseetescetcseese st ee e seeseeeestsseeeseneas 3-38
DMA Quadword Write Data Transferc.ococvevvmeveeeeeeeeeeeeeeeeeeeeeeeeeeeenns 3-41
DMA Write, A-Data Assembly Command/Address Transfer..............coovvevveven.... 3-43
DMA Write: A-Data Assembly Transfer of Write Data 1........occoooevvvveeveeveenennnn. 3-45
DMA Write: A-Data Assembly Transfer of Write Data 2........ccceevvvveeuennnn... 3-46
DMA Quadword Write, ABuUS Protocol............ccoouoieueeuiieeeeeeeeeeeeeeeeeeeeeereeeerenanns 3-48
DMA Quadword Read: Command/Address Transferccccocovveveeveeeeeeerennnn. 3-49
DMA Quadword Read: C/A Transfer to DCO22.........cc.oveueeeeeeeeeeeeeeeereeeeereinns 3-50
DMA Quadword Read ABus Protocol (with cache hit).........c.ccooeeevererrinerann. 3-52
DMA Quadword Read: S-Data Assembly Transfer of Read Data........................ 3-53
SBIA S0ttt ettt et r e enene 3-55
ConfigUration REISTET..........c.cveviviiueiiieiteecieie ettt e e eee e e s nenns 3-58
Control and Status REGISIETeueuieuiueeieeeieeeeeeeeeeeeree ettt e e ee 3-59
Error Summary RegISIETcoovoiiuieiiiiiceetetet ettt et e e e esaens 3-61
SBI Diagnostic Control REGISIETcccuioieieriiiiiiiceeeeeecce et ees e ee 3-67

vii

Figure No.

3-37
3-38
3-39
3-40
3-41
'3-42
3-43
3-44
3-45
3-46
3-47

A-1
A-2
A-3
A-4
B-1
B-2
B-3
B-4
B-5
B-6
B-7
B-8
B-9
B-10
C-1

Table No.

o1 1 RO
B WN - -

uuwuv}»uwuv——-

O U

@ WL W W
D p— — p—
LN —~O

FIGURES (Cont)

Title Page

DMA Command/Address Error REGIStErscoueveiiiiiiiiiiiiniiiniiiee 3-70
DMA ID Error REZISIETSvevvviuininiiirieieieiis it 3-71
SBI Silo REGISIETvoviiuinieiicteriietin ittt 3-72
SBI Error REGISIET......vveveuieiieieienciiiciieiet ettt e 3-74
SBI Timeout Address REZISETcccvvvvrveiiriiiiiinieirrieeeciti s 3-76
SBI Fault/Status REGISLErccc.euiiiiiuiiriiieneiitisieisisis s 3-77
SBI Silo Comparator REGIStErcovvieiiiiiiieiiiiniiiiini e 3-79
SBI Maintenance REGISIETcceviiuiiiriiinieieiieisc bt 3-82
SBI UNjam REZISLEToururirmririeieiieitieieneisn st 3-85
SBI QuUAdClear REGISLEToruiurmiieieieicieitieis e 3-85
SBI VECtOr REZISTET.....cucveveeiiiiciiteietet et e 3-86
ABUS INEEITACE .. eveeeeeeeeeeereeeeeeeeeeeseetsesaesessesseeneesssse s sebs b e s e s e s s e e s e s es s b A-1
ABus Command/Address Cycle Formatccooooiiiiniiniiine A-2
ABus Write Data Cycle FOrmatccooovvuiimininiiiniiicci A-2
ABus Read Data Cycle FOrmatooooiiiioniiiiiiiiicen A-2
SBI SIZNAl NAMEScvuveeeeiirierirseissserss st B-3
SBI Parity Field Configurationccooieieeeinccinmeininiiss s B-4
SBI Command/Address FOrMatccormimimrrrenmesniiiesiiniss e B-4
SBI COmMMANA COUESocuveviririieeereieiieieiiesis s s bbbttt n e B-4
Read Data FOIMAL.......c.oocveeeeereereereeieetetestesneseesesesaseses e e s ssesse b esbesbs b st et b b asns B-5
WIite Data FOIMAL......c.eeeviieiitiererteeeseteeeestessr st esas s bs st e st et n e B-5
Interrupt Summary FOrMAtscooiviiiiememeiicininiii s B-5
SBI Cycles for Extended Readcoooiiiiniiiinciniiiiiiiiiiie B-6
SBI Cycles for Extended Write Masked........coooveiiminiiiiininiccii B-6
SBI ClOCK SIZNAIScvevevereeriiiiiiiiiiiisisss sttt s B-7
DC101 Priority Arbitration CRIPSccooieuiimieinieciiiini e C-2

TABLES

Title Page

Related Hardware ManualS..........cooeevevuereeneriemiimnsienineineste ettt 1-1
SBIA Register AAArESSesc.cuiuirimrrinmieisiieiermicisii e 1-6
SBIA Operation Performed.........ooouovereiicoiiii s 2-8
ECL File Address <O1:00>cooiiuerrerierueeeieienienienrentsnsnesasssesesssstsssssassassasseses 3-3
Register File TTL Read Address........ooceieeeciimnimnimiiiiiiss e 3-4
CPU Command Conversion to SBI Function Codesccooieinnncnniiiiinnnn 3-8
SBI Confirmation BItScceeeveioieeieeieeseereeeeeeeiessstsir e s sesssesssesstesstesse e snaseanees 3-9
SBI Mask Bits from CPU L/S BitS......cccceeveruiiviimiininieinecetceiccnee 3-13
Register Bus Multiplexer Enablingc.cccoviiiiiin 3-22
Register Bus Zero Fillcovoiiiiiiiii 3-24
INEErTUPL PRIOTILY ..vovoeceieininininieiciee ettt e 3-26
Vector Register Addresser and Interrupt VECtOrs ... 3-27
Setting SBI B<07:04> for ISRooviioiiiiiiiiiic s 3-29
Unjam SeqUENCET SLALEScuorururrrirsesrissesescissisisinns s 3-36
Register File TTL Write Address <03:02> ..o 3-42
Register File TTL Write Address <O1:00>.......cooviiiiiiins 3-42
Register File ECL Read Address <03:02>ccovimiiiniis 3-48

viii

Table No.

3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
3-27

1
[N
(o]

P
LW N
[« 3N)

w2

OP>>>>>>
e~) WU, I~ US I NS B

TABLES (Cont)

Title Page
COND LOCK CODE Control of Silo COMPAriSons...............c.ccceeeeeeevevereveerennn. 3-57
Configuration Register Bit Definitioncccccoeveiiruiieiiiiiieceeeeeeeeeeeee e 3-59
Control and Status Register Bit Definitions...............c..coovvveuiieveeeeeeeeeeeeeeeeeernn, 3-60
Error Summary Register Bit Definitionsc.cccoveiericiiiiieieeeeeeeeeeeev e, 3-61
SBI Diagnostic Control Register Bit Definitioncooovveeveeeeveeeeeeereeeenann 3-67
DMA Command/Address Error Registers Bit Definition..............cccocveeeveveuvnnen... 3-70
DMA ID Error Register Bit Definitioncccceeueveeveeeieieeeeeeneeseseeeeeeeeeesenannn 3-71
SBI Silo Register Bit Definitioncceeeveveuiriieeieeieieceecee ettt 3-72
SBI Error Register Bit Definitions...............ccoeeviviuiveieinieieeieeeeeeeee e eeeeeeese e 3-74
SBI Timeout Address Register Bit Definitioncccccocveveeeeeveeeeeeeeeeerennnn 3-76
SBI Fault/Status Register Bit Definitions.............c.ccoecveueeevreveeeeeeeeeeeeeeeereerernnns 3-77
SBI Silo Comparator Register Bit Definition...................cccovvveveereeeeeeeeeeeeeeennnn. 3-80
SBI Maintenance Register Bit Definition.................cccoovveveveueeeoineeeseeeeeeeeeereenn, 3-82
SBI Unjam Register Bit Definitions.............cccceevevereeeieieierereeeeeccceeeer e 3-85
SBI Quadclear Register Bit Definition..............cccooevevevieveriieeeeiieeeeceeeeieeeeseerees 3-86
SBI Vector Register Bit Definitions.............ccccoeveerereererirerieeieiieeciceeieeenevee e, 3-87
ABUS COmMMANGScooviviiriiiiiieintiereeeseete ettt ettt A-3
Length/Status for CPU Read/WIIte......c..cooueveioeeieeeeeeeeeeeeeeeeeeeeeeeereseeseesessenons A-3
Length/Status for DMA Command/Address Cyclecoveveeeeereveeueeeeeerernnnnnn, A-4
Length/Status for Data CyClescceueueeeiereuriereeerereieececceeceee e eesee st eeaeeeae A-4
MCC ABUS ADDRS CTRL.......cocoiiiiietieieetereeteeeereessssses et eeerenenens A-6
Register File ECL Address Control..........cccococevivieieieieinieieiceeecceeeee e A-7
SBI Signal Names and DesCription.............c.ccocvevevierivieeerieeeesieeee e eee e B-1
XMIT TR JUMPETS ...oviiiiiiiiiiirieiiteieisteete e et ss s s et s s st s e eeeene C-3

ix

CHAPTER 1
INTRODUCTION

NOTE
For simplicity, the word “system” is used through-
out this manual and applies to both the VAX 8600
and VAX 8650 systems unless otherwise specified.

1.1 MANUAL SCOPE AND RELATED DOCUMENTS

This manual, written as a training and field resource, is a comprehensive description of the VAX
8600/8650 SBIA. The manual is written on three levels — general, functional, and detailed. Table 1-1 lists
related hardware documentation.

1.2 GENERAL DESCRIPTION

A VAX 8600/8650 may contain two synchronous backplane interconnect adapters (SBIAs), SBIA 0 and
SBIA 1. Each SBIA provides an interface between the MBox, via the ABus, and a synchronous backplane
interconnect (SBI) that will do the following conversions.

Table 1-1 Related Hardware Manuals

Title | DIGITAL P.N.

Technical Descriptions

VAX 8600/8650 Console Technical Description EK-KA86C-TD
VAX 8600/8650 EBox Technical Description EK-KAS86E-TD
VAX 8600/8650 System Power Technical Description EK-KAS86P-TD
VAX 8600/8650 FBox Technical Description EK-FP86X-TD
VAX 8600/8650 IBox Technical Description EK-KA86I-TD
VAX 8600/8650 MBox/Memory Technical Description EK-KA86M-TD
VAX 8600/8650 System Clocks Technical Description EK-KA86K-TD
VAX 8600/8650 EMM Technical Description ' EK-KA86V-TD
VAX 8600/8650 System Description and Processor Overview EK-KA86S-TD
User’s Guides

VAX 8600/8650 System Diagnostics User’s Guide* EK-KA86D-UG
VAX 8600/8650 System Hardware User’s Guide EK-8600H-UG
VAX 8600/8650 System Maintenance Guide* EK-86XV1-MG
VAX 8600/8650 System Installation Manual EK-8600I-IN
VAX 8600/8650 System Fault Isolation Manual* EK-8600S-MM

* For Internal Use Only

1-1

The SBIA enables the CPU, via the MBox, to read or write SBI nexus registers and SBIA registers (see
Figure 1-1). In response to the CPU’s reading a vector register, the SBIA initiates an interrupt summary
read to determine interrupt vectors. In a like manner, in response to the CPU’s writing the unjam register,
the SBIA hardware carries out the SBI unjam sequence.

meox K ABUS

SBIA 1

=
=

MR-14936

Figure 1-1 ABus/SBIA Interconnect

When an SBI nexus initiates a DMA write, after being set up by the CPU, the SBIA transfers the
command/address and writes data to the MBox. For a DMA read, the SBIA transfers the com-
mand/address to the MBox, accepts the read data from the MBox, and then transfers the read data to the
SBI.

1.3 PHYSICAL DESCRIPTION

The SBIAs are located on the five-slot ABus backpanel (Figure 1-2). There are two slots for each SBIA
and one slot for an SBI/ABus terminator module. The ABus backpanel is specific for SBIAs; no other
ABus interfaces can be used on this backpanel. A VAX 8600/8650 includes one SBIA. The DIGITAL
part number for the second SBIA is DB86-AA.

1.3.1 Module Partitioning

The ABus interface module, SBA, an 10203, is installed in slot 3 for SBIA 0 and slot 5 for SBIA 1. The
SBI interface module, SBS, an L0202, is installed in slot 2 for SBIA 0 and slot 4 for SBIA 1. The
SBI/ABus terminator module, the STM module, an L0224, is installed in slot 1. The terminator provides
termination for the ABus and one end of both SBIs. The SBI clock signals are not terminated by the STM,
but on the far end of the SBI. The far end SBI terminator is an SBT for SBI 1 and an M9040 for SBI 0,
unless SBI 0 is connected to an expansion cabinet. In that case, SBI 0 will also be terminated with an SBT.

1.3.1.1 SBA Module — The SBA module has the following characteristics.

1. Contains both ECL and TTL logic

2. Has a CPU/SBI state machine, a 1K X 12-bit PROM

3. Has ECL to TTL and TTL to ECL logic translators

4. Contains a 16 X 40-bit register file, the primary interface between the SBIA and the ABus.

1.3.1.2 SBS Module — The SBS module has the following characteristics.

With the exception of the clock translators, completely TTL logic
Contains the DC101 SBI priority arbitration chips
Has the following ROMs/PROMs:

wo—

A 256 X 4-bit ROM for ABus commands

A 32 X 8-bit PROM for SBIA error vectors

A 256 X 8-bit PROM for zero fill

Three 256 X 8-bit PROMs for register read/write control
A 1K X 4-bit PROM used for address decoding.

oo O®

1-2

SBIA SBIA 5
1 0 3
— A &
W MmN - *
w
-
2
o
o
o n2:<
435 5
Q|3 e
SIS <
2|0 z
w
S5l | |E
—“-2 w
[l n
=g g
E = <
wnl|Z P4
o= b
Qlo|o © o
|0}]
-y a—
<lolc|alZ
olo]-
AR
8} [3)
8 R IR R BA
SSOON
NMNEIEIE
= 0 b =

{

DB86-AA REF
ABUS BACKPANEL BP3

Figure 1-2 ABus Backpanel

1.4 SBIA DATA TRANSFERS
The SBIA is involved in all data transfers between the CPU and SBI nexus. A brief description of each
type of transfer follows.

1.4.1 CPU Write

The CPU initiates a CPU write by sending a command/address, and write data longword over the ABus to
the SBIA. They conform to ABus protocol. For an overview of ABus protocol and a list of ABus signals,
see Appendix A. The command/address and write data are loaded into the SBIA register file. The address
portion of the command/address is the target location for the write data. The SBIA removes the
command/address and then the write data from the register file. If the address specifies an SBIA register,
the data is written into the SBIA register.

If the address is for an SBI nexus, the SBIA modifies the command/address so that it conforms to SBI
protocol (see Appendix B). When the SBIA can get control of the SBI at the CPU transfer request level
(set at TRO2, see Appendix C) it will transmit the modified command/address on the SBI. The write data
is transmitted on the SBI on the following SBI cycle.

1.4.2 CPU Read

The CPU also initiates a CPU read by sending a command/address over the ABus to the SBIA. It is
loaded into the register file as with the CPU write. Again, the address portion of the command/address
indicates the target location for the read. The SBIA removes the command/address from the register file,
and, if the address is for an SBIA register, gates the contents of the addressed register to the register file.

If the address indicates an SBI nexus, the SBIA modifies the command/address so that it conforms to SBI
protocol. As with the CPU write, when the SBIA can get control of the SBI at the CPU transfer request
level, it transmits the modified command/address on the SBI.

1-3

The addressed nexus recognizes the address and returns the requested read data on the SBI. The SBIA
then takes the read data from the SBI, reformats it so that it conforms to ABus protocol, and loads it into
the register file. When the read data is in the register file, either from an SBIA register or an SBI nexus,
the SBIA informs the MBox that the read data is available.

The MBox takes the read data from the register file and transfers it to the EBox.

1.4.3 DMA Transfers

For DMA transfers, the CPU must provide the nexus with necessary information, such as the starting
address of the data‘transfer and number of bytes to transfer. Interrupts must be enabled if the CPU is to
be interrupted at completion of the transfer. The CPU writes nexus registers to prepare for the transfer.

1.4.3.1 DMA Write — Once the nexus has been programmed for a DMA write, it arbitrates for the SBI
and transfers the command/address, followed by the write data longword or longwords for a quadword
transfer. The SBIA modifies the command/address so that it conforms to ABus protocol and stores it in
the register file. The write data is placed in the register file following the command/address. When the
command/address and write data are in the register file, the SBIA asserts an I0A request to the MBox for
service. The MBox reads the command/address and then, the write data, storing the data in cache.

1.43.2 DMA Read - As for the DMA write, the nexus arbitrates for the SBI and transfers the
command/address. The SBIA reformats the command/address, stores it in the register file, and then
asserts an IOA request to the MBox. The MBox reads the command/address, obtains the requested data
from cache/memory, and places the read data in the SBIA register file. The SBIA removes the read data
from the register file and arbitrates for control of the SBI at the transfer request level assigned to the
DMA, TRO1. When the SBIA gains control of the SBI, it transfers the read data to nexus over the SBI.

1.5 PHYSICAL MEMORY ADDRESSES
The system physical memory allocation is shown in Figure 1-3. The memory allocation for each 10
adapter is shown in Figure 1-4.

HEX BYTE ADDRESS
0000 0000
SYSTEM UP TO 512 MEGABYTES
IN 1 MEGABYTE
MAIN MEMORY INCREMENTS
1FFF FFFF
2000 0000
10A 0 32 MEGABYTES
21FF FFFF
2200 0000
10A 1 32 MEGABYTES
23FF FFFF
2400 0000
NOT
ASSIGNED 448 MEGABYTES
3FFF FFFF

MR-14938

Figure 1-3 Physical Memory Address Allocation

HEX BYTE ADD

2X00 0000
2290 2920 TRoo 8 KBYTES
2X00 2000
2X00 20001 TRO1 8 KBYTES
2X00 4000
2X00 40001 TR2 8 KBYTES
2X00 6000 -
2%00 7FFF | RO3 8 KBYTES
2X00 8000 [Tro4 8 KBv
2X00 8000 | TRO4 8 KBYTES
2X00 A00O
2X00 4000 1Ros 8 KBYTES
2X00 C000
2X00 L0001 TROG 8 KBYTES
2X00 E000
2x00 FrFF | TRO7 8 KBYTES | NEXUS REGISTERS
2X01 0000 128 KBYTES
oxo1 veee | TRo8 8 KBYTES
2X01 2000
Sxo1 aere | TRO9 8 KBYTES
2X01 4000
o1 20001 TR10 8 KBYTES
2X01 6000
xo1 59001 TR11 8 KBYTES
2X01 8000
2X01 80001 TR12 8 KBYTES
2X01 A00O
2%01 80001 7R13 8 KBYTES
2X01 €000 =
2X01 €000 [TR14 8 KBYTES
2X01 E000
2X01 Fre | TR1s B KBvTES | |
2X02 0000
UNASSIGNED 384 KBYTES
2X07 FFFF
2X08 0000
sBIA REGISTERS | L &1, kayTES
2XOF FFFF
2X10 0000
UNIBUS 0 256 KBYTES
2X13 FFFF
2X14 0000
UNIBUS 1 256 KBYTES
2X17 FFFF
2X18 0000
UNIBUS 2 256 KBYTES
2X1B FFFF
2X1C 0000 ,
UNIBUS 3 256 KBYTES
2X1F FFFF
2X20 0000
UNASSIGNED 30 MBYTES
21FF FFFF
OR 23FF FFFF
X =0FOR SBIA O MR-14939

X=2 FOR SBIA 1

Figure 1-4 1/0O Adapter Physical Address Allocation

The SBIA register addresses are shown in Table 1-2. Both the hex byte and hex longword addresses are
shown. The MBox, before placing the physical address on the ABus, shifts the address right by two bits to
provide a longword address. The SBIA decodes the hex longword address. Any address returning to the
MBox from the SBIA is shifted left by two bits as it enters the MBox from the ABus. The SBIA registers

are described in detail in Chapter 3.

1-5

Table 1-2 SBIA Register Addresses*

Hex Byte Hex Longword

Register Name Address Address
Configuration register 2X08 0000 8Y2 0000
Control and status register 2X08 0004 8Y2 0001
Error summary register 2X08 0008 8Y2 0002
Diagnostic control register 2X08 000C 8Y2 0003
DMAI command/address register 2X08 0010 8Y2 0004
DMALI ID register 2X08 0014 8Y2 0005
DMAA command/address register 2X08 0018 8Y2 0006
DMAA ID register 2X08 001C 8Y2 0007
DMAB command/address register 2X08 0020 8Y2 0008
DMAB ID register 2X08 0024 8Y2 0009
DMAC command/address register 2X08 0028 8Y2 000A
DMAC ID register 2X08 002C 8Y2 000B
SBI silo 2X08 0030 8Y2 000C
SBI error register 2X08 0034 8Y2 000D
SBI timeout address register 2X08 0038 8Y2 000E
SBI fault/status register 2X08 003C 8Y2 000F
SBI silo comparator 2X08 0040 8Y2 0010
SBI maintenance register 2X08 0044 8Y2 0011
SBI unjam register 2X08 0048 8Y2 0012
SBI quadclear register 2X08 004C 8Y2 0013
Vector registers 2X08 0080 8Y2 0020
Vector registers 2X08 00B8 8Y2 002E

0
8

* ForSBIAO: X =0and Y
For SBIA 1: X =2and Y

1.6 SBIA ERROR DETECTION

The SBIA detects the following types of errors.

1. SBI parity errors

2. Parity errors on ABus data being transferred to the SBI, when it is removed from the register

file

3. Timeouts

a. The SBIA is unable to gain control of the SBI in 102.4 us.
b. An SBI nexus does not respond to a command/address.

c. If, after the SBI nexus acknowledges the command/address for a CPU read, the SBIA
does not receive read data in 102.4 us.

1-6

4. SBI protocol errors
a. The SBIA receives read data when a read is not pending.

b. A command/address has indicated a write function, but there is no write data on the next
SBI cycle.

C. An SBI nexus attempts an interlock write without a previous interlock read.
d. More than one SBI nexus transmits on the SBI at the same time.

The errors are described in Chapters 2 and 3. First, the errors are described in the data transfer
description, at the time the error might be detected. The errors are also described, in detail, with the
register bit descriptions, for the register bit that the particular error would set.

1.7 SBIA REGISTERS

The SBIA has 35 registers in the 1/0 address space (see Table 2-1). They include control registers, status
registers, maintenance registers, error registers, and vector registers. The vector registers occupy addresses
2008 0080 (2208 0080, SBIA 1) to 2008 00B8 (2208 00B8, SBIA 1). The remaining registers are in
addresses 2008 0000 (2208 0000, SBIA 1) to 2008 004C (2208 004C, SBIA 1). Each register is described
in detail in Chapter 3.

CHAPTER 2
FUNCTIONAL DESCRIPTION

2.1 CHAPTER OVERVIEW

This chapter covers the SBIA at the block diagram level. Each block is treated individually; the relation-
ship between blocks is described and, if a particular block is used in a data transfer, that aspect is included.
Chapter 3 contains detailed descriptions of the data transfers. The SBIA block diagram (Figure 2-1)
provides the reference for most of the overview. The numbers in the blocks refer to to print set sheet
designation. Flowcharts are used to describe the CPU read/write transactions and the possible error
conditions that may arise during those transactions.

l PC
' I | SS 40
INTERRUPT g?}:}ie' - S-DATA SBI
LOGIC | ASSEMBLY INTERFACE
- MACHINE —
SBAD SBA O Lo ssa1-47 SS 01-SS05
TTL ADDRESS, § SBIA PC
READ/WRITE ® PEBISTERS Ss 09
CONTROL o] P
rd
SBAK, SBAL] & §§19-32
= SBI _
@ v * PROTOCOL @
2 16 X 40 -
REGISTER FILE A-DATA $509, 10, 12
ABUS < — ASSEMBLY
INTERFACE s 1317
SBA 1-4 T
ECL ADDRESS, l
READ/WRITE oo
CONTROL l ARBITRATION
SBA 7 CHIPS
l $S 07
DMA BUFFER SBI I
CONTROL AND CLOCK
e—{REQUEST GENERATION >
SYNCHRONIZATION '
V SBAF-SBAI SBAC V
SBA I SBS

MR-14940

Figure 2-1 SBIA Basic Block Diagram
2-1

2.2 SBIA BASIC BLOCK DIAGRAM

Figure 2-1, the SBIA block diagram, is logically divided by the file info bus, which is the backpanel
interconnect between the SBA and SBS modules. Everything to the left of the file info bus is on the SBA
module. Everything to the right of the file info bus is on the SBS module.

The SBS print set pages are designated as SS00-SS48 and do not include any hex numbers. The SBA
module print set is numbered from SBA00-SBAT. The alphabetic numbering starts as if the print set is
numbered in hex, but continues through the alphabet after F.

2.2.1 CPU/SBI State Machine

The CPU/SBI state machine is a 1K X 12-bit PROM used to control CPU read/write transactions to SBI
nexus registers and vector registers. The state machine is not used for CPU reads/writes to SBIA registers
other than the vector registers. Its major function is to control the S-data assembly, during the transfer of
register file data, from the ABus to the SBI. During this transfer, it controls the modification of ABus
protocol to conform to SBI protocol. It also controls the monitoring of SBI bits to check for error
conditions.

The CPU/SBI state machine microword contains an even parity bit, and parity is checked on every
microword, even if the state machine is not involved with the transfer. Other outputs include four bits that
are used to generate the next address (next state), the bits used to control the S-data assembly, and a bit to
allow the SBIA to hold the SBI for an additional cycle for CPU writes to nexus registers.

The state machine does not leave the idle state for a CPU read/write unless the command/address and
write data for a CPU write have been removed from the register file without parity errors. When the state
machine leaves the idle state, it steps through a series of microinstructions to allow the read/write
transaction to take place.

The state machine monitors the SBI confirmation bits by branching on these two bits, and uses these
branch conditions to detect error or timeout conditions. The error conditions are covered in the flowcharts.

2.2.2 Register File

The most significant part of the ABus interface is the register file, a 16 X 40-bit dual port register file.
This register file is capable of being addressed, written, or read simultaneously on each of its two ports.
One port is on the ABus, and the other is on the file info bus, the backpanel bus that connects the SBA
module to the SBS module. The register file contains both ECL and TTL logic, with the ABus side being
ECL logic and the file info bus side TTL logic.

All information exchange over the ABus must go through the register file, and there are locations reserved
for the various transactions. Two locations are reserved for CPU transactions, one location for the
-command/address word and one location for the read or write data. Two locations are also reserved for
interlock read transactions, with one location for the command/address word and one for the read data.
There is a block of locations reserved for each of the other DMA transactions — transaction buffers A
(DMAA), B (DMAB), and C (DMAC). Each contains three locations, one for the command/address and
the other two for the read or write data longwords. (Paragraph 3.1 covers the register file in detail, and
Figure 3-1 shows the register file organization.)

If the MBox is writing information into the register file or reading data from the register file, the MBox
sets up the register file address. If the SBIA is removing information from the register file for transfer to
the SBI, or placing modified SBI information into the register file, the SBIA will control the address. There
is a read/write address on the ABus side and a read/write address on the file info bus side.

On the ABus side, the register file can be read or written only if commanded by the MBox. On the TTL
side, the register file is read every SBI TO (see Appendix B, Figure B-10). It is written, when enabled, at
SBI T2. Even though it is read every SBI cycle, the contents of the addressed location are not necessarily
valid information. The SBIA does not process information read on the TTL side unless it is valid
information that the MBox has loaded.

2.2.3 S-Data Assembly

When the register file is read, the data is transferred over the file info bus to the S-data assembly. If the
data is to be transmitted on the SBI, the S-data assembly checks for proper parity, reformats each piece of
information to insure that it will conform to SBI protocol, and passes the reformatted information to the
SBI transceivers.

The S-data assembly contains parity checkers to insure that ABus data has reached the S-data assembly
without errors. It also contains parity generation circuitry that will change the ABus odd parity to SBI even
parity. 4

Every SBI TOT1, the contents of the register file, as addressed by the TTL address, will be read and
transferred to the S-data assembly. If the MBox has not loaded pertinent information into the register file,
the information just read will not get transferred to the SBI. However, a parity check is made in any case.
At this point, the data is in ABus format, so the parity is checked accordingly. (See Appendix A for a
review of ABus protocol.)

The S-data assembly uses multiplexers to reformat the data so that it will conform to SBI protocol. The
multiplexers, and thus the format, are controlled by the state machine.

The S-data assembly also recalculates parity to provide even parity as required on the SBI.

2.2.4 SBI Interface

The SBI interface consists of 8646 4-bit transceiver latches. They are clocked to transmit every SBI TO, if
enabled. The receive latches are opened every SBI T2 and closed at —SBI T2. Each chip generates odd
parity over the four bits it receives. These parity outputs are used by the SBI protocol logic to check for
even SBI parity.

2.2.5 SBI Protocol
The SBI protocol logic combines the parity outputs from each of the SBI transceiver chips to check for
SBI parity. Parity is checked over the following bits.

1. BUS SBI B<31:00>

2. BUS SBI M<03:00>

3. BUS SBI P<01:00>

4. BUS SBI TAG<02:00>
5. BUS SBI ID<04:00>.

Parity is not checked over the following bits.

BUS SBI TR<15:00>

BUS SBI CONF<01:00>
BUS SBI FAULT

BUS SBI INTLK

BUS SBI MP<02,01>

BUS SBI SPARE <01:00>.

b w -

2-3

The protocol logic monitors for other SBI faults as follows.

1. Unexpected read fault: The SBIA receives read data with the CPU ID but is not expecting read
data.

2. Write sequence fault: The command/address indicated a write function, and the information
received on the next SBI cycle has good parity but it is not write data.

3. Multiple transmitter fault: The SBIA just transmitted on the SBI, but the ID received does not
compare to the ID transmitted.

4. Interlock sequence fault: The SBIA receives a command,/address for an interlock write, but the
interlock flip-flop is not set (there was no interlock read).

2.2.6 A-Data Assembly

The A-data assembly is primarily responsible for the reformatting of SBI data to insure that it conforms to
ABus protocol. It receives the SBI information from the SBI transceivers, modifies it as necessary, and
passes it over the file info bus to the register file for temporary storage. Parity will be recalculated to
provide odd parity.

2.2.7 Clock Logic
There are two major parts of the clock logic, the ABus clock logic and the SBI clock generation circuitry.

2.27.1 ABus Clock Logic - The SBIA uses two clock signals from the clock module, CLK SBA[N]
CLOCKS5 141 B and CLK SBA[N] CLOCKS 141 D to generate the following ECL clocks.

SBA6 CLK6 PHASE TOB
SBA6 CLK6 PHASE T1B
SBA6 CLK6 PHASE T3B
SBA6 CLK6 PHASE T2D
SBA6 CLK3 T3D.

bW =

These five clocks provide timing for portions of the ABus interface logic (see Figure 2-2).

}—— SBA6 CLK6 PHASE TOB

CLK SBA[N] CLOCKS 141 B —— éfga(| SBAG CLK6 PHASE T1B | SBA
" LOGIC | SBA6 CLK6 PHASE T38B XS&ULE
CLK SBAIN] CLOCKS 1410 - SBAG L SBA6 CLK6 PHASE T2B CLOCKS

. SBA6 CLK3 T3D

MR-14981

Figure 2-2 ABus Clock Logic

2.2.7.2 SBI Clock Generation — The SBI clock generation circuitry uses a 40 MHz crystal oscillator to
provide the six SBI ECL clocks (see Appendix B). The six clocks used by the SBI nexus, including the
SBIA, to derive the four 50 ns time states, TO, T1, T2, and T3 are: '

BUS SBI TP H
BUS SBI TP L

BUS SBI PCLK H
BUS SBI PCLK L
BUS SBI PDCLK H
BUS SBI PDCLK L.

ARG Sl

The SBIA decodes these six SBI clocks to provide various ECL timing terms that are converted to TTL for
use on the SBA module. Three of the ECL timing terms are converted to TTL on the SBS module for use
on that module (see Figure 2-3).

The external clock input is for manufacturing use only. An input for an external clock, backpanel pin A06,
must be enabled by grounding pin AO1. Both of these pins are in slot 3 (SBIA 0) or slot 5 (SBIA 1).

. BUS SBI[N] PCLK H o)
CLOCK ~BUS SBI[N] PCLK H -
GENERATION BUS SBI[N] PDCLK H “ | sa
40 MHZ ~BUS SBI[N] PDCLK H ~ > EcL
OSCILLATOR 5US SBIN] TP A - CLOCKS
~BUS SBI[N] TP H -
SBAC o)
l__ Sain ECL TO CLK LEVEL SBAE SBI TO CLK _
CLOCK ECL T1 CLK CONVERTERS | SBAE SBI T1 CLK SBA
DECODE ECL 12 CLK m . TI\Q’C').DULE
ECL T3 CLK SBAE SBI T3 CLK . | CLOCKS
ECL FILE CLK SBAE > J
ECL T2T3
SBAE CLK
|| (IEEOY\JE\l/.ERTERS TTLSBITOCLK _ ~
TTL SBI T1 CLK
TTLSBIT2 CLK
$s38 SBS
[MODULE
s
LEVEL CLOCKS
SBA __ SBAE SBI TOT1 CLK CONVERTERS SBAE[N] FILE CLOCK
¥TC£DULE {: SBAE SBI T2T3 CLK SBAE[N] SBI T2T3 CLK
ctocks L ® > |
SBAE
SBA MODULE SBS MODULE

MR-14982

Figure 2-3 SBI Clock Generation

2-5

2.2.8 DMA Buffer Control and Request Synchronization

The register file contains locations dedicated to specific data transfer transactions, with four separate
groups of locations reserved for the DMA transactions. DMA transaction buffers DMAA, DMAB, and
DMAC are used for DMA transactions other than interlock reads. Transaction buffer DMALI is used only
for interlock reads.

When a2 DMA transfer is initiated by an SBI nexus, the SBIA must insure that the information is loaded
into a transaction buffer in the register file and that it will not be disturbed until the transfer is complete.
The DMA buffer control and request synchronization logic determines the transaction buffer to be used
next, provides this information to the address control logic, and, when there is a DMA queued in the
register file, asserts the DMA request to the MBox. A DMA transaction is considered to be queued when
the command/address and write data for a DMA write have been loaded into the register file. When the
DMA transaction is complete, the transaction buffer is free for another DMA request.

2.2.9 ECL Address and Read/Write Control
The ECL address and read/write control logic generates the read and write address and enables reading or
writing the register file from the ABus (see Paragraph 3.2.1).

The method of address generation depends on the type of data transaction. For DMA transfers, part of the
address is generated by the SBIA logic and part by the MBox. For CPU reads, the entire address is
generated by the MBox.

The register file can be written from the ABus only if the 1/0O adapter is selected, and then only if the
MBox enables writing the register file. Likewise, to read the register file, the 1/0 adapter must be selected.
The contents of the addressed location are gated to the ABus if the MBox does not enable writing the
register file.

2.2.10 TTL Address and Read/Write Control

This block of logic is responsible for controlling the register file address on the SBI side of the register file.
The address depends on the type of data transfer operation in progress. For DMA transactions, the DMA
buffer control and request synchronization logic control the address. For a CPU read/write, the address is
controlled by ABus signals.

2.2.11 Interrupt Logic

The interrupt logic receives the SBI and other interrupt requests, and, if interrupts are enabled (control
and status register bit 31 set), establishes priority of the interrupts, and sends an encoding of the highest
priority interrupt to the EBox on the IPR return lines (ABus IPR RETURN <04:00>).

The interrupt priorities are as follows. (See Table 3-9 for a list of interrupt priority levels and vectors.)

Fail

SBI fault or SBIA error
Alert

Silo compare

SBI request <07:04>.

Nk W=

2.2.12 SBIA Registers

The SBIA has 35 registers in the /O address space - 20 control, status, error, and maintenance registers,
and 15 interrupt vector registers. The first group lies in the local address range of 2008 0000 to 2008 004C
(SBIA 0) or 2208 0000 to 2208 004C (SBIA 1). The vector registers are addresses 2008 0080 to 2008
00B8 (SBIA 0) and 2208 0080 to 2208 00B8 (SBIA 1). Access to any other location within the local
address space causes an €rror.

2-6

Any data to, or from, the SBIA registers must pass through the register file and over the ABus. The
register contents pass through tri-state devices to the file info bus to prevent the possibility of register data
and SBI traffic colliding on the file info bus. When the registers are read, if there are numerous bits that
are not used, special logic (the zero fill logic) provides logic zeros for most unused bits. (The registers and
their bit definitions are defined in detail in Paragraph 3.14, SBIA Registers).

2.2.13 SBI Arbitration Chips

Two DC101 priority arbitration chips allow the SBIA access to the SBI. One, used for DMA transactions,
transfers the read data to the SBI; the other gives the SBIA control of the SBI for CPU read or write
transactions. The DC101s and SBI arbitration is described in detail in Appendix C.

2.3 CPU TRANSACTION FLOWCHARTS

The following flowcharts describe the PROM flow for CPU transactions. Each flowchart is followed by a
brief description. A detailed description may be found in Chapter 3, and the PROM code may be found in
microfiche.

2.3.1 Starting the State Machine
The first flowchart, Figure 2-4, is used to determine which of the other four flowcharts to follow. When
the VAX 8600/8650 is first powered-up, the ABus is not enabled (the console provides a continuous INIT

to the SBIA). When the console enables the ABus by setting console register MCSR <01>, CL ABUS
ENABLE is asserted to remove the INIT. The CPU/SBI state machine is forced to the idle state by an

INIT.
I XMIT l

IDLE

SBI CMD
PENDING

YES

SBIA VIA
REG

READ WRITE ISR 8&&%
FIG. 2-4 FIG. 2-3 FIG. 2-6 FIG 2-5

MR-14941

Figure 2-4 Starting the State Machine

27

Three functions are involved in getting the CPU-SBI state machine from the idle state to a read, write,
ISR, or quadclear state: SBI CMD PENDING, SBIA VIA REG, and WRITE.

1. SBI CMD Pending: If there is no SBI command pending, the SBI state machine remains in the
idle state. If an SBI command is pending, other control signals are monitored to determine what
path to follow. An SBI command is pending under the following conditions.

a. The MBox has loaded the register file with a command/address for a CPU read or write.

b. When the command/address is removed from the register file and is transferred to the
S-data assembly, there are no address or control parity errors.

c. For a CPU write, there are no data or control parity errors on the write data.

d. The address has to be a valid SBI address with the SBIA enabled to access the SBI, or the
address must be a valid SBIA vector register address.

If there are any error conditions, the state machine will not leave the idle state. ABUS CPU
BUF ERROR will be asserted to inform the MBox of the error, and the timeout address
register, the SBI error register, and the error summary register <31:26> are latched to hold the
error conditions.

2. SBI VIA REG: SBI VIA REG, one of the outputs of a PROM addressed by the com-
mand/address, is asserted if the CPU is writing the quadclear register or reading the vector
registers for IPR <17:14>. The latter initiates an interrupt summary read.

3. WRITE: WRITE will be asserted if bit three of the CPU command in the command/address, is
set.

Table 2-1 shows which operation is performed and which flowchart to follow, for the various combinations
of WRITE and SBIA VIA REG.

Table 2-1 SBIA Operation Performed

SBI
VIA
Write REG Operation Performed Figure No.
0 0 Read 2-6
0 1 Interrupt summary read 2-8
1 0 Write 2-5
1 1 Quadclear 2-7

2-8

2.3.2 CPU Write
When the state machine leaves the idle state it starts a timeout counter and goes to the ARB WAIT state

(Figure 2-5). The SBIA will request control of the SBI by asserting the transfer request. The transfer
request level is selected by connecting backpanel pins to backpanel pins at ground potential (see Appendix
C). The state machine remains in the ARB WAIT state until ARB OK is received or a timeout occurs.

| WRITE l

ARB WAIT

WD1

SBI
ERROR CYCLE
ABORT ‘
‘ CHECK
ACK
IDLE CYCLE
NR
BUSY ACK
Q <1:0>
YES ERR
TIMEOUT
SBI
ERROR
ABORT
IDLE
SBI CMD
DONE
IDLE

MR-14942

Figure 2-5 State Machine Flowchart: CPU Write

2-9

If ARB OK is not received within 512 SBI cycles (102.4 ps), the state machine goes to the error abort
state and the command is aborted. ABUS CPU BUF ERROR is asserted to inform the MBox of the error
condition, and the SBI error register, the timeout address register, and the error summary register
<31:26> are latched to hold the error information. From the abort state, the state machine returns to the
idle state. ABUS CPU BUF DONE is asserted simultaneously with ABUS CPU BUF ERROR. ABUS
CPU BUF DONE tells the MBox that the SBIA has finished the transaction.

When the SBIA has gained control of the SBI, it transmits the command/address and then the write data
on the SBI. The state machine then monitors for an acknowledge from the SBI nexus.

If there is no response, or there is a busy response, the SBIA returns to the ARB WAIT state to arbitrate
for control of the SBI again. When the SBIA gains control of the SBI, the SBIA retransmits the
command/address followed by the write data.

If there is no response, or the the nexus continues to send a busy response and the timeout counter expires
after 512 SBI cycles (102.4 us), the state machine enters the error abort state and reports the error with
ABUS CPU BUF ERROR. The state machine then returns to the idle state.

If the SBIA receives an error confirmation, the state machine enters the error abort state, reports the error,
and then returns to the idle state.

If the SBIA receives an acknowledge for the command/address, the state machine then looks for an
acknowledge for the write data. If the write data response is busy or error or there is no response, the state
machine assumes an intermittent error and returns to the ARB WAIT state; it then retransmits the
command/address and write data.

When the SBIA receives an acknowledge for the write data, before the expiration of the timer, the state
machine goes to the command done state. It asserts ABUS CPU BUF DONE to inform the MBox that the
command has been carried out and then returns to the idle state.

2.3.3 CPU Read

When the state machine leaves the idle state, it goes to the ARB WAIT state, asserts the transfer request,
and waits for ARB OK (see Figure 2-6). If the SBIA does not gain control of the SBI within 512 SBI
cycles, a timeout condition exists, the state machine goes to the abort state, asserts ABUS CPU BUF
ERROR to report the error, and returns to the idle state.

When the SBIA gains control of the SBI, it transmits the command/address on the SBI. It waits one cycle
and then checks for an acknowledge for the command/address. If there is no response, or the response is a
busy response, the state machine returns to the ARB WAIT state, waits for control of the SBI once more,
and then retransmits the command/address.

If the SBIA receives an error response for the command/address, or the timeout counter expires before
receiving an acknowledgment, the state machine goes to the error abort state and asserts ABUS CPU BUF
ERROR to report the error.

If an acknowledge is received, the SBIA restarts the 512 SBI cycle timeout counter. The SBIA waits for

the nexus to transmit the read data on the SBI. If the SBIA does not receive the read data within 512 SBI
cycles, the state machine goes to the error abort state to report the error.

2-10

If the read data is received within the allotted time, the SBIA reformats the data and loads it into the
register file. The state machine then goes to the SBI CMD DONE state and asserts ABUS CPU BUF
DONE. The MBox assumes that the transaction was carried out successfully when ABUS CPU BUF
ERROR is not asserted. The state machine then returns to the idle state.

The MBox transfers the read data from the register file to the EBox to complete the CPU read

transaction.
| READ I

ARB WAIT
ARB OK
CYCLE
WAIT
]
ERROR CYCLE
ABORT T
? CHECK
ACK
IDLE CYCLE
B0 /\
ACK
BUSY ~TonF <1:05DAC l
READ
N
o TIMEOUT WAIT
START
YES ERR
NO YES
READ DATA
SBI !
ERROR
ABORT READ
DATA
l i WAIT
IDLE
YES
SBI CMD
READ DATA DONE
sBI
ERROR - IDLE
ABORT

MR-14943

Figure 2-6 State Machine Flowchart: CPU Read

2-11

2.3.4 Quadclear
The purpose of the quadclear operation is to clear ECC errors in SBI memories (see Figure 2-7). For the

VAX 8600/8650 system, microdiagnostics uses the quadclear operation extensively to perform DMA
quadword loopback transfers.

The CPU writes the quadclear register. The command/address specifies a CPU write to the quadclear
register. The write data contains the SBI command for an extended write masked (1011) and the address
of the quadword to be cleared. The ABus write data is used to form the SBI command/address, and the
SBI write data is two all-zero longwords. The flowchart for quadclear is much the same as for CPU write.

QUAD-
CLEAR

wD1

SBI
ERROR CYCLE
ABORT {
WD2/ACK1
IDLE CYCLE
NR
BUSY ACK
Q« 0>
YES ERR
TIMEOUT ésg&
S8l
ERROR
ABORT

IDLE

SBI CMD
DONE

v

IDLE

MR.14944

Figure 2-7 State Machine Flowchart: Quadclear

The state machine goes to the ARB WAIT state to await the availability of the SBI. As with the CPU read
or write, the SBIA must gain control of the SBI within 512 SBI cycles, or a timeout condition will exist. If -
the SBIA does not gain control of the SBI within 512 SBI cycles, the state machine goes to the error abort
state and asserts ABUS CPU BUF ERROR to report the error.

When the SBIA gains control of the SBI, it transmits the command/address developed from the ABus
write data, followed by two all-zero write data cycles. On the second write data SBI cycle, the SBIA looks
for an acknowledgment for the command/address from the nexus.

If there is no response, or the confirmation is a busy response, the state machine returns to the ARB
WAIT state, waits for control of the SBI, and retransmits the command/address and write data. If the
SBIA continues to receive busy responses or receives no response for 512 SBI cycles, the state machine
goes to the error abort state to report the error. Also, if an error response is received for the com-
mand/address, the state machine goes to the error abort state.

When the state machine has seen an acknowledgment for the command/address, it looks for the acknowl-
edgments for the write data cycles. An acknowledgment is expected for each write data cycle. If the SBIA
receives an error or busy confirmation, or receives no response for either data cycle, the state machine will
go to the ARB WAIT cycle to retransmit the command/address and write data. Again, it is assumed that
the command/address was received properly, so there must have been an intermittent error.

When the state machine has detected the proper number of acknowledgments (three), it goes to the SBI
CMD DONE state, asserts ABUS CPU BUF DONE, and then returns to the idle state.

2.3.5 Interrupt Summary Read

When the CPU is going to handle an interrupt, it reads the SBIA vector register corresponding to the IPR
level of the active interrupt (see Figure 2-8). The SBIA initiates an interrupt summary read (ISR) in
response to the CPU reading the SBIA register for an IPR of 14, 15, 16, or 17. (See Table 3-9 for a
comprehensive list of IPR levels, addresses, or vectors.)

The command/address from the CPU indicates a read, and the address specifies the vector register.

During the SBI command/address cycle, the SBIA transmits data with a bit set according to the IPR level
being handled - B<04> for IPR 14, B<05> for IPR 15, B<06> for IPR 16, and B<07> for IPR 17.

Any nexus interrupting at that IPR level is expected to transmit an interrupt summary response two cycles
after receiving the ISR. The interrupt summary response will have two bits set, the first bit being the same
as the nexus TR level, and the other bit equal to the nexus TR level plus 16. The extra bit is not used by
the SBIA, but is needed to insure even parity on the SBI. For instance, if the interrupting nexus has a TR
of 4, the nexus would set B<20> and B<04>. More than one nexus could be responding to the IPR, and no
nexus can be expected to have control of the parity bits. Each nexus will transmit two bits, so parity
remains even no matter the number of nexus responses to the ISR.

During an ISR the SBIA does not check the confirmation bits for an acknowledgment, error, or busy. The
interrupt summary return is checked only for parity errors.

The state machine enters the ARB WAIT state until the SBIA can gain control of the SBI. If the SBI is
not available within 512 SBI cycles, the state machine goes to the error abort state to report the error.

When the SBI is available, the state machine goes to the ISR command/address cycle to transmit the
interrupt summary read word. The next state waits just one SBI cycle.

2-13

ARB
WAIT

SBI WAIT
ERROR CYCLE
ABORT ‘
‘ ISR
DATA
IDLE CYCLE

NO PARITY
oK

SBI CMD
DONE

v

IDLE

MR-14945

Figure 2-8 State Machine Flowchart: ISR

The state machine expects the interrupt summary return on the next SBI cycle and performs a parity
check on the received data. If there is a parity error, the state machine returns to the ARB WAIT state for
SBI availability, and retransmits the interrupt summary read word.

If there is no parity error, the SBIA generates the vector from the interrupt summary response and loads
the vector into the register file (see Figure 3-16). The state machine goes to the command done state to

inform the MBox that the transaction is complete and that the vector is in the register file. The state
machine then returns to the idle state.

2.4 SBIA TRANSFERS NOT USING STATE MACHINE

2.4.1 SBIA Register Writes or Reads

When the CPU writes or reads an SBIA register, the state machine does not leave the idle state and
therefore is not involved with the transfer. The MBox loads the register file with a command/address with
a command indicating a write or a read, and an address specifying an SBIA register. For a CPU write to
an SBIA register, the MBox loads the register file with the write data immediately following the com-
mand/address. For a read, the register contents are transferred to the register file. The MBox then reads
the register file.

When the command/address and write data for a CPU write are transferred from the register file to the S-
data assembly, parity is checked. If there are no parity errors, and the address is a valid SBIA register
address, the write data is written into the addressed register. If there are no errors, the MBox is informed
that the operation is complete with the assertion of ABUS CPU BUF DONE.

If there is a parity error over the command/address or the write data, or the address is an invalid SBIA
register address, the SBIA asserts ABUS CPU BUF ERROR to inform the MBox of the error condition.
As with the preceding errors, the SBI error register, the timeout address register, and the error summary
register <31:26> are latched to hold the error information.

For a CPU read register, if there are no parity errors and the address is a valid register address, the
contents of the addressed register are written into the register file. ABUS CPU BUF DONE informs the
MBox that the register data is in the register file. The MBox reads the data from the register file and
transfers it to the EBox.

2.4.2 Unjam

An unjam, issued to the SBI to clear a hung system, is initiated by the CPU writing the SBIA unjam
register, address 2008 0048 or 2208 0048. The MBox loads the register file with a command/address
indicating a write to the unjam register. Because it is a register write, the MBox also transfers write data to
the register file. Although the write data is not used, it is needed to provide good parity on the write data to
initiate the unjam sequence.

If there are no parity errors on the command/address and the write data, and the address is a valid SBIA
register address, the decoding of the unjam register address initiates the hardware unjam sequencer, which
issues SBI HOLD for 16 SBI cycles, SBI HOLD and SBI UNJAM for 16 SBI cycles, and SBI HOLD for
another 16 SBI cycles.

If there is a parity error over the command/address or the write data, or the address is an invalid SBIA
register address, the SBIA will assert ABUS CPU BUF ERROR to inform the MBox of the error
condition. The SBI error register, the timeout address register, and the error summary register <31:26>
are latched to hold the error information.

2.4.3 DMA Transactions

The CPU initiates DMA transactions by a series of CPU writes to the appropriate nexus registers. When
properly programmed and enabled, the nexus starts the data transfer by placing a command/address on
the SBI. With DMA write, the command/address is followed by the write data. With a DMA read, the
nexus expects to receive the read data over the SBI later.

DMA transactions may be interlocked or noninterlocked. A DMA interlock read must precede an
interlock write. An interlock write occurring without a preceding interlock read is an interlock sequence
fault, and SBI FAULT is asserted to interrupt the CPU.

An interlock timeout exists if the interlock write does not occur within 512 SBI cycles (102.4 us) of the
interlock read. An interlock timeout asserts a DMAI ERROR, which will interrupt the CPU.

2-15

2.43.1 DMA Write - The SBIA, upon receiving the command/address from the SBI nexus, reformats
the command/address and writes it into the register file if the following conditions are met.

1. There are no SBI parity errors over the command/address.

2. The address is for a memory location; it is less than the contents of the configuration register.
3. The tag is for a command/address (011).

4. The function is a valid SBI function.

5. The SBIA is not expecting write data, which means that the previous SBI cycle was not a
command/address for a DMA write.

6. There is an available transaction buffer in the register file.

The following SBI cycle(s) should contain the write data to be written into memory. The write data will be
written into the register file if the following conditions are met.

1. The command/address indicated a write function or extended write function.
2. The tag indicates write data (101).
3. There are no parity errors on the write data.

If the SBIA detects an SBI parity error over the command/address or write data, the error condition is
latched in the SBI fault/status register. The information is not written into the register file, and the EBox
is notified of the error condition by an interrupt request.

When the command/address and write data have been written into the register file, the SBIA asserts
ABUS IOA REQUEST [N] to request MBox attention. When ABUS IOA REQUEST [N] is asserted,
ABUS WR CMD will be asserted to inform the MBox that it is a DMA write. ABUS MSKED CMD may
also be asserted if it is a masked write. The assertion of the latter two signals allows the MBox microcode
to branch early. The microcode does not have to wait until it gets the command/address to know what is
expected.

The MBox reads the command/address and write data and stores the write data in cache/memory. If the
MBox detects no errors it informs the SBIA that the transaction is complete by asserting MCC ABUS
DMA DONE. If the MBox detects an error, it asserts MCC ABUS DMA ERROR at the same time it
asserts MCC ABUS DMA DONE. The SBIA latches the error condition in the error summary register
and the appropriate DMA command/address and DMA ID register. The SBIA asserts an interrupt request
to inform the EBox of the DMA error.

2.4.3.2 DMA Read - The DMA read is initiated by the nexus in the same manner as the DMA write; it
transmits the command/address on the SBI. The nexus monitors the SBI for the returning read data.

The SBIA, upon receiving the command/address, reformats it and writes it into the register file if the
conditions listed in Paragraph 2.4.3.1 for a DMA write are met. If there is an SBI parity error, the error
will be reported the same as for a DMA write.

2-16

When the command/address has been written into the register file, the SBIA asserts ABUS IOA
REQUEST [N] to request MBox attention. Because ABUS WR CMD is not asserted, the MBox
microcode assumes it is a DMA read. ABUS MSKED CMD (not asserted) is used to allow the MBox
microcode to branch before it sees the command/address.

The MBox reads the command/address and obtains the read data from cache/memory. It will then write
the read data into the SBIA register file. Then the MBox informs the SBIA that the read data is in the
register file by the assertion of MCC ABUS DMA DONE. If the MBox detected an error, MCC ABUS
DMA ERROR would also have been asserted.

The SBIA removes the read data from the register file and transfers it to the S-data assembly for parity
check, reformatting, and transfer to the SBI. When the SBIA can get control of the SBI at TR 1, the read
data is reformatted to conform to the SBI format and transmitted on the SBI.

If the MBox detected a DMA error, the SBIA latches an error bit in the error summary register and
latches the appropriate DMA command/address register and DMA ID register.

If a parity error is detected when the SBIA transfers the read data from the register file to the S-data
assembly, the error condition is latched in the error summary register and the appropriate DMA com-
mand/address and DMA ID register.

The SBI nexus initiating the DMA read is informed of the error condition because the SBIA forces the

mask bits to 0010, read data substitute. No other SBI nexus detects the error because the read data is
transmitted on the SBI with even PO and P1.

2-17

CHAPTER 3
DETAILED DESCRIPTION

3.1 REGISTER FILE ORGANIZATION

The SBIA register file contains 16 locations, each 40 bits wide. It is divided in five areas called transaction
buffers. One transaction buffer, the CPU transaction buffer, is reserved for CPU reads and writes of SBIA
or SBI nexus registers. The DMALI transaction buffer is reserved for DMA interlock reads. The remaining
three transaction buffers, DMAA, DMAB, and DMAC, are reserved for DMA read and write transfers.

The information contained in the register file conforms to ABus protocol. Therefore, reformatting is
necessary before placing the information on the SBI, or before placing SBI information into the register
file. (See Appendix A, ABus Protocol, and Appendix B, SBI Protocol.)

3.1.1 CPU Transaction Buffer
The CPU transaction buffer consists of two locations. Location 2 is reserved for the command/address,
and location 3 is reserved for the read or write data longword. Refer to Figure 3-1.

0000 COMMAND/ADDRESS WORD
DMAI
0001 READ DATA LONGWORD
0010 COMMAND/ADDRESS WORD
cPU

0011 READ/WRITE DATA LONGWORD

<4
0100 COMMAND/ADDRESS WORD
0101 READ/WRITE DATA LONGWORD 1 . DMAA
0110 | READ/WRITE DATA LONGWORD 2

J
0111 NOT USED

-
1000 COMMAND/ADDRESS WORD
1001 READ/WRITE DATA LONGWORD 1 > DMAB
1010 | READ/WRITE DATA LONGWORD 2]
1011 NOT USED

3
1100 COMMAND/ADDRESS WORD
1101 READ/WRITE DATA LONGWORD 1 L DMAC
1110 READ/WRITE DATA LONGWORD 2

J
1M1 NOT USED

MR-14983

Figure 3-1 SBIA Register File

3-1

3.1.2 DMAI Transaction Buffer

Register file location O is reserved for the command/address for a DMA read interlock. Location 1 is
reserved for the read interlock data longword. The interlock is released with a write interlock, through the
DMAA, DMAB, or DMAC transaction buffers.

3.1.3 DMAA, DMAB, or DMAC Transaction Buffers

Each of the three DMA transaction buffers, DMAA, DMAB, or DMAC, consists of three locations within
the register file. DMAA uses locations 4, 5, and 6; DMAB uses locations 8, 9, and A; and DMAC uses
locations C, D, and E. The command/address is stored in the first of the three locations, while the other
two locations are reserved for the read or write data longwords. The upper two bits of the four-bit address
is the same for each of the three locations for a DMA transaction buffer. DMAA = 01XX, DMAB =
10XX, and DMAC = 11XX. When a particular DMA transaction buffer is selected, the upper two bits
can be held constant until that buffer is no longer in use. The lower bits can be manipulated to address the
required location within the transaction buffer. (This process becomes more apparent as the CPU read,
CPU write, and DMA transactions are investigated.)

3.2 CPU WRITE SBI NEXUS REGISTER
A CPU read or write cannot be initiated by the MBox if the SBIA has any DMA IOA requests pending
(SB ABUS IOA REQUEST [N])).

The MBox creates the command/address word based upon the EBox request and address and transfers the
command/address and write data to the SBIA. The SBIA transfers the command/address and data to the
SBI and monitors the SBI for the proper number of acknowledgments.

The description of the CPU write nexus register begins with the MBox loading the command/address and
write data into the register file and concludes with ABUS CPU BUF DONE after the write data has been
received and acknowledged by the SBI device.

3.2.1 Loading CPU Command/Address

See Figure 3-2. The MBox selects the 1/0 adapter with MCC ABUS IOA SELECT [N]. The address
latches are loaded by MCC ABUS ADDRESS CTRL<01:00> L = 00. The address is generated by these
conditions.

1. The upper two bits of the register file ECL address are forced to 00 by the assertion of MCC
ABUS CPU BUF SEL H.

2. The lower two bits of the register file ECL address are determined by MCC ABUS MBOX
OUT H and MCC ABUS CPU BUF SEL H according to Table 3-1.

MCC ABUS MBOX OUT H enables the command/address to be written into the ECL portion of the
register file as addressed by ECL FILE ADR <03:00>, which is 0010 for the command/address.

3.2.2 Loading CPU Write Data

The next ABus cycle keeps the IOA selected, but MCC ABUS ADDRESS CTRL <01:00> L will be
changed to 10, which increments the address from 0010 to 0011. Because MCC ABUS MBOX OUT H is
kept asserted, the write data will be written into the register file. .

The register file now contains the command/address and write data, and the SBIA is responsible for
passing this information to the SBI. The MBox deselects the IOA and waits for the SBIA to send ABUS
CPU BUF DONE. The MBox services any DMA IOA requests that occur before the assertion of ABUS
CPU BUF DONE.

Table 3-1 ECL File Adress <01:00>

MCC ABUS MCC ABUS ECL FILE ADR
CPUBUFSELH MBOX OUTH <01:00>

0 0 0 0

0 1 0 0

1 0 11

1 1 1 0

3.2.3 Addressing and Unloading the Register File for TTL Read
The register file must be addressed on the TTL side to enable reading the command/address for a CPU
read/write, write data for a CPU write, or the read data for a DMA read. DMA transfers have highest
priority, so a DMA request would set up the file read address for that particular DMA request. FILE
READ ADDR <03:02> is controlled by the DMA requests and FILE READ ADDR <01:00> is
controlled by the presence or absence of a DMA transfer request (SEND DMA TR), according to Table

3-2.

ABUS DATA ADDRS <31:00> H
ABUS CMD MASK <03:00> H
ABUS LEN STAT <01:00> H
ABUS CTRL PTY H

ABUS DAT PTY H

MCC ABUS IOA REQUEST [N] H

MCC ABUS I0A SELECT [N] H
MCC ABUS ADDRS CTRL 1 L

MCC ABUS ADDRS CTRLO L

MCC ABUS MBOX OUT H
MCC ABUS CPU BUF SEL H
MCC ABUS DMA DONE [N] H
MCC ABUS DMA ERROR H

ABUS CPU BUF DONE H

ABUS CPU BUF ERROR H

TO T0 TO T0 T0 TO TO T0 TO

:l C/A wo [\ o
=) T
{
) T
-——————/ \ [
(o
___ /) T
—T\ / { f
___/_ _ (g
((
LN]
{ ({
) T

oL/ M\
)

{ 1,-_- i -‘\
| |

Figure 3-2 CPU Write: ABus Protocol

3-3

MR-14984

Table 3-2 Register File TTL Read Address

Transaction FILE READ ADDR
Buffer 03 02 01 00
DMAA 0 1 X X
DMAB 1 0 X X
DMAC 1 1 X X
DMAI, CPU 0 0 X X
DMA TR X X 0 |

-DMA TR X X 1 0

For example, the SBIA has received a quadword read command and the read longwords are in the register
file in transaction buffer A (DMAA) waiting to be transferred to the SBI. When DMA transaction buffer
A (DMAA) asserts SEND DMA TR, FILE READ ADDR <03:00> is loaded with 0101, the location for
the first read data longword.

Likewise, for an interlock read, when DMALI asserts SEND DMA TR, to transfer the read longword to the
SBI, FILE READ ADDR <03:00> will be 0001.

For a CPU write, the command/address is transferred to the SBI, followed by the write data. If no DMA
transaction buffer has a command in progress for a DMA read, this fact, and the lack of a DMA TR,
generate a FILE READ ADDR of 0010, the address of the command/address.

In any of these foregoing cases, the address will be loaded at TO and can be incremented at the next TO,
but cannot otherwise be changed until the next CPU read, CPU write, or DMA read is initiated. The
address is held during that time when a valid file read is in progress.

3.2.3.1 Valid File Read - VALID FILE READ is used to hold a file read address when the address is
valid, and to insure that only valid data is loaded into the command/address and write data latches. It is
asserted under the following conditions:

1. The use of the SBI has been requested with a DMA TR for a DMA read.

2. The TTL file read address indicates that a CPU command/address is to be read from the
register file.

3. The TTL file read address indicates that the CPU write data is to be read from the register file.
4. The second read data longword is to be read from the register file for a DMA quadword read.

The register file is read every SBI cycle, but the information is not always valid. VALID FILE READ will
insure that the command/address latch is loaded only with a valid command/address, and that the write
data latch is not loaded with stale data.

3.2.3.2 Double Unload - When two sequential locations in the register file have to be read, as for a
DMA quadword read or a CPU write, FILE READ ADDR <03:00> must be incremented. DOUBLE
UNLOAD is asserted in these cases, and when DMA ARB OK is received for a DMA quadword read, or
FILE READ ADDR <03:00> = 0010 for a CPU write, FILE READ ADDR will be incremented on the
next TO.

3.2.4 File Data Latch

The file data latch is loaded from the addressed register file location every SBI cycle, and latched at T1.5.
Parity is checked over the address/data bits and control bits. The parity check will be used to enable the
CPU-SBI state machine to leave the idle state (see Paragraph 3.2.7). The file data latch provides inputs to
the command/address latch, write data latch, parity checkers, and multiplexers in the S-data assembly.

3.2.5 Loading the Command/Address Latch
The command/address latch is loaded from the file data latch if the register file address is 0010, the
address for the CPU command/address, and VALID FILE READ is asserted. It is latched at —T1 and
will not change until the next CPU command/address is transferred from the register file to the file data
latch and then to the command/address latch.

3.2.6 Loading the Write Data Latch

The write data latch is loaded from the file data latch if the register file address is 0011, the address for
the write data, and VALID FILE READ is asserted. It too is latched at —T1 and will not change until the
next time CPU write data is transferred from the register file to the file data latch, then the write data
latch.

3.2.7 Starting the CPU-SBI State Machine

The CPU-SBI state machine loops in the idle state, waiting for CMD GO. CMD GO causes the state
machine to leave the idle state and execute a series of microinstructions that transfer the contents of the
command/address and write data latches to the SBI.

CMD GO will be asserted if these conditions exist.

1. There was no control parity error or A/D parity error over the command/address word.
2. The address is an ISR register address or an SBI address and the SBI is enabled.
3. Itis a CPU write and there is no control parity error or A/D parity error over the write word.

If any error conditions exist, the SBIA immediately sends ABUS CPU BUF ERROR to the MBox, which
will generate an EBox microtrap.

When the state machine leaves the idle state, a binary counter is allowed to count every other SBI TO. If
the counter counts 512 SBI cycles before completing the CPU write (102.4 us), an SBI timeout occurs.
This timer is disabled at the normal termination of a CPU write when the state machine returns to the idle
state.

The microinstructions executed by the state machine upon leaving the idle state depend on the physical
address and whether the CPU command is for a read or write.

3.2.8 CPU ARB WAIT

The SBIA must gain control of the SBI at the CPU TR level before it can place the command/address and
write data on the SBI. CPU ARB OK is asserted by the DC101 priority arbitration chips to grant the
SBIA control of the SBI for the CPU write. (See Appendix C, SBI Arbitration.)

3-5

Because the operation is a CPU write to an SBI nexus register, the SBIA must place the command/address
and write data on the SBI in consecutive SBI cycles. Therefore, the SBIA must have control of the SBI for
two SBI cycles. When CPU ARB OK is asserted, the state machine asserts CPU HOLD to cause the
DC101s to assert TRO for one cycle, holding the SBI for an additional cycle.

The state machine waits in the ARB WAIT cycle until CPU ARB OK is received. If CPU ARB OK is not
received within 102.4 us, a timeout occurs. The state machine aborts the CPU write operation and enters
the ABORT STATE to assert ABUS CPU BUF ERROR (and ABUS CPU BUF DONE) to alert the
MBox of the error condition. The MBox generates an EBox microtrap. The state machine then returns to
the idle state. The SBIA will latch the timeout address error register, the SBI error register, and error
summary register <31:26>. .

3.2.9 CPU Write SBI Nexus Register: Command/Address Cycle

The PROM code enables multiplexers to gate the command/address to the SBI transceivers. In
Figure 3-3, and all block diagrams that show data or control flow, only the enabled inputs to a multiplexer
are shown. The other inputs will not be shown. In Figure 3-4, the ABus command, 1101, is for a write. The
corresponding SBI function is write mask, 0010. Following is a detailed list of the inputs to the SBI
transceivers. ’

DCO022 FILE C/A MASK : —
REG FILE INFO BUS | DATA LTH TAG AG =011
FILE LTH .) GEN XMIT SBI
SBA1-4 SS41 $543 ss47 — TAG <02:00>
WRITE . - —0
DAT MASK = 1111
] LTHA 1| x™mIT s8I
SS44 — 2 MASK <03:00>
— 3/ ss47
SBI —
cvp | FcN=0010
1 GEN XMIT SBI
$S45 — B <31:28>
ADRS <27:00>
CPU/SBI]
STATE PROM MUX SEL <01:00> = 01
MACHINE LTHS
SBAO
CPU ID = 10000
— XMIT SBI
USE MAINT ID =0] e 00
CPUARBOK —f) SENDCPUID=1
cPuARBWAIT —L___/ ss18

MR-14985

Figure 3-3 S-Data Assembly: CPU Write SBI Nexus Register
Command/Address Cycle

3-6

ABUS WRITE DATA ABUS CPU COMMAND/ADDRESS

WRITE

MASK
A/D us | mask | wRITE DATA A/D us| cmo ~ ADDRESS
P |“Ploo | 1111 <31:00> P |CP|oo | 1101 | 0000 <27:00>
y
a6 | [0 a6 [io
Gen| |Gen Gen| |Gen DECODE
plp|Taclio |mask| wriTE DATA plp[tac|io |mask|fcn | ADDREss
1]0]101 [10000 0000 | <31:00> 1{o]o11 | 100001111 |0010| <27:00>
WRITE
MASKED
SBI WRITE DATA SBI COMMAND/ADDRESS

MR-14986

Figure 3-4 Command/Address and Write Data Transfer to SBI for
CPU Write Nexus Register

XMIT SBI B<27:00>: The 28-bit physical address is gated to the SBI transceivers from the
command/address latches.

XMIT SBI B<31:28>: CPU command bits in the command/address latches (CPU
CMD<03,01>) are decoded by the SBI command generator to provide the SBI function. The
function is passed by a multiplexer to SBI transceivers for SBI B<31:28> (see Table 3-3).

XMIT SBI MASK<03:00>: The PROM enables multiplexing the mask bits from the write
data latches to the SBI transceivers.

XMIT SBI ID<04:00>: The CPU ID is hardwired to 10000, and passed by a multiplexer to the
SBI transceivers.

XMIT SBI TAG<02:00>: The multiplexer for the tag bits is hardwired to generate a tag of
011, to indicate a command/address.

XMIT SBI PO: Parity for the ID bits is a hardwired input to a multiplexer and is always
asserted. It is used with the write data latch control parity (parity over the length/status and
mask bits) to generate XMIT SBI PO.

XMIT SBI P1: The address/data parity bit in the command/address latch is used as XMIT SBI
P1. On the ABus, this parity bit provides odd parity over the address. The generated SBI
function bits always consist of an odd number of bits. When they are concatenated with the
address, the A/D parity remains correct.

3-7

Table 3-3 CPU Command Conversion to SBI Function Codes

CPU CMD Bits ADR BUS SBI Bit SBI Function

CPU Command 03 02 01 00 27* 31 30 29 28 Code

Read 0 0 0 1 X 0 0 O 1 Read masked

Read lock 0 0 1 O X 0 1 0 0 Interlock read masked
Read modify 01 0 0 O 0 0 O 1 Read masked

Read modify 0 1 0 O 1 0 1 0 0 Interlock read

Masked write mask 1 1 0 1 X 0 0 1 0 Write masked

Write mask unlock 1 1 1 0 X 0 1 1 1 Interlock write masked

* If ABus address bit 27 is not asserted (SBI memory), a read modify becomes a read mask. If ABus address bit 27 is asserted
(SBI nexus), a read modify becomes an interlock read masked.

3.2.10 CPU Write SBI Nexus Register: Write Data Cycle
During the next SBI cycle, the PROM code will enable multiplexers to gate the write data to the SBI
transceivers. Following is a detailed list of the inputs to the SBI transceivers. See Figures 3-4 and 3-5.

1.

XMIT SBI B<31:00>: The CPU write data is transferred by a multiplexer to the SBI transceiv-
ers from the write data latch.

XMIT SBI MASK<03:00>: The PROM code disables mask bit multiplexers, forcing the mask
bits to 0000.

XMIT SBI ID<04:00>: The CPU ID is hardwired to 10000 and passed by a multiplexer to the

SBI transceivers.

XMIT SBI TAG<02:00>: The multiplexer for the tag bits is hardwired to generate a tag of
XX 1. Because the state machine is not in the ARB WAIT state, the tag will be 101 to designate
write data.

XMIT SBI PO: The mask is all Os, the ID is forced to 10000, and the tag is forced to 101, which
is an odd number of logic 1s. PO is hardwired through multiplexers to be a logic 1 to provide the
SBI even parity.

XMIT SBI P1: The odd parity latched in the write data latch (with the write data word) is
complemented to provide SBI even parity over the write data.

DCO22 FILE MASK LAG =101 i
REG FILE INFO BUS | DATA TAG
FILE LTH] GEN MASK = h— XMIT SBI
. TAG <02:00>
SBA1-4 SS41 $847_ 5500
o
WRITE —
DATA
[L{“H | — XMIT SBI
SSa4 MASK <03:00>
—3Assa7
— XMIT SBI
B <31:28>
—13/Ass47
' — XMIT SBI
DATA <31:00> B <27.005
CPU/SBI —1r]5e
STATE PROM MUX SEL <01:00> = 10
MACHINE LTHS
SBAO
CPU ID = 10000
PV — XMIT SBI
USE MAINT 1D = 1D <04:00>
CPU ARB OK —{~ \ SENDCPUID=1
CPUARBWAIT —{___/ ss18

MR-14987

Figure 3-5 S-Data Assembly: CPU Write SBI Nexus Register
Write Data Cycle

3.2.11 CPU Write SBI Nexus Register: Check ACK Cycle
Any SBI transfer requires the responding SBI nexus to transmit confirmation bits (acknowledge, busy, or
error) on the second SBI cycle following the cycle in which the information was received.

The PROM code will branch on the received confirmation bits, REC SBI CONF<01:00> (see Table 3-4).

Table 3-4 SBI Confirmation Bits

SBI CONF

<01:00> Description
0 0 No response
0 1 Acknowledge
1 0 Busy

1 1 Error

3-9

1. No response and no timeout: The state machine returns to the ARB WAIT state to retransmit
the command,/address and write data when the SBI is available (CPU ARB OK).

2. Busy and no timeout: The state machine returns to the ARB WAIT state to retransmit the
command/address and write data when the SBI is available (CPU ARB OK).

3. Error: The state machine enters the error abort state. ABUS CPU BUFF ERR will be asserted
and transferred to the MBox (microtrap the EBox). Then the state machine will enter the idle
state.

4. Timeout: If the state machine receives a busy response, or no response, for 102.4 us, a timeout
condition exists. The state machine enters the error abort state and asserts ABUS CPU BUF
ERR. The state machine then returns to the idle state.

5. Acknowledge: The state machine goes to the CHECK ACK2 cycle to look for the acknowledge
for the data word.

3.2.12 CPU Write SBI Nexus Register: Check ACK2 Cycle

The CPU-SBI state machine again branches on the confirmation bits, and in this case, if the response is
busy or error, or there is no response, the state machine returns to the ARB WAIT state. It is assumed that
one acknowledge indicates the device must be responding. Therefore, the SBIA will transmit the com-
mand/address and write data one more time.

If the response is an acknowledge, the CPU write function has been completed. The state machine will go
to the SBI CMD DONE state, assert ABUS CPU BUF DONE to notify the MBox of the completion of
the operation, and return to the idle state.

3.2.13 CPU Write SBI Nexus Register: Timeout

When the state machine leaves the idle state, a 102.4 us timer is started. If the SBIA does not receive both
acknowledges within this time, the command is aborted. The MBox is notified by the assertion of ABUS
CPU BUF ERROR, and the state machine returns to the idle state.

3.3 CPU READ SBI NEXUS REGISTER

The CPU reads SBI nexus registers to respond to device interrupts or to verify register contents. The
MBox generates the command/address from the EBox read request, passes the command/address to the
SBIA, and then waits for the SBIA to receive the needed register information from the SBI nexus. While
the MBox is waiting for CPU BUF DONE from the SBIA, it services DMA 10A requests.

The SBIA places the command/address on the SBI, and waits for the SBI nexus to acknowledge the
command/address and to transmit the register data on the SBI. The SBIA takes the register data, the read
data return word, and places it in the register file, and then notifies the MBox that the information is
available.

When the SBIA asserts CPU BUF DONE, it is queued in the MBox arbitration logic. When the request is
serviced, the MBox reads the data from the register file and passes the information to the EBox.

3.3.1 Loading CPU Command/Address for CPU Read SBI Nexus Register

The command/address word is transferred to the register file in the same manner as for a CPU write. (See
Paragraph 3.2.1 and Figure 3-6).

3-10

0

=

0 T0 T0 TO TO T0 TO TO

C/A__" (
]

R

)
[

ABUS LEN STAT <01:00> H
ABUS CTRL PTY H
ABUS DAT PTY H

-~

T
ABUS DATA ADDRS <31:00> H
ABUS CMD MASK <03:00> H q

{ {
MCC ABUS I0A REQUEST [N] H - § h
MCC ABUS I0A SELECT [N] H ———/- - § 4§
MCC ABUS ADDRS CTRL 1 L ---——_ / y ¢ — § _| /
MCC ABUS ADDRS CTRLO L ————-_ ’ 4§ y § \ /
MCC ABUS MBOX OUT H ———/_ \ 4§
MCC ABUS CPU BUF SEL H ———fret/ / \.

MCC ABUS DMA DONE [N] H
MCC ABUS DMA ERROR H

L
P R e N

ff;]
’|.f.J-..,~J- X

TTTTT T

ABUS CPU BUF DONE H

- —— -

-
~
~~

ABUS CPU BUF ERROR H

MR-14988

Figure 3-6 CPU Read SBI Nexus Register: ABus Protocol

3.3.2 Addressing the Register File for TTL Read Nexus Register
The register file is addressed for a TTL read in the same manner as for a CPU write, except that the
address is not incremented. There is no need to increment the address because there is no write data.

3.3.3 File Data Latch

The file data latch is loaded from the addressed register file location every SBI cycle and latched at T1.5.
Parity is checked over the address/data bits and control bits. The parity check is used to enable the CPU-
SBI state machine to leave the idle state. The file data latch provides inputs to the command /address latch
for a CPU read.

3.3.4 Loading the Command/Address Latch for CPU Read SBI Nexus Register

The command/address latch is loaded from the file data latch if the register file address is 0010, the
address for the CPU command/address. It is latched at —T1 and will not change until the next CPU
command/address is transferred from the register file to the file data latch, and then to the com-
mand/address latch.

3.3.5 Starting the CPU-SBI State Machine for CPU Read SBI Nexus Register

The CPU-SBI state machine will leave the idle state in the same manner as it does for a CPU write (see
Paragraph 3.2.7). The difference for a CPU read is that command bit 3 is not set (to designate a read),
changing one bit in the PROM address.

3.3.6 CPU Read SBI Nexus Register: CPU ARB Wait

As with a CPU write, the CPU read SBI nexus register cannot be carried out unless the SBIA can get
control of the SBI at the CPU TR level. CUP ARB OK is asserted to allow the SBIA to transmit the
command/address on the SBI.

Because the data transfer is a CPU read, only the command/address will be transmitted on the SBI. There
is no need for the SBIA to hold the SBI for an additional cycle, therefore, CPU HOLD is not asserted by
the CPU-SBI state machine.

The state machine waits in the CPU ARB WAIT state until it receives CPU ARB OK, or a timeout
condition occurs. If CPU ARB OK is not received within 102.4 us after leaving the idle state, the
transaction is aborted, the state machine returns to the idle state, and ABUS CPU BUF ERROR is
asserted to notify the MBox of the error condition. The MBox generates a microtrap to the EBox.

3.3.7 CPU Read SBI Nexus Register: Command/Address Cycle

When the SBIA gains control of the SBI, it transfers the command/address from the command/address
latch to the SBI transceivers (see Figures 3-7 and 3-8). Figure 3-7 shows a command/address word for a
CPU read of the odd word from an SBI nexus register. The multiplexers are enabled according to the
following list.

DC022 s FILE C/A MasK | —
FO BU AG =011
REG | FILE INFO DATA LTH TAG 0 CMIT SB
FILE LTH GEN MASK = 0011
SBA1-4 $S41 $S43 S847 — — TAG <02:00>
—13Assa7
XMIT SBI
— MASK <03:00>
sBl —
cMD | FCN = 0001
] GEN
$545 —
ADRS <27:00>
CPU/SBI]
STATE PROM , MUX SEL <01:00> = 01
MACHINE LTHS
SBAO]
CPU ID = 10000
e — XMIT SBI
: EMAINTID=0 —_ iD <04:00>
CPU ARB OK —f— \ SEND CPUID =1
cPU ARBWAIT —__/ $s18

MR-14989

Figure 3-7 S-Data Assembly: CPU Read Nexus Register

3-12

EVEN
WORD READ

ABUS CPU A/D cP s| cMD ADDRESS
COMMAND/ADDRESS P 01 | 0001 <27:00>

DECODE DECODE

TAG} |ID
GEN}]GEN

sBl p1lpo| TAG | 1D |MAsK| Fcn | ADDRESS
COMMAND/ADDRESS 011 [10000 |0011 | 0001 [<27:00>

MR-14990

Figure 3-8 Command/Address Transfer to SBI for CPU Read
SBI Nexus Register

1. XMIT SBI B<27:00>: Address bits <27:00> are transferred from the command/address latch
to the SBI transceivers as the SBI address.

2. XMIT SBI B<31:28>: The CPU command (0001) is used to generate the SBI function code
(0001), which is multiplexed as XMIT SBI B<31:28> to the SBI transceivers (see Table 3-5).

Table 3-5 SBI Mask Bits from CPU L/S Bits

CPU L/S SBI Mask

Bits Bits

01 00 03 02 01 00 Legend

0 0 0 0 0 0

0 1 0 0 1 1 Read even word
1 0 1 1 0 0 Read odd word
1 1 1 1 1 1 Read long word

3-13

XMIT SBI MASK<03:00>: The length/status (L/S) bits in the command/address latch are
multiplexed to provide the mask bits according to Table 3-5.

XMIT SBI ID<04:00>: The CPU ID is hardwired to 10000 and passed by a multiplexer to the
SBI transceivers.

XMIT SBI TAG<02:00>: The multiplexer for the tag bits is hardwired to generate a tag of
011.

XMIT SBI PO: The mask bits will be 1100, 0011, or 1111. The tag is forced to 011, and the ID
= 10000. All combinations provide an odd number of ones. XMIT SBI PO is forced to a 1 to
provide even parity over the TAG, ID, and mask bits.

XMIT SBI P1: The address/data odd parity latched in the command/address latch is comple-
mented to provide SBI even parity over the SBI function and address. This can be done because
both the ABus command and corresponding SBI function have an odd number of 1s. The
address does not change between the ABus and SBI. :

3.3.8 CPU Read SBI Nexus Register: Wait Cycle

SBI protocol requires that the responding device transmit the confirmation bits on the second SBI cycle
after the received information was transmitted. Because the SBIA sends only a command/address word, it
must wait one cycle before it can monitor for the confirmation.

3.3.9 CPU Read SBI Nexus Register: Check ACK Cycle
After waiting for one cycle, the CPU-SBI state machine will branch on the SBI confirmation bits (see
Table 3-4).

1.

No response and no timeout: If there is no response and no timeout, the state machine goes to
the ARB WAIT state to wait until the SBI is available. The command/address will be retrans-
mitted (CPU ARB WAIT).

Busy and no timeout: If the responding SBI device is busy, the state machine also returns to the
ARB WALIT state to wait until the SBI is available. The command/address is retransmitted
(CPU ARB WAIT).

Error: If the confirmation bits indicate an error condition, the state machine branches to the
error abort state, and issues ABUS CPU BUF ERR to cause the MBox to generate an EBox
microtrap. The state machine aborts the CPU read operation and returns to the idle state.

Timeout: If a timeout condition occurs (102.4 us) while receiving a busy confirmation code, or
no response, the state machine branches to the error abort state, the operation will be aborted,
ABUS CPU BUF ERR will be asserted, and then the state machine will return to the idle state.

Acknowledge: Upon receipt of the expected response, acknowledge, the state machine waits for
the read data return word.

3.3.10 CPU Read SBI Nexus Register: Read Wait Start

The state machine clears the timeout counter and then restarts it. It then checks for a timeout while
waiting for the read return data.

3.3.11 CPU Read SBI Nexus Register: Read Data Wait
The state machine will cycle in this state until the SBIA receives the read data or a timeout occurs.

1. If the read data is not received within 102.4 us, a timeout condition exists. The SBIA state
machine branches to the error abort state, asserts ABUS CPU BUF ERR, and aborts the
transaction. The state machine then goes to the idle state.

2. If the read data is received within 102.4 us the state machine will branch to the CMD DONE
state and assert ABUS CPU BUF DONE to inform the MBox that the read data is available.
The state machine then goes to the idle state. ABUS CPU BUF DONE is delayed by two SBI
cycles to insure that the SBIA has time to get the read data to the register file.

The SBIA monitors the SBI transceivers every SBI cycle. If the received SBI tag is 000 and the received
ID is 10000, it is the read data. The read data is transferred from the SBI transceivers to the register file.

3.3.12 Sending Acknowledge for the Read Data Word

When the SBIA receives the read data, if there is no parity error, the tag will be decoded. If the tag is 000,
indicating read data, and the ID is 10000, the CPU ID, then the SBIA will send an acknowledge. When
the acknowledge is enabled, the read data is enabled to be sent to the register file, and, after a 30 ns delay,
register file write is asserted.

If there is a parity error, the acknowledge is not enabled. The responding device assumes NO RESPONSE
and retransmits the read data. The SBIA state machine will wait 102.4 us for valid read data before it
aborts.

3-15

3.3.13 CPU Read SBI Nexus Register: Read Data Transfer to Register File

The inputs to the register file, the file info bus, are generated from the read data in the SBI transceivers.
The circuitry involved is the A-data assembly, which consists of registers, multiplexers, tri-state multiplex-
ers, tri-state buffers, a PROM, and various gating and decoding logic.

The CPU-SBI state machine goes to the SBI CMD DONE state, then the idle state upon detection of the
read data and has no control over the transfer of the read data to the register file.

The tri-state latches and buffers that gate the contents of the SBI transceivers to the file info bus are
enabled at T2T3 when it is determined to acknowledge the read data. After a 30 ns delay, the file info bus
data is written into the DC022 register file. .

The multiplexers and buffers are enabled in the following way (see Figure 3-9).

REC SBI B<31:28>

0 35
LTH B<31:28>
SS16
1
3-S
REC SBI B<27:00> LTH B<27:00>
FILE
SS16 INFO
0 BUS
3-s
T | mux L/S<01:00>
2 [ssis
MASK 3
REC SBI MSK<03:00> REG
SBl ss13 DCO22
XCVRS $817 E‘ECE;ISTER
$S01- 0
SS05 €/M<03:00>
TTL
_ / 8816] ADDRESS
WRITE
3-S CTRL
BUFF PTY
/§1 5
3-s
REC SBI P1 BUFF A/D PTY
/§1 5
STATE L_ Egg‘B READ DATA TAG,
MACH- CPU ID OK \ TTL FILE WRITE

INE —l SS10 READ PENDING ’ ADR<03:00> = 0011

MR-14991

Figure 3-9 A-Data Assembly: CPU Read Nexus Register, Read Data

1. BUS FILE INFO B<31:28>: The tri-state latches contain REC SBI B<31:28> as long as the
tag is not for a command/address word.

3-16

2. BUS FILE INFO B<27:00>: These tri-state latches are always loaded with REC SBI
B<27:00>.

3. BUSFILE INFO L/S<01:00>: The mask register contains the mask bits. If mask bit 1 is set, it
indicates an error condition on the SBI. If there is an error, BUS FILE INFO L/S<1:0> will
both be set. If there is no error, neither bit is set.

4. BUSFILE INFO C/M<03:00>: Although not used by the MBox, the SBI command/mask bits
are gated to the register file.

5. BUS FILE INFO CTR PTY: Because the L/S bits will be either 00 (no error) or 11 (error),
they always have an even number of 1s. Therefore, the control parity depends on the com-
mand/mask parity. The command mask parity bit from the SBI transceivers is inverted and
routed to the register file as control parity.

6. BUS FILE INFO A/D PTY: BUS SBI P1, the SBI parity bit over the data bits is inverted and
as BUS FILE INFO A/D PTY is transferred to the register file.

3.3.14 CPU Read SBI Nexus Register: Register File TTL Write Address
Register file TTL write address bits <03:00> are forced to 0011 if the following conditions exist.

1. The received SBI data has a tag of 000, read data
2. The received SBI ID = 10000, the CPU ID
3. The state machine is waiting for read data and has asserted READ PENDING.

3.3.15 CPU Read SBI Nexus Register: ABUS CPU BUF DONE

The events that allow the sending of an acknowledge will also cause the SBIA state machine to leave the
READ DATA WAIT state for the SBI CMD DONE state. The new state will initiate sending ABUS
CPU BUF DONE to the MBox. When the MBox receives ABUS CPU BUF DONE, it knows that the
read data is in the register file.

3.3.16 CPU Read SBI Nexus Register: MBox Reads the Register File
After the MBox services the CPU BUF DONE, it reads the SBIA register file to get the read data. The
MBox must set up the register file read address and enable reading the register file (see Figure 3-6).

The MBox selects the applicable SBIA with MCC ABUS IOA SELECT [N]. MCC ABUS ADDRS
CTRL<01:00> = 00 will enable loading the register file address. The file address least two significant bits
are determined by MCC ABUS CPU BUF SEL and MCC ABUS MBOX OUT = 10 (See Figure 3-1).
Because MCC ABUS CPU BUF SEL is asserted, the upper two address bits will be 00 to provide a
register file address of 0011, the address for the read data word.

A register file read is enabled because MCC ABUS MBOX OUT is not asserted.

3.4 CPU WRITE SBIA REGISTER

The data transfer during a CPU write to an SBIA register is much like a CPU write to an SBI nexus
register except the data is not transmitted on the SBI. The SBI transceivers are not enabled to transmit
because the SBIA decodes the address as an address for an SBIA register.

Also, because the address is not for an SBI nexus register or vector register (interrupt status read, ISR), the
state machine never leaves the idle state.

The MBox loads the command/address and write data into the register file in the same manner as for a
CPU write to an SBI register (see Paragraphs 3.2.1 and 3.2.2).

3-17

The register file is addressed as for a CPU write to an SBI register. Also, the command/address and write
data are transferred to the command/address latch and write data latch as for a CPU write to an SBI
nexus register.

The command/address is used by the address decode and control logic to verify a valid address and
generate the register write pulse. The contents of the write data latch will be written into the SBIA register
that receives the write pulse (see Figure 3-10).

C/A ADDRESS
LTH DECODE AND)|
TR
- CONTROL
$S43 $S38
WRITE
DC022 FILE WRITE
REG DATA DATA
FILE FILE INFO BUS LTH LTH SBIA
REGISTERS
SBA 1-4 : $S41 Ssa4
PC
CTRL PTY ERR
Sy b
A/D PTY ERR
$S40

MR-14992

Figure 3-10 CPU Write SBIA Registers

3.4.1 SBIA Address Recognition

The register address decode logic verifies that the hex longword address is in the range of SBIA register
addresses, 802 0000 to 802 FFFF. Of these SBIA addresses, the SBIA registers are at addresses 802 0000
to 802 0013. PROM E1 monitors the hex longword address, and one of the outputs, REG ADR OK, is
asserted if the address is a valid SBIA register address (see Figure 3-11).

3.4.2 Selecting and Writing the SBIA Register

Other PROM s are addressed by address bits <05:00>. Three of the outputs of PROM E166 are decoded
to provide the enabling for the register write pulse. The register is written at the next SBI TO (see Figure 3-
12). The decoder is enabled by LOCAL WRITE GO if the following conditions exist.

No control parity error on command/address word
No A/D parity error on command/address word
Command is for a CPU write

The register address is a valid address

No control parity error on data word

No A/D parity error on data word.

AR

3.4.3 CPU Write SBIA Register: ABUS CPU BUF DONE
LOCAL WRITE GO is also used to generate ABUS CPU BUF DONE to notify the MBox that the
operation is complete.

PROM

—CPU ADR 16 El

—CPU ADR 15 1KX4

—CPU ADR 14 CPU ADR 00 REG ADR ERR

-CPU ADR 13 CPU ADR 01 REG ADR OK

—CPU ADR 12 CPU ADR 02 UNJAM REG

—CPU ADR 11 \ CPU ADR 03 SBIA VIA REG

ss38 SR AVIARES

—CPU ADR 10 / CPU ADR 04

—CPU ADR 09 CPU ADR 05

-CPU ADR 08 CPU READ

~CPU ADR 07 —ENA SBI OUT

—CPU ADR 06 16 — 06 OK

-LOCAL RANGE

CPU ADR 27 $s38

-CPU ADR 26

-CPU ADR 25

_CPU ADR 22 27|26 25[24]23[22[21]20[19[18[17[16[15[1a[13]12] 11]10] 9 | 81 716 151413121710

1 Jojofx ixjojofofojofr JojojoJoJoJoJoofolololv]|vlvlvlyly

—CPU ADR 21
cruADR20 | 55%8 HEX LONGWORD SBIA ADDRESS
ZLPUADR D XX = 10A SELECT

-CPU ADR 19 Y = SBIA REGISTER ADDRESS

—CPU ADR 18

CPU ADR 17

MR-14993

Figure 3-11 Register Address Decode Logic

3.4.4 CPU Write SBIA Register: ABUS CPU BUF ERROR
ABUS CPU BUF ERROR is sent to the MBox during a CPU write SBIA register if the SBIA detects any
of the following errors.

1. CMD ERR: CMD ERR will be asserted if any one of the following conditions is true.
a. Address not a valid SBIA register address
b. A/D parity error on command/address cycle
c. Control parity error on command/address cycle.

2. Data error: ABUS CPU BUF ERROR will be caused by a data error under the following
circumstances if the command/address was not in error and the command is for a CPU write:

a. A/D parity error on the write data cycle
b. Control parity error on the write data cycle.

If there is an error on the register write, ABUS CPU BUF DONE will be asserted by ABUS CPU BUF
ERROR.

3-19

3.5 CPU READ SBIA REGISTER »

When the CPU wishes to read an SBIA register, the MBox will generate a command/address word from
the EBox read request. The command/address will be written into the SBIA register file just as the
command/address for a CPU read SBI nexus register. (See Paragraphs 3.3.1 and 3.3.2)

The register file is addressed for a TTL read and the command/address word is transferred to the file data
latch, and then to the command/address latch as for a CPU read SBI nexus register. (See Paragraphs
3.3.3 and 3.3.4)

The register address is decoded as for a CPU SBIA register write, and the PROMs are addressed in the
same manner. (See Paragraph 3.4.1 and Figures 3-11 and 3-12)

3-20

SAQeU UM PUe ‘[[If 0197 ‘UONOIIAS IISIBoY 7-€ IndLg

vobY LHW

—

N

934 WVINN

M0 ¥aVv 934
Nvas 31IHM NdD

T

—H L0 YAV NdJ
—H 90 AV NdJ
—H S0 4aV NdJ
—H ¥0 4aV NdO

|—H €0 ¥av Ndd

——H 20 4aVv NdJ
—H 10 4aVv Ndd
— H 00 HaV NdD

WYFNN LEVLS \ %O ALd NV ¥/3
I._ \ Nvas
L£SS I._ 09 3LI¥M Tv201
NO ALd TH1D V/2
— H 00 300D 3L1YM NvEs MO Ald Q/V V1va
13s zb— H 103000 30MMm MO Ald THIND Viva
— H Z0 3002 3LIHM
7 LNIVIN 18S VN3 —Of 42
1dW02 01IS ¥YN3 —CQ 49
71NV 18S N3 —O 4S
7 443 18S N3 —O) 4¥
7 THIND 9VIA YN3 —C) 4€
TANS Y43 vN3 —O) 3¢
7 LVLS/THIND VNI —Qf 41
7 9I4NOD YNI —Q 40
H30003a
LESS LESS 9€£SS LESS
13s 13s 138 138
L L L L
9 9 9 9
S S S]
yav v Hav v wav yav v
€ € € €
z z z 4
1 1 L L
0 o] 0 0
ON — WL H 0738 XNW ¥ dNOYD — WL H £ dNOYO 1114 0¥3Z - —{ WL H 13S 4d1 1v201 - — WL
H 20 3000 3LidM —f N9 H 1 13S XN ¥ dNOYD —] W9 H 9 dNOY9 1114 0Y¥3Z — —{ N9 H 73S Ydl 185 — —{ N9
H L0 3000 LM — NG H 0713S XNW € dNOYD — WS H S dNOY9 1113 0¥3Z — —{ WS H13S 934 4l vwa - —{ WS
H 00 3002 3LIEM —] W H 1738 XNW € dNOYD —f WY H ¥ dNOYO 1114 0H3IZ — — WY H 73S O3 v/2 VWA - —{ N
VYN3 XNW ¥ dNOYD — — INE H 0713S XNW Z dNOYD —] WE H € dNOY9 1114 0¥3Z — — NE H 73S 934 HAVY OWL — — WE
VN3 XN € dNOYD — —f T H 1 73S XN Z dNOoYD — WT H ZdNOY9 1114 043z - — NZ H 73S 934 OIS - — N2
VN3 XN Z dNOYD — —{ W1 H 073S XNW L dNOYD — WL H L dNOY9D 1114 043z — — W1 H 73S 934 WNS 443 - —{ W1
VN3 XNW L dNOYD — — WO H 1L13S XNW | dNoYD —{ Wo H 0dNOYD 1114 043z - —{ WO H 73S 934 DI4NOD — —4 WO
9913 8513 8023 €913
WOYd WOYd WOYd WoYd
8 X 962 8 X 952 8 X 962 8 X 962

3-21

3.5.1 Register Data Bus

The SBIA register outputs are gate

bus by tri-state latches, and then written into the DCO022 register file.

The SBIA registers with outputs used by the SBIA logic
outputs are not tri-state. The SBIA registers that have o

state latches, a tri-state PROM, a tri-state register file, and tri-state RAMs.

The registers made up of tri
are not tri-state logic must be mu

PROMs E158 and E166 (Figure 3-12) are addressed by CPU ADR<05:00>. These PROMS enable the
tus register, error summary register, diagnostic control register, SBI
, SBI silo comparator register, and SBI maintenance register to the
4-to-1 multiplexer, but because all bits of the registers are not used,
Itiplexer input, can be used for another register. If GROUP 1
SEL<01:00> controls which register is gated to register bus bits
<31:24> (see Table 3-6). If GROUP 2 MUX ENA is asserted, GROUP 2 MUX SEL<01:00> controls

multiplexing of the the control and sta
error register, SBI fault status register
register bus. The multiplexer is only a
bits not used by one register, on one mu
MUX ENA is asserted, GROUP 1 MUX

which register is gated to register bus bits <23:20>.

Table 3-6 Register Bus Multiplexer Enabling

d to the register data bus (see Figure 3-13), transferred to the file info

are made up of flip-flop and latch registers. These
utputs not used by SBIA logic are made up of tri-

-state logic can be enabled directly to the register bus, but those registers that
Itiplexed by a tri-state multiplexer to the register bus.

GROUP 1 GROUP 2 GROUP 3 GROUP 4
MUX ENA MUX ENA MUX ENA MUX ENA

GROUP [NJ* Register Bus Register Bus Register Bus Register Bus

MUX SEL<01:00> <31:24> <23:20> <19:16> <15:00>

00 Control status Error summary Error summary Error summary
register register register register

01 Maintenance Maintenance Diagnostic Diagnostic
register register control control

10 Fault status Fault status Fault status SBI error
register register register register

11 Silo Silo Silo Maintenance
comparator comparator comparator register

* GROUP [N] MUX SEL <01:00> refers to GROUP 1 MUX SEL<01:00> for GROUP 1 MUX ENA; to GROUP 2 MUX
SEL<01:00> for GROUP 2 MUX ENA; to GROUP 3 MUX SEL<01:00> for GROUP 3 MUX ENA; and to GROUP 4
MUX SEL<01:00> for GROUP 4 MUX ENA.

3-22

5667 L-4N

-1 vas

34
PEE]
22000

$191S139Y VIGS Pedy ¢-¢ 2n31g

N3
1no

3714 01 934 sn8

Ald TH1D

GESS

H11
S—€

— A £+

N3
1no

<00:10>S/1

SESS

H1
S—€

L

N3
1n0

SN8 O4NI 314

<00:€0>W/2

GESS

HL
S—€

Ly

N3
1Nno

Ald oV

GESS

H1
S—€

YESS

VAN

SN8 v1iva 934

934 N3ID

Hvd

N3
100

\%

<00:1e>8

GESS

H11
S-€

€€ 'TESS

9ESS ¥344n8 St
114 043z
AdNOYD T4 Z
LESS SIHILV S-€
HOL03A HSI
L
73S ddl 18S
gzss 3714 93y St
al vina
| -
13S 934 Al VWA
€2 2255 374 o3y st
v/J YWa
L
73S 934 v/J YWa
0Z '61S WvH
011S 18S
L
73S 934 OIS
LESS WOHd
HOLI3A V001
L
13S "dI V201
LTSS SIHOLVT S-¢€
SS3HAAY LNO3NIL
L
73S 934 HAV OWL
8TSS SIHILVI S-¢
NOILYHNOIANOD

0738 XNW X dNOYD

73S 934 NOILVHNDIINOD

1 73S XNW X dNOYD

N3 XNW X dNOHO

<00:1€>0 934 Sng

€€ 'TESS

V

)

- ™

£

ve JONVNILNIVIN 18S
ST HOLVHVdWOD
LZ '61SS ols 18s
‘1lz'el

‘LL'6SS SNLVLS 17NV4 8IS

9zss HOHY3 188
62SS TOHINOD JILSONSVIA

CESS AHVIWANS HOHY3
62SS SNLV1S TOHINOD

3-23

3.5.2 Zero Fill

Zeros must be placed on the register bus because not all of the register bits are used. The Os are provided
by tri-state buffers enabled by PROM E208 (Figure 3-12). This PROM is also addressed by CPU
ADR <05:00>. The register bus bits that receive 0 from the tri-state buffer enabled by the zero fill PROM
are shown in Table 3-7. ,

Table 3-7 Register Bus Zero Fill

Register Name - Bits Zero Filled

Configuration register <19:08>
Control and status register <23:00>
Error summary register None

Diagnostic control register <31:20>
DMA* command/address register None

DMA* ID register <31:08>
SBI silo register None

SBI error register <31:16>
SBI timeout address register <31:28>
SBI fault status register <15:00>
SBI silo comparator register <15:00>
SBI maintenance register <19:16>
SBI unjam register <31:00>
SBI quadclear register <31:.00>
Vectors 24-27 <31:12>
Vectors 28-2E <31:08>

*DMAA, DMAB, DMAC, or DMAI

3.5.3 Enabling Register Data to File Info Bus

Tri-state latches are used to enable register data onto the file info bus because the file info bus may also
carry information from the SBI. The file info bus contains address/data bits, command/mask bits,
length/status bits, A/D parity, and control parity. When an SBIA register is read, only 32 bits of data are
available from the register. The registers do not provide command/mask bits, length/status bits, or control
parity (see Figure 3-13).

3-24

There are tri-state latches, with grounded inputs, to provide the command/mask and length/status bits.
Because these bits will be all Os on the file info bus, the control parity must be a logic 1. The tri-state latch
that drives file info bus CTR PTY is tied high. A parity generator will monitor the register data bus and
generate odd parity over the 32 bits. This parity bit will be enabled to the file info bus as A/D parity.

All of the tri-state latches are enabled by BUS REG TO FILE, which is asserted for an interrupt status
read (ISR), by the state machine, or during a CPU read SBIA register if the following conditions exist (see

Figure 3-14):
T2T3
ISR DATA CYCLE BUS REG TO FILE
—1° j ssa4> EN REG DAT | SS34 >_"—-

FIF

T EN FILE WRITE

Ss34 ACK cYCLE | SS15

REG ADR OK

LOCAL READ
CPUREAD] (o o) PENDING —\LOCAL READ
T CMD OK | LOCAL READ DONE
CMD OK K ss10 }9 D g D F/F A READ BORE
- = F/F ‘_ /

3
- T qe T1 T2
SBAN —] ss3a | — ss34

FORCES REGISTER FILE
TTL WRITE ADDRESS TO 0011

SEND ACK CNF

MR.14996

Figure 3-14 Enabling Register Data Bus and Local Read Done

1. The register address is valid.

2. The command is for a CPU read.

3. There is no A/D parity error over the command/address.
4. There is no control parity error over command/address.

5. SEND ACK CNF has not been asserted to send an acknowledge on the SBI. This signal is
provided to prevent placing both register data and SBI data on the file info bus at the same
time. :

The register data is written into the DC022 register file 30 ns after EN FILE WRITE is asserted.

3.5.4 Register File TTL Write Address
LOCAL READ GO, one of the intermediate signals in Figure 3-14, is used to force the register file TTL
write address to 0011, the location for the CPU read data.

3.5.5 CPU Read SBIA Register: ABUS CPU BUF DONE

LOCAL READ DONE (Figure 3-14) is used to assert ABUS CPU BUF DONE, which queues up the
request in the MBox.

3-25

3.5.6 CPU Read SBIA Register: MBox Reads the Register File
The MBox will read the register data in the same way as for the register file for SBI nexus register data

(see Paragraph 3.3.16).

357 CPU Read SBIA Register: ABUS CPU BUF ERROR
The MBox will be informed of a command error by the assertion of ABUS CPU BUF ERROR if any of

the following conditions existed.

1. The address is not a valid SBIA register address.
2. Control parity error on the command/address word.
3. A/D parity error on the command/address word.

3.6 INTERRUPT SUMMARY READ

3.6.1 Interrupt Requests
If interrupts have been enabled by control and status register bit 31, the SBIA arbitrates SBI interrupt

requests. When the EBox polls the SBIA with ABUS IOA SELECT [N], the SBIA provides the EBox with
ABUS IPR RETURN <4:0>, an encoded priority of the interrupt requests. Table 3-8 lists the priority,
with SBIA FAIL having the highest priority and SBI REQ 4 the lowest.

Table 3-8 Interrupt Priority

ABUS IPR
Request IPR Level Return <4:0>
SBI FAIL 1E 11110
FAULT/ERR 1C 11100
SBI ALERT 1B 11011
COMP INT 19 11001
SBI REQ 7 17 10111
SBI REQ 6 16 10110
SBI REQ 5 15 10101
SBI REQ 4 14 10100

3.6.2 EBox IPR Arbitration

The EBox (EBC module) arbitrates ABUS IPR RETURN <4:0>, against pending interrupt requests. The
highest priority request is held as the pending external interrupt. The highest priority external interrupt is
compared to any active internal interrupt. If an external and internal interrupt of equal priority are active,
the internal interrupt is given higher priority. The highest priority interrupt is then compared to the
processor status longword interrupt priority level (PSL IPL). If the active interrupt priority is higher than
the priority set for the CPU, the interrupt will be serviced.

3.6.3 EBox Microcode Generates the Read Address

For the EBox to service an external interrupt, it must determine the interrupt vector by reading an IOA
vector register. The microcode builds the address for the register it will read. Table 3-9 lists the bytes and
longword addresses, with vectors, for the external interrupts. '

3-26

Table 3-9 Vector Register Addresses and Interrupt Vectors

Hex Hex Non-
Byte Longword Local Local
Request IPR Level Address* Address* Error Error
SBI REQ 4 14 2008 0090 802 0024 100-13C
2208 0090 882 0024
SBI REQ 5 15 2008 0094 802 0025 140-17C
2208 0094 882 0025
SBI REQ 6 16 2008 0098 802 0026 180-1BC
2208 0098 882 0026
SBI REQ 7 17 2008 009C 802 0027 1CO-1FC
2208 009C 882 0027
COMP INT 19 2008 00A4 802 0029 50 50
2208 00A4 882 0029
SBI ALERT 1B 2008 00AC 802 002B 58 58
2208 00AC 882 002B
FAULT/ 1C 2008 00BO 802 002C 5C 60
SBIA ERR 2208 00BO 882 002C
SBI FAIL 1E 2008 00B8 802 002E 64 64

2208 00BS8 882 002E

*The first address is for SBIA 0, the second for SBIA 1

3.6.4 Command/Address

The MBox loads the command/address into the SBIA register file in the same manner as for a CPU read
SBI nexus register. (See Paragraph 3.3.1 and Figure 3-6.) The register file is addressed, and the com-
mand/address transferred to the file data latch, and then to the command/address latch, as for a CPU
read SBI nexus register. (See Paragraphs 3.3.2 through 3.3.4.)

3.6.5 Obtaining the Interrupt Vector for IPR 14-IPR 17
The action taken by the SBIA depends upon the register address. If the register address is for SBI interrupt
request, IPR14-1PR17, an interrupt summary read (ISR) is requited to obtain the interrupt vector. If the

register address is for IPRs 19, 1B, 1C, or 1E, an ISR is not required, and the vector is read from a
PROM.

3.6.5.1 IPR 14-IPR 17 - The register address decode logic will address PROM E1. Because it is a CPU
read SBIA register, with the SBI enabled, the PROM address will be 164-167. The output in each case
will be 1000, SBI VIA REG (see Figure 3-11). If the command/address does not have a parity error, SBI
CMD GO will cause the CPU-SBI state machine to leave the idle state for the ISR CPU ARB WAIT
state. If there is a command/address parity error, ABUS CPU BUF ERROR will be sent to the MBox
along with ABUS CPU BUF DONE. If there is a command/address parity error, the state machine does
not leave the idle state because SBI CMD GO is never asserted.

3-27

3.6.5.2 ISR CPU ARB Wait Cycle - The state machine awaits CPU ARB OK as for a CPU read SBI
nexus register (see Paragraph 3.3.6). If a timeout occurs, the state machine goes to the error abort state
and sends ABUS CPU BUF ERROR to the MBox. The state machine then returns to the idle state.

3.6.5.3 ISR C/A Cycle - The state machine asserts CPU HOLD to cause TROO to hold the SBI. The
SBI will be held for two cycles because the interrupting nexus is expected to respond during the second
cycle after the command/address cycle. When the CPU gains control of the SBI, the command/address is
transferred to the SBI by the S-data assembly, according to the following list (see Figure 3-15).

sk JJAG =110 -1
g’éﬁ - XMIT SBI
ssa7 [MASK=00001 _ 1, [7aG <02:00>
3Ass47
0
1| xmiT s8I
2 | MAsK <03:00>
3Assa7
—40
—1 XMIT SBI
cPUADRO1 | ISR —]2 B<07:04>
————— vL |ISR LEVEL <07:04>
CPU ADR 00 GEN 3Afssa7
SS42
pu—— 0
_E—-__— — XMIT SBI
= —4, [8<31:08>
AND B<03:00>
3/ ssa6
CPU/SBI PROM
STATE LTHS MUX SEL <01:00> = 11
MACHINE
SBAO SBAO _
CPU ID = 10000
— XMIT SBI
USE MAINT ID=0 24005
SEND CPU ID=1
sS18

MR-14997

Figure 3-15 S-Data Assembly: Interrupt Summary Read

1. TAG <2:0> is forced to 110.

2. MASK <3:0> is forced to 0000.

3. B<31:08> and B<03:00> are all Os because the multiplexer inputs are all grounded.

4. B<07:04> will have one bit set. The bit set corresponds to the interrupt priority level being

serviced. For example, if the interrupt level is 5, B<05> is set. The bit set, <07:04>, corre-
sponds to the least two significant bits of the register address (see Table 3-10).

3-28

Table 3-10 Setting SBI B<07:04> for ISR

CPU ADR SBI

<01:00> B<07:04>
00 0001
01 0010
10 0100
11 1000

5. ID<4:0> is forced to 10000.
6. PO is forced high because the ID, TAG, and MASK bits always have an odd number of 1s.

7. Pl is also forced high because the data bits will always have one bit set — bit 7, 6, 5, or 4.

3.6.5.4 ISR Wiait Cycle - The state machine waits one cycle. CPU HOLD is still asserted to keep TR00
asserted. The interrupt summary response is expected in the next cycle.

All nexus devices receive the ISR command/address cycle. Those nexus devices that are interrupting at
the interrupt level being serviced, as indicated in SBI B<07:04>, will be required to respond two cycles
after receiving the ISR command/address. Each responding nexus will set two data bits, one correspond-
ing to the nexus TR level, and the other corresponding to the nexus TR level +16. It is not known how
many nexus will respond, but by requiring each nexus to set two bits, the number of logic 1s remains even.
Besides these bits, each responding nexus sets SBI ID<4:0> to 10000, the CPU ID, and SBI PO.

3.6.5.5 ISR Data Cycle — On the second SBI cycle after the command/address cycle, the SBIA checks
parity on the interrupt summary response. PO should be high and P1 should be low. If there is a parity
error, and no timeout, the SBIA will return to the ARB WALIT cycle to retransmit the command/address.

If there is a timeout, the state machine aborts the transaction and asserts ABUS CPU BUF ERROR to
notify the MBox of the error condition.

3.6.5.6 SBI CMD DONE - If there are no parity errors, the state machine proceeds to the SBI CMD
DONE state and asserts ABUS CPU BUF DONE to inform the MBox that the vector is available. Then
the state machine goes to the idle state.

3.6.5.7 Vector Transfer to the Register File — In the meantime, REC SBI B<15:01>, the TR levels for
all interrupting devices, are arbitrated to determine which TR level has priority. The highest priority TR,
along with the lower two bits of the interrupt priority request level (derived from the lower two bits of the
register address), are gated to the register data bus by SBI IPR SEL L (see Figure 3-13).

SBI IPR SEL L is asserted by PROM E163 (see Figure 3-12). The PROM output is BF (1011 1111) for
any ISR.

3-29

The vector and interrupt level are gated to the register data bus according to Figure 3-16. REG DATA
BUS <31:12> receives all Os from the zero fill tri-state buffers (see Figure 3-13 and Table 3-7).

VECTORS FOR IPR <17:14>

M 10 09 08 07 06 05 04 03 02 01 00
T Ll
REQ "R '
LEVEL | LEVEL

0 0 0 1 0 0

MR-14998

Figure 3-16 Vector Generation

3.6.5.8 ISR: TTL Register File Write Address - If the interrupt summary response data does not have
any parity errors, the register file TTL write address is forced to 0011 (see Figure 3-14). The ISR data
cycle enables the register data bus to the file info bus and enables writing the vector into the register file.

3.6.5.9 MBox Reads Vector — The MBox will set up the register file address and read the vector in the
same manner as it would read any CPU read word.

3.6.6 Local Interrupt Vector

Reading the vector for a local interrupt is carried out in almost the same manner as a CPU read SBIA
register. The MBox loads the command/address into the register file; the command/address is then
transferred to the file data latch and to the command/address latch, as for a CPU read SBIA register.

The register address decode logic asserts REG ADR OK if the address is a valid SBIA register address (see
Figure 3-11). PROM E163 will enable PROM E154 with LOCAL IPR SEL L (Figure 3-12) and the
contents of the addressed PROM (E154) are gated to the register data bus (Figure 3-13).

The contents of PROM E154 is vector bits <07:00> (see Table 3-9). Bits <31:08> are forced to Os by the
zero fill tri-state buffers.

If the register address is valid (REG ADR OK, PROM E1) and there are no command/address parity
errors, the vector is enabled to the file info bus and then written into the register file. The register file TTL
write address is forced to 0011 (see Figure 3-14).

The MBox will read the vector from the register file as it would any CPU read word.

If there is a command/address parity error, the transaction is aborted. The MBox is notified by the
assertion of ABUS CPU BUF ERROR.

3.7 QUADCLEAR

The purpose of the quadclear operation is to clear ECC errors in SBI memories. For the VAX 8600/8650
system, the quadclear operation is used extensively by microdiagnostics to perform DMA quadword
loopback transfers.

The CPU initiates a quadclear operation by writing the SBIA quadclear register. The decoding of the
quadclear register address allows the CPU-SBI state machine to control the quadclear operation. When the
SBIA gains control of the SBI, the command/address is transferred to the SBI, followed by two SBI write
data longwords, which contain all Os. The address is the quadword aligned address of the quadword to be
cleared.

3-30

The state machine sequences much like a CPU write SBI nexus register, except that there are two write
data cycles instead of one. Also, the SBIA looks for confirmation for the extra cycle.

The MBox loads the register file with a command/address indicating a CPU write to the quadclear
register. It will then load write data that contains a mask = 1111 and the quadword boundary address of
the quadword to be cleared. The command/address will be transferred to the file data latch, and then to
the command/address latch. The write data will be transferred from the register file to the file data latch,
and then to the write data latch. When the address in the command/address latch is decoded by the
address decode logic (see Figure 3-11), PROM E1 will assert SBIA VIA REG if the address is valid and
the proper address. Recall that SBIA VIA REG was asserted by PROM El1 for an ISR also, but that was a
CPU read of a vector register. This is a write, and it is the write bit in the command that directs the CPU-
SBI state machine to the code for a quadclear.

If there is a command/address or data parity error, the state machine never leaves the idle state. ABUS
CPU BUFF ERROR is asserted to inform the MBox of the error condition. If there are no parity errors,
the state machine will leave the idle state to wait until the SBIA gains control of the SBI (CPU ARB OK).

The CPU-SBI state machine will assert CPU HOLD for two cycles, to cause the DC101 priority
arbitration chips to assert TR0OO for two SBI cycles to insure that the SBIA has control of the SBI for three
bus cycles, the command/address cycle, and two write data cycles. During the third SBI cycle, arbitration
for the bus will determine what nexus controls the bus for the following SBI cycle.

3.7.1 Quadclear Command/Address Cycle
The information held in the S-data assembly is transferred to the SBI transceivers in the following manner
(see Figures 3-17 and 3-18).

ABUS COMMAND/ADDRESS ABUS WRITE DATA
A/D cp L/S | NOT 0802 0013 A/D cP L/S | MASK | FUNC |QUADWORD BOUNDARY
P 11 | USED QUADCLR P 00 [1111 |1011 |ADDRESS
TAG| |ID TAG| |ID DISABLE TAG | |ID MASK|
GEN| | GEN GEN | | GEN DATA GEN | JGEN | JGEN
TAG| ID MASK| FUNC |QW BNDY} JTAG|ID MASK| DATA TAG| ID MASK]| DATA
01110000 | 1011 J0010 JADDRESS] [101[10000 |1111 | 0000 0000 | J101 | 10000 |[000C0 | 0000 0000

SBI COMMAND/ADDRESS SBIWD 1 SBI WD 2

MR-14999

Figure 3-17 Quadclear Data Transfer to SBI

3-31

DCO22 FILE MASK p—

REG FILE INFO BUS | DATA TAG TAG =011
FILE LTH] GEN i XMIT SBI
SBA1-4 $S41 s547 I-_-— TAG <02:00>
—13Ass47
WRITE —
ATA
= Rea = B — XMIT SBI
SS44 MASK=1111 MASK <03:00>
— XMIT SBI
B<31:28> = 1011

B <31:28>

QUADWORD BNDRY ADDRESS

CPU/SBI PROM
STATE LTHS MUX SEL <01:00> = 10
MACHINE

SBAO SBAO]

CPU ID = 10000
USE MAINT ID=0
SEND CPU ID =1

XMIT SBI
1D <04:00>

SS18

MR- 15000

Figure 3-18 S-Data Assembly: Quadclear Command/Address Cycle

The quadword boundary address in the write data latch is transferred to SBI <27:00>.
Write data latch <31:28> contains the SBI function code, which for a quadclear will be 1011,
extended write masked. These bits are multiplexed to SBI <31:28>. For diagnostics, a quad-
clear can be used to do quadword reads or writes. The command bits in the command/address
word are not used for a quadclear.

The ABus write data mask, 1111, is multiplexed from the write data latch to SBI MASK
<3:0>, also equal to 1111. This indicates a longword write.

The ID generator will provide the CPUs ID of 10000 to the SBI drivers.
A tag of 011, command/address, is provided by the tag generator.

SBI PO is generated by XORing ID parity, forced to a logic 1, with parity over the L/S and
MASK bits in the write data latch after it is inverted.

The data parity in the write data latch is inverted to provide P1 on the SBIL.

3-32

3.7.2 Quadclear: Write Data Cycle 1

For the first write data cycle, the S-data assembly is enabled by the CPU-SBI state machine to transfer
data to the SBI in the following way (see Figures 3-17 and 3-19).

1. The multiplexers that provide SBI <31:00> are disabled to insure that the data bits are all 0.
2. The mask bits in the write data latch are again transferred to the SBI mask bits.

DCO22 FILE MASK —
REG FILE INFO BUS | DATA TAG TAG = 101

FILE LTH

] GEN —_'—l]
SBA1-4 $S41 SS47

XMIT SBI
TAG <02:00>

WRITE
DATA MASK = 1111

LTH]
SS44 I—

XMIT SBI
MASK <03:00>

w
w
H
~N

SS47

|
HJN—HN—O
S

—o
—i1 XMIT SBI
—2 | B<31:00>
—}/ SS46, 47

MUX SEL <01:00> =10

CPU/SBI PROM
STATE LTHS DISABLE B<31:00>
MACHINE

SBAO SBAO

CPU ID = 10000
USE MAINT ID=0
SEND CPU ID= 1

MR-15001

Figure 3-19 S-Data Assembly: Quadclear Write Data Cycle 1

The TAG generator provides a tag of 101 to indicate an SBI write data cycle.
The ID generator again provides the CPU ID of 10000.

SBI PO is generated, as for the command/address cycle.

SBI P1 is forced to a logic 0 because the data field is all Os.

AR

3.7.3 Quadclear: Write Data Cycle 2/ACK 1
The S-data assembly is enabled by the CPU-SBI state machine in the following way (see Figures 3-17 and
3-20).

3-33

1. SBI <31:00> are again forced to 0 by the disabling of a multiplexer.
2. MASK <3:0> are also 0 because the multiplexers providing these bits are also disabled.

3. The TAG generator again provides a tag of 101, write data.

MASK
TAG TAG = 101

GEN
SS47

| |

|1 1] [111 I’—‘

0

1] xmiT s8I

2 MASK <03:00>
345847

0

1| xmiT sai

2 | B<31:00>
B/ 5546, 47

MUX SEL <01:00> =10

CPU/SBI PROM
STATE LTHS DISABLE B<31:00> AND MASK<03:00>
MACHINE

SBAO SBAO

CPU ID = 10000
USE MAINT ID =0
SEND CPU ID = 1

MR-15002

Figure 3-20 S-Data Assembly: Quadclear Write Data Cycle 2

4. The ID generator asserts the ID of 10000.

5. SBI PO is provided by XORing a forced logic 1 for ID parity with a forced logic O for mask
parity (the mask field is 0000).

6. SBI P1 is forced to a logic 0 because the data field is all Os.
Write data cycle 2 is the second cycle after the command/address cycle so the SBIA should receive
confirmation from the SBI nexus during this cycle. If there is no response from the nexus, or the

* confirmation code indicates that the nexus is busy, the state machine returns to the CPU ARB WAIT
state and retransmits the command/address and write data when the SBIA can gain control of the SBI.

3-34

If the confirmation code indicates an error condition, the state machine enters the abort state, asserts
ABUS CPU BUF ERROR, and returns to the idle state.

If an acknowledge is received, the state machine goes to the ACK2 cycle to monitor the confirmation bits
for the second acknowledge.

3.7.4 Quadclear ACK2 Cycle
If the confirmation code is busy, error, or there is no response, the state machine returns to the ARB
WAIT state to retransmit the command/address and write data.

If an acknowledge is received, the state machine looks for the third acknowledge.

3.7.5 Quadclear ACK3 Cycle
Again, if the confirmation is busy, error, or there is no response, the state machine returns to the ARB
WAIT state to retransmit the command/address and write data.

If an acknowledge is received, the state machine goes to the COMMAND DONE state and asserts ABUS
CPU BUF DONE to inform the MBox that the quadclear has been completed. The state machine then
returns to the idle state.

3.7.6 Quadclear Timeout

If 512 SBI cycles elapse before the third acknowledge is received from the nexus, a timeout condition
exists. The state machine goes to the abort state, asserts ABUS CPU BUF ERROR, then returns to the
idle state.

3.8 QUADCLEAR FOR MICRODIAGNOSTICS

The quadclear operation is used by microdiagnostics, in conjunction with diagnostic control register <03>
(FORCE QUAD DATA), to loop data back in the SBIA. (See Paragraph 3.14.4 for a description of the
diagnostic control register.)

3.9 UNJAM

An UNJAM is issued to the SBI to clear a hung system. It is initiated by the CPU writing to the SBIA
unjam register, address 2X08 0048. The unjam sequence consists of 16 cycles of SBI HOLD, 16 cycles of
SBI HOLD and SBI UNJAM, then 16 more cycles of SBI HOLD. When the address for the unjam
register is decoded, a special hardware sequencer initiates the unjam sequence.

The unjam hardware sequencer (see Figure 3-21) consists of two 4-bit binary counters. The carry from the
first counter, after 16 SBI cycles, increments the second counter.

The MBox transfers a command/address to the SBIA register file. Because good parity is required for a
data word, the MBox also writes a data word into the register file. The data is not needed except to provide
a parity check. The command indicates a write and the address is for the unjam register. The register
address decode logic addresses PROM El, which provides an output of 0110. REG ADR OK and
UNJAM REG are asserted.

UNJAM REG asserts START UNJAM if the following conditions (see Figure 3-12) are true.

No command/address control parity error
No command/address A/D parity error
No control parity error over the data word
No A/D parity error over the data word
The command is for a CPU write

REG ADR OK is asserted.

Qb wo—

3-35

* The assertion of START UNJAM loads both binary counters. Counter E96 is loaded with 0000, while
counter E78 is preset to 1101. Every 16 SBI cycles the carry from counter E96 increments counter E78.
Only four of the states of E78 are significant (see Table 3-11).

E96 £78
CARRY OUT }— CARRY OUT UNJAM DONE
iy o8 T
- D4 +3V 04
> b2 UNJAM H
= sBAQ JAM HOLD
o1 D1
XMIT UNJAM
COUNT ENABLE COUNT ENABLE SBAQ
START UNJAM
I LOAD LOAD
T2C SBAQ
K
= cLoCK cLock
SBAQ SBAQ

MR-15003

Figure 3-21 Unjam Sequencer

Table 3-11 Unjam Sequencer States

Counter

E78

Output Legend

1101 Enable E96 to count
Assert SBI HOLD

1110 Enable E96 to count
Assert SBI HOLD
Assert SBI UNJAM

1111 Enable E96 to count
Assert SBI HOLD

0000 Unjam done

When E78 is loaded, E96 is enabled to count. UNJAM HOLD asserts SBI HOLD for 16 SBI cycles.
When E78 is incremented the first time, XMIT UNJAM causes SBI UNJAM to be asserted for 16 SBI
cycles. UNJAM HOLD is still asserted so that SBI HOLD remains asserted. When E78 is incremented the
second time, XMIT UNJAM goes low so SBI UNJAM is negated. SBI HOLD remains asserted for
another 16 SBI cycles. When E78 is incremented for the final time, UNJAM DONE is asserted. It asserts
ABUS CPU BUF DONE to alert the MBox of the completion of the unjam sequence.

3-36

3.10 DMA OVERVIEW AND BUFFER CONTROL

The CPU initiates a DMA transaction by loading SBI nexus registers. Once the SBI nexus has been
programmed by the CPU, the nexus arbitrates for control of the SBI and transmits the command/address.
If it is a DMA write transaction, the write data follows the command/address on the next successive SBI
cycle(s). For a DMA read, after transmission and acknowledgment of the command/address, the nexus
waits for the return of the read data.

The SBIA must recognize the command/address, and, for a write, the write data, and must transfer the
information to the register file so that the MBox can read it. For a read, the SBIA transfers only a
command,/address to the register file. The MBox reads the command/address from the register file, then
reads cache or memory, and transfers the read data to the SBIA register file. The SBIA gates the read
data to the SBI for transfer to the nexus.

Before looking at the DMA transactions, the DMA buffer control and register file addressing must be
investigated.

3.10.1 DMA Buffer Control

For noninterlocked DMA transactions or interlocked writes, there are only three DMA transaction buffers
in the SBIA register file. Therefore, any command/address that is written must not write over an
uncompleted DMA request. For a DMA interlock read, only one transaction buffer is needed because only
one interlock read can be in process at one time.

Figure 3-22, a flowchart of noninterlocked DMA and DMA interlock write transactions, assumes no error
conditions. (Error conditions will be mentioned in the DMA write or DMA read detailed description, and
covered in detail in Paragraphs 3.11 and 3.12.) A description of the flowchart follows.

1. When no DMA transactions are occurring, the SBIA DMA buffer control is in the idle state,
and the number of commands queued and commands in progress is 0.

2. The SBIA monitors the SBI transceivers, looking for a command/address tag (011). When a
command/address tag is received, if there are no parity errors and the address is within the
bounds of memory address (the address is less than the address contained in the configuration
register), the SBIA checks for a valid function code.

3. If, upon receiving a valid function code, there are already two commands queued or three
commands in progress, the SBIA transmits BUS SBI CONF <1:0> = 10 (BUSY), to inform the
nexus that the SBIA cannot accommodate the request at that time. The nexus retransmits the
command/address (and write data if for a DMA write) when it is able to regain control of the
SBI.

4. If the SBIA is not busy, the SBIA loads the command/address (and write data for a DMA
write) into a transaction buffer in the register file.

5. When the command/address (and write data for a DMA write) have been loaded into the
register file, the following events take place.

a. Number of commands queued is incremented by 1.
b. Number of commands in progress is incremented by 1.
c. The SBIA sends a DMA request to the MBox by asserting SB ABUS IOA REQUEST

[N].

3-37

10.

RECEIVE A CMD/ADR
TAG WITH A VALID
FUNCTION CODE AND
NO PARITY ERROR?

*A PARALLEL EXIT IS TAKEN BECAUSE THE SBIA CAN BE
RECEIVING A COMMAND FROM THE SBI AND TRANSFERRING
A COMMAND TO THE MBOX AT THE SAME TIME

The SBIA waits for the MBox to load the ECL register file read address, which enables the
MBox to read the command/address (and write data for a DMA write). The SBIA can be
receiving DMA requests from the SBI and transferring DMA requests to the MBox at the same

IDLE

¥

CMDS QUEUED =0
CMD IN PROG =0

[

CMD/ADR AND WRITE
DATA TO REG FILE

'

CMD
QUEUED

TRANSMIT “BUSY”

|

CMD QUEUED =
CMD QUEUED + 1

v

CMD IN PROG =
CMD IN PROG + 1

ASSERT 10A[N]
REQUEST

/AS
MBOX
NO ADDRESSED

THE REG
FILE

YES

CMD QUEUED =
CMD QUEUED -1

U

Figure 3-22 DMA Buffer Control (Sheet 1 of 2)

time, so the flowchart shows a parallel exit.

When the MBox has loaded the ECL register file read address, an indication that a command

will be processed, the number of commands queued is decremented by 1.

WRITE DATA
ONLY FOR

A DMA
WRITE

:2
HAS THE MBOX
LOADED THE
REGISTER FILE

ECL READ
ADDRESS

MR.15004

If it is a DMA write, the MBox reads the command/address and the write data.

If it is a DMA read, the MBox reads the command/address, and the addressed data from cache

or memory, and then writes the read data into the register file.

The SBIA waits for the MBox to assert MCC ABUS DMA DONE [N], which for a write

indicates that the operation is finished, but a DMA read is not finished.

3-38

11.

12.

13.

14.

CcMD
QUEUED
=0

NO

YES GO TO IDLE

MBOX READ CMD/ADR
AND WRITE DATA

v ASSERT TRO1
MBOX READS CMD/
ADR AND SENDS
READ DATA
DMA
ARB OK
ABUS RECEIVED
N
DMA ol
DONE
YES TRANSMIT READ
DATA ON SBI
NO
WRITE
YES YES /
TRANSMITTED
CMD IN PROG =

CMD IN PROG — 1

MR-15005

Figure 3-22 DMA Buffer Control (Sheet 2 of 2)

With a DMA write, the SBIA, upon the reception of DMA done or DMA error, reduces the
number of commands in progress by 1 to free one of the DMA transaction buffers. If there are
more commands queued, they will be attended to; if not, the DMA goes to the idle state.

For the DMA read, MCC ABUS DMA DONE [N] simply indicates that the read data is in the
register file and must be transferred to the SBI. Upon receipt of DMA done, the SBIA requests
the SBI at TROI1, the TR level for DMA transactions.

When the SBIA receives DMA ARB OK, the read data is removed from the register file and
transmitted on the SBI. For extended reads, two longwords are transferred.

When all read data has been transmitted on the SBI, the number of commands in progress will

be decreased by 1. If there are more commands queued, another IOA request must be asserted
to request MBox service; otherwise, the DMA goes to the idle state.

3-39

3.10.2 DMA Transaction Buffer Selection

Whenever the SBIA receives a DMA command/address from an SBI nexus, the command/address, or
command/address and write data for a DMA write, must be loaded into an empty transaction buffer.
Figure 3-22 shows that, if there are two DMA commands queued or three commands in progress, the
SBIA would transmit BUS SBI CONF<1:0> = 10, to indicate that the SBIA is busy.

For 2 DMA write, a command is in progress if the command/address and associated write data have been
loaded into the register file. A command is queued if it is in progress and if the MBox has enabled reading
the command/address from the register file (that is, the MBox is acting on the command). The command
in progress signals are used to determine the next transaction buffer to be used.

When the first DMA command/address is received, there are no commands in progress. DMA transaction
buffer A is loaded with the command. Transaction buffer DMAA now has a command in progress.

If another DMA command/address is received, because DMAA has a command in progress, DMA
transaction buffer B will be used. If the MBox has not started to read the command/address from
transaction buffer A, there are now two commands queued. No more DMA command/addresses, except
for a DMA interlock read, are accepted. The SBIA is busy, and BUS SBI CONF<1:0> = 10, is
transmitted on the SBIL

When the MBox acts on DMA transaction buffer A, another DMA command/address is accepted and
placed in DMA transaction buffer C. There are now three commands in progress; the SBIA is busy; and
again BUS SBI CONF<1:0> = 10 is transmitted on the SBIL

Transaction buffer A has priority. If it is empty, it is loaded, regardless of the other two transaction
buffers. If A is full, transaction buffer B is used. If both A and B are full, then C is used.

The logic that determines which transaction buffer to use also controls the upper two bits of the register
file address. This will be explained in the next paragraph.

3.11 DMA WRITE

The DMA write must be set up by CPU writes to the SBI nexus. When the proper registers have been
loaded, the SBI nexus carries out the DMA write transaction. When the nexus gains control of the SBI, it
transmits an SBI command/address followed by the write data to the SBIA, which loads the com-
mand/address into a transaction buffer in the register file. The SBIA requests MBox service by asserting
SB ABUS IOA REQUEST [N].

The MBox, after arbitration, in response to the IOA request, reads the command/address and write data
from the SBIA register file. The MBox then stores the write data in cache or memory.

3.11.1 DMA Write: Command/Address Reception
The SBIA, like all SBI devices, is latching the SBI transceivers every —T2. If TAG <2:0> = 011, the
information in the transceivers is a command/address, and the command is loaded into the command
register. The command register is loaded with the following information.

1. REC SBI <31>, to indicate an extended, or quadword transfer

2. REC SBI <30>, to indicate an interlocked DMA transfer

3. REC SBI <29>, to indicate that the command is for a write

4. CMD/ADR MASKED, a NAND condition of all the SBI mask bits. If any SBI mask bit is not
set, CMD/ADR MASKED is set. If all mask bits are set, it is not a masked operation and
CMD/ADR MASKED will not be set.

3-40

The contents of the command register are held until the next command/address is received in the SBI
transceivers. The contents of the command register are used later in the DMA to address the command
PROM.

The upper bits of the received address, REC SBI B<27:18>, are compared with the contents of the
configuration register to insure that the DMA address is within the bounds of memory. The results of the
address comparison will be used to enable a function check.

Each SBI transceiver generates parity over the four bits it receives. All of the generated parity bits are
combined and compared to SBI parity to check for an SBI parity error.

If there are no SBI parity errors, the address is within bounds, and if the tag indicates a command/address,
REC SBI B<31:28> are decoded to check for valid functions. If there are not two commands queued or
three commands in progress, the command address is written into the register file. (See Appendix B, SBI
Protocol, for valid SBI command/address functions.)

If the function (REC SBI B<31:28>) is not valid the SBIA transmits an SBI error confirmation to notify
the nexus of the error condition.

If the SBIA detects an SBI parity error, it asserts SBI FAULT to notify all nexus to latch their error
registers. The SBIA, upon receiving SBI FAULT, sets the fault latch, and if the fault error is enabled by
SBI FAULT REG<18>, the CPU is interrupted.

3.11.2 DMA Write: Register File TTL Write Address Generation

The register file cannot be loaded in a straightforward manner. On the SBI, the mask bits precede the
write data by 1 SBI cycle, but on the ABus, the mask bits are transferred with the write data. Therefore,
when the command/address is loaded into the register file, the mask bits that accompanied the SBI
command/address must be loaded into the register file location for the first write data longword. When
the first write data longword is loaded into the register file, the SBI mask bits that accompanied the first
write data longword must be loaded into the register file location for the second write data longword.
When the second write data longword is loaded into the register file, the ABus command is loaded into the
register file location for the command/address. (See Figure 3-23 and Tables 3-12 and 3-13)

SBI COMMAND/ADDRESS SBI WRITE DATA 1 SBI WRITE DATA 2
TAG | o | mask | Fen | aoR TAG | o [mask| wor TAG| | Mask| wp 2
011 1111 | 1011 | <27:00> 101 1111 | <31:00> 101 0000 | <31:00>
D
FILE
BE. JLOAD
cope LTH

I ENA

B31 |ROM 0's

0 0 (I) 00

/s CcMD 0000 ADR L/S | MASK] WD1 L/S | MASK | wbD2

01 1101 <27:00> 00 ARRR] <31:00> 00 11 <31:00>
ABUS COMMAND/ADDRESS ABUS WRITE DATA 1 ABUS WRITE DATA 2

MR-15006

Figure 3-23 DMA Quadword Write Data Transfer

3-41

The DMA write SBI information is written into the register file as follows.

1.

When the command/address is written into the register file, all bits but the command/mask are
loaded into XX00, where XX is determined by the transaction buffers that have commands in
progress. The mask is loaded into XXO01, the location for write data 1.

When write data 1 is written into the register file, all bits but the command/mask are loaded
into XX01. The mask is loaded into XX10, the location for write data 2.

When write data 2 is written into the register file, all bits but the command are written into
XX10. The ABus command is written into XXO00, the location for the command/address.

Table 3-12 Register File TTL Write Address <03:02>

Command TTL FILE TTL CMD/MSK
in Progress ADR <3:2> ADR <3:2>

Not DMAA . 01 01

DMAA 10 10

DMAA and DMAB 11 11

Table 3-13 Register File TTL Write Address <01:00>

TTL FILE TTL CMD/MSK
SBI Cycle ADR <1:0> ADR <1:0>
Command/Address 00 01
Write Data 1 01 10
Write Data 2 10 00

3-42

3.11.3 DMA Write: A-Data Assembly Command/Address Transfer
The command address is transferred to the register file by the A-data assembly, according to Figure 3-24

in the following manner (see also Figure 3-23).

3-s
0000 LTH | B<31:28>
$S16
G =011
TA =
REC SBI B<27:00> LTH | B<27:00>
SS16
FILE
INFO
SBI 0, B31 BUS
XCVRS Y 3s
SSO1- MASK 1 MUX L/S<01:00> = 01
SS05 REC SBI MSK REG 2
<03:00> $813
$S17 35515 DCO022
REGISTER
FILE WRITE ADR FILE
come <01:005>= 00
CMD IN LOG 00>= FILE WRITE ADR
PROGRESS $S29 <03:02> TTL
S22 __| ADDRESS
0 3s A WRITE
MUX . C/M<03:00> =
1M1
SS15
Naen ~owis FILE C/M ADR <01:00> NE O |
REG LOG FILE WRITE ADR<01:00> = 00
TAG =011 ss1a $S13 FILE C/M ADR <01:00> = 01
LOADS SS14

MR-15007

Figure 3-24 DMA Write, A-Data Assembly Command/Address Transfer

3-43

1. If the SBI tag is for a command/address, the command register is loaded (see Paragraph
3.14.3.1). It is held until the next command/address tag. The command register is used during
the last write data cycle to address the command PROM, which provides a conversion from the
SBI function to the ABus command.

2. The command address tag will enable input 1 to multiplexers with that input grounded. This
will set file info bus B<31:00> to 0000.

3. REC SBI B<27:00> are latched in tri-state latches to be driven to file info bus B<27:00>.

4. The set of multiplexers that provides L/S <1:0> is enabled by FILE WRITE ADR <1:0>,
which is 00 for the command/address. The inputs are 0 and REC SBI B<31>. Bit 31 is set for
extended writes and provides a length/status field of 01, which on the ABus indicates a
quadword transfer.

5 REC SBI MASK<3:0> are latched and enabled to the file info bus as C/M <3:0> because the
enabling input C/M ADR <1:0> does not equal 0.

6. The ABus command always has an odd number of 1s, so control parity depends entirely on what
the L/S field is. If the transfer is for an extended write, REC SBI B<31> is asserted, which
makes the L/S field equal to 01. If REC SBI B<31> is not asserted, then the L/S field equals
00. Therefore, if REC SBI B<31> is asserted, then FILE INFO CNTRL PTY is also asserted.

7. The SBI function always has an odd number of 1s. If the address also has an odd number of 1s,
the total number will be even and SBI P1 will be a 0. On the other hand, if the address has an
even number of 1s, the total number will be odd and SBI P1 will be asserted. When the
command address is transferred to the register file, the only concern is for the address bits, bits
<27:00>. Bits <31:28> are forced to 0000. Therefore, SBI P1 need only be complemented to
provide proper parity to the register file, FILE INFO A/D PTY.

The preceding information is held in latches and is enabled to the file info bus when an acknowledge is
enabled for the command/address word. This same enabling signal is delayed and used to generate the
register file write pulse.

If the command/address is for an extended write, the address boundary is constrained to be a quadword
boundary; B<00> must be 0. If SBI B<00> is not 0, it will be cleared. If B<00> has to be cleared, the
A/D parity bit is toggled to correct the parity.

3.11.4 DMA Write: A-Data Assembly Transfer of Write Data 1
The SBI nexus transfers the first write data on the SBI cycle following the command/address cycle. The
data will be transferred by the A-data assembly to the file info bus as follows (see Figures 3-25 and 3-23).

1. REC SBI B<31:28> are multiplexed to FILE INFO BUS B<31:28> because the tagis not 011,
command/address. To be valid write data, the tag must be 101.

2. REC SBI B<27:00> are latched and are driven to FILE INFO BUS B<27:00>.

3. The multiplexer that provides FILE INFO BUS L/S <1:0> has input 01 enabled because FILE
WRITE ADR <1:0> equals 01. This input is grounded for both bits.

3-44

REC SBI B<31:28>
0
3-S
LTH | B<31:28>
,, . $S16
TAG NE 011 =
REC SBI B<27:00> ‘ LTH | B<27:00>
SS16
FILE
INFO
SBI D BUS
XCVRS as
SS01- MASK 1 |Mux Ws<01:00> =00
SS05 REC SBI MSK REG = |2
<03:00> §813
SS17 3 /5515 DCO22
REGISTER
FILE WRITE ADR FILE
COMB ——
CMD IN LOG <01:00>= 01 FILE WRITE ADR
3 <03:02> TTL
PROGRES gggg —] AopRess
O\ 35 WRITE
MUX C/M<03:00> =
[EEE
SS15
<01:00> 0
) 5 FILE C/M ADR <01:00> NE
REG LOG FILE WRITE ADR<01:00> = 01
$S13 FILE C/M ADR <01:00> = 10
ss14 5514
MR-15008
Figure 3-25 DMA Write: A-Data Assembly Transfer of Write Data 1

4. FILE C/M ADR <1:0> does not equal 00, therefore REC SBI MASK<3:0> is multiplexed to
FILE INFO BUS C/M <3:0>.

5. The L/S bits will always equal 00 for the ABus write data cycles, so FILE INFO CTR PTY
depends only on the mask bits. The SBI transceivers generate an even parity bit over the mask
bits. However, the mask bits arrive in the SBIA one SBI cycle before the parity bits are written
into the register file. Mask parity is latched and held for one SBI cycle, and then inverted to be
used as FILE INFO CTR PTY.

6. REC SBI P1, parity over REC SBI B<31:00>, is inverted to provide parity over FILE INFO
BUS B<31:00>, FILE INFO A/D PTY.

The tri-state multiplexers and tri-state latches are enabled to place the write data on the file info bus when
an acknowledge is enabled for the write data word. The enabling signal is delayed to provide the register
file write pulse.

E 3.11.5 DMA Write: A-Data Assembly Transfer of Write Data 2
Write data is transferred to the file info bus according to Figures 3-26 and 3-23 as follows.

1. FILE INFO BUS B<31:00> is transferred as with write data 1.

3-45

REC SBI B<31:28>

9 35
LTH B<31:28>
1 $516
TAG NEO11 7S
REC SBI B<27:00> LTH B<27:00>
SS16
FILE
INFO
SBI BUS
XCVRS O\ 35
$501- 1 |Mux Ls<01:00> =00
$S05)
B REGISTER
T FILE WRITE ADR FILE
CMD IN L0G <01:00>= 10 FILE WRITE ADR
PROGRESS SS29 <03:02> - TTL
§S522] ADDRESS
CMD O\ 35 WRITE
PROM MUX C/M<03:00> =
ss13 1101
Assts
— —— FILE C/M ADR <01:00> = 00
| | reG LOG FILE WRITE ADR<01:00> = 10
5513 FILE C/M ADR <01:00> = 00
SS14 SS14
Figure 3-26 DMA Write: A-Data Assembly Transfer of Write Data 2

2. FILE INFO BUS L/S <1:0> is again 00. The only difference is that multiplexer input 2 is
enabled because FILE WRITE ADR <1:0> = 10.

3. The contents of the command register address the command PROM, which will provide the
ABus command on FILE INFO BUS C/M <3:0>. The command is routed through multiplexer
input 1 because FILE C/M ADR <1:0> = 00. This will enable placing the command in the
register file with the command/address.

4, FILE INFO A/D PTY is the same as for write data 1.

5. FILE INFO CTR PTY is the same as for write data 1.

The tri-state multiplexers and tri-state latches are enabled as for write data 1.

3-46

3.11.6 DMA Write: Acknowledge

The SBIA transmits an acknowledge on the SBI, two SBI cycles after receiving the command/address and
write data longwords. An acknowledge is transmitted as SBI CONF <1:0> = 01 for the command address
if the following conditions exist.

The tag equals 011, command/address.

There are no parity errors. |

The address is within the bounds of memory as determined by the configuration register.
The function is a valid function.

There is no interlock sequence fault.

N W=

An acknowledge is transmitted for the write data longwords if the following conditions exist.

1. The command/address was a write function (expecting write data).
2. The tag = 101, write data.
3. There are no write data parity errors.

3.11.7 DMA Write: Sending IOA Request to the MBox

At approximately the same time that the second write data longword is being written into the register file,
the circuitry that enables sending the acknowledge queues up the DMA requests by setting a command
ready flip-flop. If no other DMA request has issued an IOA request to the MBox, an IOA request is
asserted as SB ABUS IOA REQUEST [N]. If another DMA request has issued an IOA request, the
present request remains queued until the first request is satisfied, at which time the request is honored.

3.11.8 DMA Write: MBox Reads the Register File

The MBox, in response to the IOA request, reads the register file to determine what it is expected to do. If
the MBox were to wait until it received the command/address and then branch on the command, valuable
time would be lost. To increase response time, as soon as the MBox selects the SBIA with MCC ABUS
IOA SELECT [N], ABUS WR CMD and ABUS MSKED CMD are gated to the MBox. The MBox
microcode is able to branch on these conditions without waiting for the command/address to be decoded.

The MBox reads the command/address and both of the write data longwords from the register file in
much the same manner as for CPU read data (see Figure 3-27).

After the MBox has received and arbitrated the IOA request, it selects the SBIA with MCC ABUS IOA
SELECT [N]. MCC ABUS ADDRS CTRL <1:0> = 00 enables loading the register file ECL read
address. Address bits <1:0> are selected as 00 because MCC ABUS CPU BUF SEL is not asserted (Table
3-1). Address bits <3:2> are selected according to the transaction buffer that was queued up to request
DMA service (Table 3-14). Because MCC ABUS MBOX OUT is not asserted, data is read from the
register file.

On the ABus cycle following the loading of the address, the MBox reads the command address and drops
MCC ABUS ADDRS CTRL <1> (asserted low), which causes the register file address to increment to-
XXO01, the location for the first write data. On the next ABus cycle, write data 1 is gated to the MBox. The
register file address is incremented again, this time to XX10, the address for the second write data. On the
following ABus cycle, write data 2 is gated to the MBox. The MBox then drops MCC ABUS IOA
SELECT [N] and MCC ABUS ADDRS CTRL <0>.

The MBox monitors the command/address for the cache/memory address, and stores the write data. If
there are no errors, the MBox informs the SBIA by the assertion of MCC ABUS DMA DONE [N]. The
reception of DMA DONE allows the SBIA to free the DMA transaction buffer that was tied up during the
transaction.

3-47

T0 TO T0 TO TO T0 T0 T0 T0

ABUS DATA ADDRS <31:00> H
ABUS CMD MASK <03:00> H q
{ (
ABUS LEN STAT <01:00> H { cn wol [X wp2 .
ABUS CTRL PTY H
ABUS DAT PTY H \
MCC ABUS I0A REQUEST [N] H =t —
MCC ABUS I0A SELECT [N] H [\ {
d ¢
MCC ABUS ADDRS CTRL 1 L \ / &
(L
MCC ABUS ADDRS CTRLO L \ / —
{
MCC ABUS MBOX OUT H | —
MCC ABUS CPU BUF SEL H 4
MCC ABUS DMA DONE [N] H { / ____
i O
MCC ABUS DMA ERROR H (4 N
ABUS CPU BUF DONE H ((-
ABUS CPU BUF ERROR H s

MR-15010

Figure 3-27 DMA Quadword Write, ABus Protocol

Table 3-14 Register File ECL Read Address <03:02>

Transaction ECL FILE
Buffer Request ADR <03:02>
DMAA 01

DMAB 10

DMAC 11

DMAI 00

If there is an error, the MBox responds with MCC ABUS DMA ERROR. The reception of the DMA
error frees up the DMA transaction buffer as the DMA DONE would have, and also generates an
interrupt.

3.12 DMA READ

Like the DMA write, the DMA read must be set up by CPU writes to the SBI nexus. When the proper
registers have been loaded, the SBI nexus carries out the DMA read transaction. When the nexus gains
control of the SBI, it transmits an SBI command/address to the SBIA, which loads the command/address
into a transaction buffer in the register file. The SBIA requests MBox service by asserting SB ABUS I0A
REQUEST [N].

3-48

The MBox, after arbitration, in response to the IOA request, reads the command/address word from the
SBIA register file. Because the command is for a read, the MBox obtains the data from cache or memory
and places the read data in the SBIA register file, in the same DMA transaction buffer that holds the
command/address. When the SBIA can get control of the SBI, it transfers the read data from the register
file to the SBI, to be consumed by the nexus that originated the DMA transaction.

3.12.1 DMA Read: Command/Address Reception
If the function (REC SBI B<31:28>) is not valid, the SBIA transmits an SBI error confirmation to notify
the nexus of the error condition.

If the SBIA detects an SBI parity error, it asserts SBI FAULT to notify all nexus to latch their error
registers. The SBIA, on receiving SBI FAULT, sets the fault latch, and if the fault error is enabled by SBI
FAULT REG<18>, the CPU is interrupted. The command/address is received in the same manner as for
a DMA write. The errors on command/address reception, SBI parity error, and invalid function are also
the same.

The two main differences between the DMA write and DMA read are as follows (see Paragraph 3.11.1).

1. When the function is loaded into the command register, REC SBI <29> is not set because the
command is for a read.

2. The contents of the command register are used to address the command PROM, but there is no
delay in transferring the command to the register file as with a DMA write.

3.12.2 DMA Read: Register File TTL Write Address Generation

The most significant bits of the register file TTL write address, TTL FILE ADR <03:02>, are generated
in the same manner as for a DMA write. These bits depend on the DMA transaction buffer that is going to
be used (see Table 3-12). With a DMA read, the mask bits do not have to be manipulated as with a DMA
write, and there is no write data to load into the register file. Because the only data loaded into the register
file is the command/address, the least significant bits are 00, the location for the command/address for
any DMA transaction buffer.

3.12.3 DMA Read: A-Data Assembly Command/Address Transfer

If the conditions described in Paragraph 3.9.1, DMA Buffer Control, are met, the command/address is
transferred to the file info bus according to Figures 3-28 and 3-29. The SBI command/address is routed
from the SBI transceivers to the A-data assembly, and to the register file in the following manner.

sBI TAG NEXUS | MASK | FcN ADR
COMMAND/ADDRESS | 011 D 0000 1000 | <27:00>
LOAD] CMD
ID FILE REGISTER

DECODE —J
TAG =011 I — ENA

PROM ZEROS
0 B31
[| [[
ABUS s CMD/MSK 0000 ADR
COMMAND/ADDRESS 01 0001 <27:00>

MR-14946

Figure 3-28 DMA Quadword Read: Command/Address Transfer

3-49

3-S
0000 LTH | B<31:28>
SS16
TAG =011
3-S
REC SBI B<27:00> LTH | B<27:00>
SS16
ID <04:00> ID FILE
FILE INFO
SBI — 0, B31 BUS
XCVRS ss18) N
$S01- 1 | MUX L/S<01:00> = 01
$S05
2
3 DC022
Ss1
S15 REGISTER
e FILE WRITE ADR) FILE
CMD IN L0G <01:00>= 00 TTL FILE ADR
PROGRESS sS29 <03:.02> TTL
S522 —| ADDRESS
o\ 35 WRITE
PROM MUX C/M<03:00> =
0001
$S13 1
s815
L[cmD COMB :
REG LOG FILE WRITE ADR<01:00> = 00
TAG =011 cs14 $S13 FILE C/M ADR <01:00> = 00
LOADS SSi4

MR-14947

Figure 3-29 DMA Quadword Read: C/A Transfer to DC022

REC SBI <27:00> is transferred directly to FILE INFO B<27:00> as the read address.

The decoding of command/address tag, 011, with no parity errors, forces FILE INFO BUS
<31:28> to 0000.

The SBI function, 1000, will be latched in the command register when the command/address
tag, 011, is decoded. The contents of the command register are used to address the PROM,
whose contents will be directed to FILE INFO C/M<3:0>. In this case, because the SBI
function is an extended read, the PROM output is 0001, an ABus read command.

FILE INFO L/S<1> is forced to a 0 and FILE INFO L/S<0> receives REC SBI B<31>, a
logic 1. A L/S of 01 indicates a quadword data transfer.

FILE INFO A/D PTY is based upon REC SBI P1. Because the SBI function always contains
an odd number of logic 1s and the corresponding bits written into the register file are Os, REC
SBI P1 can be used as FILE INFO A/D PTY except for an extended read with address bit 00
set. In this case, bit 00 is reset, and FILE INFO A/D PTY is complemented.

3-50

6. FILE INFO CTR PTY is dependent on REC SBI B<31>. The command/mask bits written
into the register file for a DMA read always contain an odd number of 1s. The only other bit
involved with control parity is L/S <00>, which is just REC SBI B<31>. If the DMA read is
for a quadword, an extended read, REC SBI B<31> is set, as is will L/S <00>.

In this case FILE INFO CTR PTY is asserted. If REC SBI B<31> is not asserted, L/S <00>
will not be asserted. There will be an odd number of 1s, all of them in the command, so FILE
INFO CTR PTY will be equal to 0.

3.12.4 DMA Read: ID File

The ID field in the command/address, ID <04:00>, designates the source of the command. When the read
data is transmitted onto the SBI, it must contain the same ID to enable the proper nexus to receive the
read data.

The ID file is addressed by the upper two bits of the register file TTL write address, TTL FILE ADR
<03:02>, and will be loaded with ID <04:00> from the command/address. This same ID is transmitted
with each read data word.

To enable generating proper parity when the read data is transmitted on the SBI, the ID file must contain
parity for the ID that is being stored. Each SBI bus transceiver can handle four bits, and, because there are
five ID bits, it takes more than one SBI bus transceiver. When grouped with the three tag bits, two SBI
transceivers are sufficient.

It is a command/address cycle, so the tag is known to be 011. Therefore, the received parity bits from the
two transceivers can be exclusive ORed to provide even parity over the ID bits. This even parity bit is
stored in the ID file to be transmitted with the read data.

3.12.5 DMA Read: Acknowledge
The SBIA will transmit an acknowledge, SBI CONF <01:00> = 10, two SBI cycles after receiving the
command/address if the following conditions exist.

1. The tag equals 011, command/address.

2. There are no parity errors.

3. The address is within the bounds of memory as determined by the configuration register.
4. There is no interlock sequence fault.

3.12.6 DMA Read: I0OA Request

At about the same time the acknowledge is being transmitted on the SBI, the command/address is being
written into the register file; the circuitry that enables sending the acknowledge queues up the DMA read
request by setting a command ready flip-flop. If no other DMA transaction buffer has issued an IOA
request to the MBox, SB ABUS IOA REQUEST [N] will be asserted. If another DMA transaction buffer
has an IOA request in progress, the current request waits until the previous request has been satisfied.

3.12.7 DMA Read: MBox Reads the Register File
The MBox arbitrates the IOA request, and when it is ready to service the DMA request, it reads the SBIA
register file to obtain the command/address (see Figure 3-30).

When the MBox selects the SBIA with MCC ABUS IOA SELECT [N], the SBIA sends ABUS WR CMD
and ABUS MSKED CMD (both equal zero for an extended read) to inform the MBox of the type of
operation. This allows the MBox microcode to branch before it receives the command/address.

3-51

TO T0 TO T0 TO T0 TO T0 TO

ABUS DATA ADDRS <31:00> H q

ABUS CMD MASK <03:00> H
C/A RD1 RD2
ABUS LEN STAT <01:00> H \ X \
ABUS CTRL PTY H j
ABUS DAT PTY H \
MCC ABUS I0A REQUEST [N] H —-——/
MCC ABUS IOA SELECT [N] H [\—_/ \
MCC ABUS ADDRS CTRL 1 L \ f
MCC ABUS ADDRS CTRLO L \ / \ -/
MCC ABUS MBOX OUT H / \
MCC ABUS CPU BUF SEL H
MCC ABUS DMA DONE [N] H / \
r ===
’ \

MCC ABUS DMA ERROR H
ABUS CPU BUF DONE H
ABUS CPU BUF ERROR H

MR.14948

Figure 3-30 DMA Quadword Read ABus Protocol (with cache hit)

The register file ECL read address is selected in the same manner as for a DMA write (see Table 3-14 and
Paragraph 3.10.8). On the ABus cycle following the loading of the ECL FILE ADR, the MBox reads the
command/address word and drops MCC ABUS ADDRS CTRL 1 L (= 1). This will cause the ECL FILE
ADR to increment by 1 to the location of the first read word. MCC ABUS ADDRS CTRL O L is then
dropped (= 1), which causes the address to be held.

The MBox drops IOA select after reading the command/address. It now gets the read data from cache or
memory. Figure 3-30 assumes a cache hit, but whatever the case, the MBox does not assert IOA select
until the data is available. The first read data longword is placed on the ABus and written into the register
file at location XX01. MCC ABUS ADDRS CTRL <01:00> equal 10 will increment the ECL FILE
ADR to XX10, and the second read data longword is written into the register file.

At this point, both read data longwords are stored in the SBIA register file awaiting transfer to the SBI.
They are in locations 2 and 3 of the transaction buffer that initiated the IOA request.

3.12.8 DMA Read: DMA DONE/ERROR

When the MBox transfers the first read data longword to the ABus, it also asserts MCC ABUS DMA
DONE [N] to notify the SBIA that the data is on the ABus. If the MBox had detected either an address or
command parity error on the command/address, it would also assert MCC ABUS DMA ERROR [N] at
the same time.

When the SBIA receives DMA DONE, it requests the SBI by asserting DMA TR (transfer request). If
there is an error, the transfer is aborted by clearing the DMA request in progress.

3-52

3.12.9 DMA Read: Register File TTL Read Address

The register file TTL read address must be set up to read the data and transfer it to the SBI. The file read
address is generated according to the DMA transaction buffer with a request in progress (IOA request to
the MBox) and DMA TR (see Table 3-2 and Paragraph 3.2.3). If DMA transaction buffer A contained
the read data, FILE READ ADR <03:00> would equal 0101, the location for the first read data
longword.

The address is loaded and held until the read data has been transferred to the SBI. The address is
incremented to 0110 when the first longword is transferred to the SBI.

3.12.10 DMA Read: DMA Read Data Transfer to the SBI

Once the register file TTL read address has been set up, the contents of the addressed location are read out
and written into the file data latch every SBI cycle. However, the SBI transceivers will not be enabled until
the SBIA has received DMA ARB OK, which signifies that the SBIA has control of the SBI for a DMA
transfer of read data. When DMA ARB OK is received, the SBIA holds the SBI for an extra cycle by
asserting SEND DMA HOLD. This will cause BUS SBI TROO to be asserted. The read data longwords are
read from the register file and driven onto the SBI (see Figure 3-31) according to the following list.

DC022 FILE
REG FILE INFO BUS DATA
FILE LTH
SBA1-4 $S41 — XMIT SBI
—] B <31:00>
— 3 ss46, 47
PARITY | A/D PE
CHECK DATA STATUS
] CNTRL PE
SS40 — XMIT SBI
— MASK <01>
— 3 ss47
[O xmiT s
= —1 TAG <02:00>
—42 [XMIT SBI MASK
<03, 02, 00>
—3Assa7
MUX SEL <1:0> = 00
D
TTL FILE ADRS <03:02> FILE ID <04:00>
$S18 XMIT SBI
USE MAINTID =0 D <305
SENDCPUID=0

MR-14949

Figure 3-31 DMA Quadword Read: S-Data Assembly Transfer of
Read Data

3-53

1. XMIT SBI B<31:00>: The contents of the addressed location in the register file is latched in
the file data latch. Bits <31:00> are passed through the zero input of multiplexers to the SBI
transceivers.

2. XMIT SBI TAG <02:00> = 000 because the multiplexer inputs are at ground potential.

3. XMIT SBI MASK <03:02, 00> = 000 because the multiplexer inputs are also at ground
potenial.

4. XMIT SBI MASK <01> depends on the presence or lack of data or control parity errors.
Parity is checked over the contents of the file data latch, and a parity error causes the assertion
of this mask bit. A MASK field of 0010, when sent with the read data, indicates read data
substitute, an error condition, and allows the requesting device to detect the error.

5. XMIT SBI ID <04:00>: During the command/address cycle, the ID file was loaded with the ID
from the command/address — the ID of the nexus that initiated the DMA transaction (see
Paragraph 3.12.4). The ID file is being addressed by TTL FILE ADRS <03:02>. The ID is
transferred to the SBI drivers through the zero input of multiplexers.

6. XMIT SBI PO: The ID file contains ID PARITY, even parity over the ID bits. It is routed to the
SBI as PO. This may be done because the tag and mask bits are all Os. If there is a data parity
error, control parity error, or the MBox indicates an ABus error (either L/S bit set),
MASK<01> is set (read data substitute) to inform the requesting device of the error. But, the
mask field now equals 0010, and the parity bit is now incorrect. Therefore, for a data or control
parity error, the control parity bit, PO, is toggled to insure that control parity is correct for the
control field. This insures that only the requesting device detects the error.

7 XMIT SBI P1: If there is no parity error over the data bits, file data latch A/D parity (odd
parity) is toggled to provide even parity for the SBI. If there is a parity error over the data bits,
the parity bit is already even parity. It is not changed. The data on the SBI will be bad data, but
because the parity is correct, only the requesting device will detect the error (MASK = 0010,
read data substitute).

3.12.11 DMA Read Clear
When DMA ARB OK is received from the SBI priority arbitration chips, the DMA transaction being
serviced is removed from the command in progress state, to free the transaction buffer for further usage.
The read data cannot be destroyed before it is transferred to the SBI because the DMA has control of the
SBI for the next two cycles.

3.12.12 DMA Read: Second Read Data Longword

The register file TTL read address is incremented to the location of the second read data longword, which
is transferred to the SBI in the same manner as the first read data longword. When this data has been
transmitted on the SBI, the SBIA circuitry is in a passive state waiting for another DMA or CPU
transaction to be initiated.

3-54

3.13 SBIA SILO

The SBIA silo consists of RAMs providing a 16 location X 32-bit recorder that is loaded with selected SBI
signals during each SBI cycle. When an SBI fault is detected by any SBI nexus, including the SBIA, the
silo is locked. The CPU can read the silo to determine the sequence of events that led to the fault
condition. The silo may also be locked, for maintenance purposes, by the silo comparator (see Figure 3-32).

SBI
XCVRS
sBl SBI REC DATA 3 SILO
/ 16 X 32
AFTER FAULT| pam
222 $5 19,20
BIN SILO ADDRS <03> -
CTR Q8
SILO ADDRS <02>
SILO ADDRS <01> ADR
a1 |SLO ADDRS <00>
CLK DIAG REG gy
CPU DAT <08> IS CLR SBI TO Tk
READ SILO CNTENAT
@ CNT ENA P
SBIT1 T
REC SBI FAULT
0 Ss 19) WRITE SILO

—a__/
BIN
CTR
sS19
CPU DAT 19 o8
CPU DAT 18 o
—cro o]
- 211 | count
T¢c |~ FiELD
ENA SILO COMPf— o LOCK
COMPARE ————ot T (i
LOCK D—— CNTENAT
UNCONDITIONAL CNT ENA P

3.13.1 Silo Contents

Figure 3-32 SBIA Silo

The silo, read through the silo register, is loaded with the following SBI signals.

REG DATA BUS
32 BITS

MR-14950

1. Silo register <31>: AFTER FAULT. Asserted the cycle after the SBI FAULT is cleared;
loaded into the silo in the first location loaded following a fault

2. Silo register <30>: SBI INTLK

3. Silo register <29:25>: SBI 1D<04:00>

4. Silo register <24:22>: SBI TAG<02:00>

3-55

5. Silo register <21:18>: SBI B<31:28> or SBI MASK<03:00>. If SBI TAG = 011, com-
mand/address, the SBI command, B<31:28> will be loaded into the silo. Otherwise, the SBI
mask will be loaded

6. Silo register <17:16>: SBI CONF<01:00>
7. Silo register <15:00>: SBI TR<15:00>.

3.13.2 Locking the Silo
The silo may be locked for two reasons:

1. The SBIA receives SBI FAULT or the SBIA detects an SBI fault for any of the following
conditions.

Interlock sequence fault
Unexpected read fault
Write sequence fault
Multiple transmitter fault
SBI parity fault.

o0 o

2. The SILO comparator has detected that a predetermined number of SBI events have been
written into the silo (used as a maintenance tool).

3.13.3 Silo During Normal System Operation

Every SBI cycle, at TO, the silo is loaded with the contents of the SBI transceivers and AFTER FAULT.
The silo address is incremented on the following T1, to insure that the next SBI cycle is loaded into the
next sequential silo location. The sequence continues indefinitely as long as there are no SBI faults.

When an SBI nexus detects an SBI fault, that nexus transmits BUS SBI FAULT on the SBI, which is
received by the SBIA at T2 and latched at —T?2, asserting REC SBI FAULT. The assertion of REC SBI
FAULT prevents writing further data into the silo and disables incrementing the silo address.

NOTE
The present SBI cycle will not be written into the
silo. The latest silo data is the SBI cycle previous to
the assertion of BUS SBI FAULT.

In response to the FAULT interrupt, the CPU may read the contents of the silo by reading the silo
register. Each time the contents of the silo register are transferred to the register file, the silo address is
incremented. If the CPU does not clear the silo address, but starts reading at the present silo address, the
sixteenth location read is the last SBI cycle loaded into the silo. The fifteenth location read is the next-to-
the-last SBI cycle loaded into the silo, and so on. Also, if the number of SBI bus cycles was less than 16
since the last time the silo was locked, the first location loaded after the last fault was cleared has bit 31,
AFTER FAULT, asserted.

3.13.4 Silo During Maintenance

When used for maintenance, the silo is capable of being locked in two ways, in addition to the uncondition-
al lock for SBI FAULT. First, it can be locked after a predetermined number of SBI cycles, ranging from
1 to 16. Also, it can be locked after a predetermined number of SBI cycles after a particular SBI event has

taken place.

3-56

3.13.4.1 Silo Unconditional Lock - The CPU loads the silo counter, silo comparator register <19:16>,
with the 1’s complement of the number of SBI cycles to load into the silo. At the same time, the CPU sets
LOCK UNCONDITIONAL, silo comparator register <29>. LOCK UNCONDITIONAL enables the
counter to count once each SBI cycle after the silo has been loaded. When the count reaches all 1s, F, the
silo is locked. The address is not incremented and no further data is loaded into the silo.

When the silo is locked, a compare interrupt flip-flop is set. If the CPU has set silo lock interrupt enable
(SILO LOCK INT ENA), silo comparator register <30>, COMP INTR will interrupt the CPU. The
compare interrupt is cleared when the CPU loads the silo counter with a count other than F.

3.13.4.2 Silo Conditional Lock - In this silo maintenance mode, the silo is loaded every SBI cycle, as in
normal operation, with the silo address being incremented after each SBI cycle. However, the count will be

incremented only after a predetermined SBI event has been detected. A silo comparator will compare SBI
conditions with the following SBIA register contents.

1. SBI maintenance register <27:23>: Maint ID<04:00>
2. Silo comparator register <26:23>: Maint command/mask <03:00>
3. Silo comparator register <22:20>: Maint TAG <02:00>.
The comparator can be programmed to check for the following comparisons.
1. The SBI ID equals the maintenance ID.
2. The SBI ID and SBI TAG equal the maintenance ID and TAG.
3. The SBI ID, SBI TAG, and SBI command/mask equal the maintenance ID, TAG, and
command/mask. If the SBI TAG = 011, command mask, the comparison is for commands;

otherwise, the masks are compared.

SBI silo comparator register <28:27>, COND LOCK CODE <01:00> controls which comparison will be
made. Table 3-15 shows how the comparisons are controlled by COND LOCK CODE.

Table 3-15 COND LOCK CODE Control of Silo Comparisons

COND LOCK CODE

<01:00> Function

00 No compare

01 ID equal

10 ID and tag equal

11 ID and tag and command/mask equal

The CPU sets the bits according to the particular SBI ID, TAG, and command/mask the comparator is to
look for. It then loads the counter with the 1s complement of the number of SBI cycles that are to be
recorded after the enabled SBI conditions have been detected. If the CPU wishes to be interrupted when
the silo is locked, it also sets LOCK INT EN.

3-57

The silo is loaded at TO of each SBI cycle, with the address being incremented after the silo is loaded. If
the SBI data matches for the enabled comparison, the compare latch is set, enabling the silo counter to

start counting.

When the counter reaches F, the silo is locked, and if the interrupt is enabled, COMP INT will be asserted
to interrupt the CPU.

When the contents of the silo are read back, if the initial count field was 0, the first entry read from the
silo is the cycle that satisfied the comparison. The next 15 locations will be the next 15 SBI cycles.

3.14 SBIA REGISTERS
Each SBIA register will be shown'with the addresses for SBIA 0 and SBIA 1. Each illustration is made up

of the following.

1. A bit map :
2. A descriptive name for each bit, with a 0 or a 1 if they are always a logic 0 or 1
3. An indication of whether the bit is read/write, read only, or write only.

Each table is laid out as follows.

1. Bit numbers

2. The descriptive name used in the bit map, 0 for zero
3. The actual print set name for the signal

4. A brief description of the bit.

3.14.1 Configuration Register
The configuration register bit map is given in Figure 3-33 and defined in Table 3-16.

CONFIGURATION REGISTER
2008 000, 2208 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0 0 MEMORY SEPARATOR 0) 0 0
{ L e ! 4 . Il 1 L
RO RO
R/W RO
15 14 13 12 1 10 09 08 07 06 05 04 03 02 o1 00
0 0 0 0 0 0 0 0 ABUS ADAPTER TYPE SBIA REVISION
o, 0o o 1 6 , ©0 ., 0 0
} RO R0 JI
et

Figure 3-33 Configuration Register

3-58

Table 3-16 Configuration Register Bit Definition

Bit

Name

Definition

<31:30>
<29:20>

<19:08>

<07:04>

<03:00>

ZERO
MEMORY SEPARATOR

ZERO

ABUS ADAPTER TYPE

ABUS ADAPTER REVISION

(SS28) — Read only as zero

SS28 MSR <27:18> - Defines the memory
address boundary. Is equal to the number of
megabytes of memory addressable over the
ABus. If bit 29 is asserted, there are 512
Mbytes of memory, and bits <28:20> are dis-
regarded when the hardware checks the DMA
address. These bits are bits <29:20> in the
memory separator register, but within the
SBIA they are shifted right by two bits to
match the physical address.

(SS36) - Read as Os provided by the zero fill
logic.

BUS REG D<07:04> (SS28) - Identify the
type of ABus adapter, 0001 for the SBIA.

BUS REG D<03:00> (SS28) - Least signifi-
cant bits identify the revision of the ABus
adapter, hardwired.

CONTROL AND STATUS REGISTER

2008 0004. 2208 0004

27 26 25 24 23 22 21 20 19 18 17 16

31 30 29 28
ENABLE | ENABLE CPU TR SELECT
MASTER ;
ENABLE 8 4 1
out IN | 2
R/W R
/W R/W RO R0 "0
15 14 13 12 1 10 09 08 07 06 05 04 03 02 01 00
0 0 o 0 0 0 o 0 0 0 0 0 0 0 0 o

Figure 3-34 Control and Status Register

3.14.2 Control and Status Register
The control and status register bit map is given in Figure 3-34 and defined in Table 3-17.

3-59

Table 3-17 Control and Status Register Bit Definitions

Bit

Name

Definition

<31>

<30>

<29>

<28>

<27:24>

<23:00>

MASTER INTERUPT ENABLE

ENA SBI CYCLES OUT

ENA SBI CYCLES IN

ZERO
CPU TR SELECT <08:04>

ZERO

SS29 MSTR INTR ENA - When set, enables
the SBA module to establish priority of inter-
rupts and generates the appropriate interrupt
priority level for CPU polling.

SS29 ENA SBI OUT - Must be set for nor-
mal operation. Enables CPU to access SBI
nexus registers. If the CPU attempts to access
an-SBI nexus register with this bit reset, an
error condition occurs, and error summary
register bits 20 and 19 are set (see description
of the error summary register, Paragraph
3.14.3).

SS29 ENA SBI IN - Must also be set for
normal operation. Enables all DMA activity
through the SBIA. If this bit is not set, the
SBIA will not recognize SBI function codes
and will not respond to SBI commands (SBI
confirmation is 00, no response).

(SS33) - Read-only bit, will always be zero.

CPU TR SEL <08:04> (SS07) - Provide
backpanel visibility of the jumpers used to
select the SBI TR for CPU transactions. This
field is the 2’s complement of the TR level.

(SS36) — Always read as Os provided by the
zero fill logic.

3-60

3.14.3 Error Summary Register
The error summary register bit map is given in Figure 3-35 and defined in Table 3-18.

ERROR SUMMARY REGISTER
2008 0008, 2208 0008

31 30 29 28 27 26 2 24 23 2 21 20 19 18 17 16
CcPU cPU cPU cPu ERROR STATE MULTIPLE
COMMAND LENGTH/STATUS 0 o BUFFER | A/D CONTROL | ADDRESS | DETECTED | MACHINE o |cpu
ERROR | PARITY | PARITY | ERROR |ON PARITY ERAOR
03 , 02 o 00 o a0 LOCK ERROR | ERROR C/A ERROR
RO R/W RO RO RO RO RIW RO RO
15 14 13 12 1" 10 09 08 07 06 05 04 03 02 01 00
DMAC TRANSACTION BUFFER DMAB TRANSACTION BUFFER DMAA TRANSACTION BUFFER DMAI TRANSACTION BUFFER
0 SBIA SBIA MBOX 0 SBIA. SBIA MBOX 0 SBIA SBIA MBOX INTER- SBlA |seia MBOX
DETECTED | DETECTED | DETECTED DETECTED | DETECTED | DETECTED OETECTED | DETECTED| DETECTED | LOCK |DETECTED|DETECTED |DETECTED
A/DPE__|CNTRL PE_|ERROR A/DPE__ | CNTRLPE_|ERROR A/DPE | CNTRLPE | ERROR | TIMEOUT | A/DPE |CNTRLPE | ERROR

RW

Figure 3-35 Error Summary Register

Table 3-18 Error Summary Register Bit Definitions

Bit Name Definition

<31:28> COMMAND <03:00> BUS REG D<31:28> (SS26) - The ABus
command bits for a CPU 1/0O register
read/write. Loaded every time the com-
mand/address latch is loaded, and latched by
CPU ERROR LOCK, bit 23.

<27:26> LENGTH/STATUS <01:00> BUS REG <27:26> (SS26) - The ABus data
length for a CPU I/O register read/write.
Also loaded every time the command/address
latch is loaded, and latched by CPU ERROR
LOCK, bit 23.

<25:24> ZERO (SS26) - Read-only bits. Hardwired to a logic
0.
<23> CPU BUFFER ERROR LOCK SS37 CPU ERROR LOCK - Asserted for

any of the following errors on a CPU 1/0
register read/write.

1. A/D parity error (bit 22)

2. Control parity error (bit 21)

3-61

Table 3-18 Error Summary Register Bit Definitions (Cont)

Bit

Name

Definition

<22>

<21>

<20>

<19>

CPU A/D PARITY
ERROR

CPU CONTROL PARITY
ERROR

CPU ADDRESS ERROR

ERROR DETECTED ON C/A

3. Address error (bit 20)

4. CPU read/write timeout on SBI (SBI
error register bit 12)

5. SBI error (SBI error register bit 08).

If this bit is set, error summary register
<31:26>, the SBI error register, and the time-
out address register are latched. If clear, these
bits represent the most recent transaction.
Writing this bit clears error summary register
<22:19, 16>.

SBAN A/D PTY BAD - Set if a parity error
is detected on the address/data bits of the
command/address or write data for a CPU
1/O register read/write. If the error is
detected on the command/address, bit 19 is
also set. Parity is checked on the output of the
file data latch. If this bit is set, bit 23 is set.
Cleared when the CPU writes bit 23.

SBAN CNTRL PTY BAD - Set if a parity
error is detected on the control field of the
command/address or write data for a CPU
1/0 register read/write. If the error is
detected on the command/address cycle, bit
19 is also set. Parity is checked on the output
of the file data latch. If this bit is set, bit 23 is
also set. Also cleared when the CPU writes bit
23.

SS38 LOCAL ADR ERR - Set if the CPU
accesses a nonexistent SBIA register or when
an SBI nexus register is accessed when the
control and status register bit 30 is clear (CPU
access to the SBI is disabled). When it is set, it
will set bit 23, and it is cleared when the CPU
writes bit 23. This error is detected when the
command/address word is available, so bit 19
should also be set.

SBAN ERR ON C/A - Read-only bit set if
an address/data parity error, a control parity
error, or an address error is detected on the
command/address cycle. The setting of this
bit will set bit 23. This bit will be reset when
the CPU writes bit 23.

3-62

Table 3-18 Error Summary Register Bit Definitions (Cont)

Bit

Name

Definition

<|8>

<l7>

<16>

<|5>

<l4>

<|3>

STATE MACHINE PARITY
ERROR

ZERO
MULTIPLE CPU ERROR

ZERO

DMAC TRANSACTION BUFFER
SBIA DETECTED A/D PE

DMAC TRANSACTION BUFFER
SBIA DETECTED CNTRL PE

SBAO FORCE PARITY TRAP - Set if the
state machine microword does not contain
even parity. The occurrence of this error
causes a CPU transaction to be aborted, if one
is in progress, and generates an interrupt. A
state machine parity error can occur if no
CPU transaction is in progress, so it will not
set bit 23.

(SS33) - Read-only bit, hardwired to a logic 0.

SBAN MULT CPU ERR - Can be set only if
bit 23 is already set and a CPU addressing
error is detected on the command/address
cycle or there is an address/data or control
parity error on the command/address or write
data. Not set for a write data parity error for
the transaction that sets bit 23, but for a sub-
sequent transaction. Bit 16 is reset when the
CPU writes bit 23.

(SS32) - Read-only bit, hardwired to a logic 0.

SS30 DMAC A/D ERR - Set for a data pari-
ty error when the read data is being trans-
ferred from transaction buffer C to the SBI
during a DMA read. Cannot be set if bits 13
or 12 have been previously set. Cleared by the
CPU writing it. The DMAC com-
mand/address register and DMAC ID register
are locked if this bit is set. Setting this bit
generates a local interrupt.

SS30 DMAC CNTRL ERR - Set for a con-
trol parity error when the read data is being
transferred from transaction buffer C to the
SBI during a DMA read. Cannot be set if bits
14 or 12 have been previously set. Cleared by
the CPU writing it. The DMAC com-
mand/address register and DMAC ID register
are locked if this bit is set. Setting this bit
generates a local interrupt.

3-63

Table 3-18 Error Summary Register Bit Definitions (Cont)

Bit

Name

Definition

<|2>

<ll>

<10>

<09>

<08>

<07>

DMAC TRANSACTION BUFFER
MBOX DETECTED ERROR

ZERO

DMAB TRANSACTION BUFFER
SBIA DETECTED A/D PE

DMAB TRANSACTION BUFFER
SBIA DETECTED CNTRL PE

DMAB TRANSACTION BUFFER
MBOX DETECTED ERROR

ZERO

SS30 DMAC MBOX ERR - Set if the MBox
detects a parity error or NXM on the transfer
of command/address from the DMAC trans-
action buffer. Cannot be set if bits 14 or 13
have been previously set. Cleared by the CPU
writing it. The DMAC command/address reg-
ister and DMAC ID register are locked if this
bit is set. Setting this bit generates a local
interrupt.

(SS32) - Read-only bit, hardwired a logic 0.

SS30 DMAB A/D ERR - Set for a data pari-
ty error when the read data is being trans-
ferred from transaction buffer B to the SBI
during a DMA read. Cannot be set if bits 09
or 08 have been previously set. Cleared by the
CPU writing it. The DMAB com-
mand/address register and DMAB ID register
will be locked if this bit is set. Setting this bit
generates a local interrupt.

SS30 DMAB CNTRL ERR - Set for a con-
trol parity error when the read data is being
transferred from transaction buffer B to the
SBI during a DMA read. Cannot be set if bits
10 or 08 have been previously set. Cleared by
the CPU writing it. The DMAB com-
mand/address register and DMAB ID register
are locked if this bit is set. Setting this bit
generates a local interrupt.

SS30 DMAB MBOX ERR - Set if the MBox
detects a parity error or NXM on the transfer
of command/address from the DMAB trans-
action buffer. Cannot be set if bits 10 or 09
have been previously set. Cleared by the CPU
writing it. The DMAB command/address reg-
ister and DMAB ID register are locked if this
bit is set. Setting this bit generates a local
interrupt.

(SS32) - Read-only bit, hardwired to a logié 0.

3-64

Table 3-18 Error Summary Register Bit Definitions (Cont)

Bit

Name

Definition

<06>

<05>

<04>

<03>

DMAA TRANSACTION BUFFER
SBIA DETECTED A/D PE

DMAA TRANSACTION BUFFER
SBIA DETECTED CNTRL PE

DMAA TRANSACTION BUFFER
MBOX DETECTED ERROR

DMAI TRANSACTION BUFFER
INTERLOCK TIMEOUT

SS30 DMAA A/D ERR - Set for a data
parity error when the read data is being trans-
ferred from transaction buffer A to the SBI
during a DMA read. Cannot be set if bits 05
or 04 have been previously set. Cleared by the
CPU writing it. The DMAA com-
mand/address register and DMAA ID register
are locked if this bit is set. Setting this bit
generates a local interrupt.

SS30 DMAA CNTRL ERR - Set for a con-
trol parity error when the read data is being
transferred from transaction buffer A to the
SBI during a DMA read. Cannot be set if bits
06 or 04 have been previously set. Cleared by
the CPU writing it. The DMAA com-
mand/address register and DMAA ID register
are locked if this bit is set. Setting this bit
generates a local interrupt.

SS30 DMAA MBOX ERR - Set if the MBox
detects a parity error or NXM on the transfer
of command/address from the DMAA trans-
action buffer. Cannot be set if bits 06 or 05
have been previously set. Cleared by the CPU
writing it. The DMAA command/address reg-
ister and DMAA ID register are locked if this
bit is set. Setting this bit generates a local
interrupt.

SS30 DMAI TIMEOUT - Set if an interlock
write masked does not occur within 512 SBI
cycles (102.4 us) after an interlock read
masked. Cannot be set if bits 02, 01, or 00
have been previously set. Cleared by the CPU
writing it. The DMAI command/address reg-
ister and DMALI ID register are locked if this
bit is set. Setting this bit generates a local
interrupt.

3-65

Table 3-18 Error Summary Register Bit Definitions (Cont)

Bit

Name

Definition

<02>

<01>

<00>

DMAI TRANSACTION BUFFER
SBIA DETECTED A/D PE

DMAI TRANSACTION BUFFER
SBIA DETECTED CNTRL PE

DMAI TRANSACTION BUFFER
MBOX DETECTED ERROR

SS30 DMAI A/D ERR - Set for a data parity
error when the read data is being transferred
from transaction buffer I to the SBI during a
DMA interlock read. Cannot be set if bits 03,
01, or 00 have been previously set. Cleared by
the CPU writing it. The DMAI com-
mand/address register and DMALI ID register
are locked if this bit is set. Setting this bit
generates a local interrupt.

SS30 DMAI CNTRL ERR - Set for a control
parity error when the read data is being trans-
ferred from transaction buffer 1 to the SBI
during a DMA interlock read. Cannot be set if
bits 03, 02, or 00 have been previously set.
Cleared by the CPU writing it. The DMAI
command/address register and DMAI ID reg-
ister are locked if this bit is set. Setting this bit
generates a local interrupt.

SS30 DMAI MBOX ERR - Set if the MBox
detects a parity error or NXM on the transfer
of command/address from the DMALI transac-
tion buffer. Cannot be set if bit 03, 02, or 0l
have been previously set. Cleared by the CPU
writing it. The DMAI command/address reg-
ister and DMALI ID register are locked if this
bit is set. Setting this bit generates a local
interrupt.

3-66

S

3.14.4 Diagnostic Control Register
The diagnostic control register bit map is given in Figure 3-36 and defined in Table 3-19.

DIAGNOSTIC CONTROL REGISTER

2008 000C, 2208 000C

31 30 29 28 27 26 2 24 2 2 21 20 19 18 17 16
T T T
FORCE DMA TRANSACTION BUFFER BUSY
o o o 0 0 o o o o o 0 o
DMAC oMAB | DMAA | Omal
R | |
RO | R/W |
15 14 13 12 11 10 09 08 07 06 05 04 03 02 o1 00
SEABE | oiac DISABLE | Oumo, Loop ;?R$EE ENABLE
CLEAR SILO ISABL QUAD- A ABL
0 ° ° o ° o ° SiLo INCRE- DEAD 0 SBI WORD | BACK PARITY | SHORT
ADDRESS | MENT TIMEOUT | DATA MODE | ERROR | TIMEOUT
RO wo wo wo RO R/W RIW R/W RIW RIW

Figure 3-36 SBI Diagnostic Control Register

Table 3-19 SBI Diagnostic Control Register Bit Definition

Bit

Name Definition

<31:20>

<19:16>

<15:09>
<08>

<07>

<06>

<05>

ZERO <8836) - Provided by the zero fill logic.

FORCE DMA TRANSACTION SS29 FORCE DMAC (DMAB, DMAA,

BUFFER BUSY DMAI) BUSY - Used to direct DMA traffic
into specific DMA transaction buffers by forc-
ing other buffers to be busy. The state of these
bits has no effect on a DMA transaction
already in progress.

ZERO <SS32> - Hardwired to logic Os.

CLEAR SILO ADDRESS SS19 CLR SILO ADR - Clears the silo
address upon setting. When this register is
read, this bit is always O (hardwired).

DISABLE SILO INCREMENT SS29 DISABLE SILO INC - When set, pre-
vents the silo address from incrementing.
Reset during normal operations to allow the
silo address to increment. Also read as 0.

DIAG DEAD SS29 DIAG DEAD - When set, simulates
ABUS DEAD, interrupting the console and
causing a reboot. ABUS DEAD is normally
asserted by SBI FAIL. Also read as 0.

ZERO (SS30) - Hardwired to 0.

3-67

Table 3-19 SBI Diagnostic Control Register Bit Definition (Cont)

Bit

Name

Definition

<04>

<03>

<02>

DISABLE SBI TIMEOUT

FORCE QUADWORD DATA

LOOP BACK MODE

SS29 DISABLE SBI TMO - When set for
diagnostics, prevents a timeout condition while
waiting for the SBIA to gain control of the
SBI, for an acknowledgment from a nexus, or
for CPU read data.

SS29 FORCE QUAD DATA - Used by
microdiagnostics with bit 2 (loopback mode)
to provide a way to use a quadclear to loop
data back on the SBI. FORCE QUAD DATA
is set, and then the CPU executes a quadclear.
For microdiagnostics, the address is a memory
address instead of an SBI address (bit 27 is
clear).

The ABus command/address is the same as
for the quadclear data transfer to the SBI (see
Figure 3-17). It specifies a CPU write to the
quadclear register. The ABus write data is the
same except for the address, which is for a
memory (cache) address. When the com-
mand/address is transmitted on the SBI it will
be received by the SBIA, as it always is, but in
this case, the address is less than the configura-
tion register. To the SBIA it appears as a
DMA extended write mask to memory and is
handled as such.

For a normal quadclear, the write data is
forced to all 0s. In this case, FORCE QUAD
DATA enables the A-data assembly mul-
tiplexers to transfer the contents of the write
data latch (the ABus write data, 1011 and the
quadword boundary address) to the SBI.
When the second write data longword is trans-
ferred to the SBI transceivers, bits 30 and 27
will be toggled (set) to allow the setting of all
data bits on the SBI.

SS29 LOOP BACK MODE - Used by
microdiagnostics to allow a CPU read or write
to be looped back in the SBIA. The PAMM
has to be configured such that a memory
(cache) address is mapped to an I/O adapter,
and the same PAMM address, but with bits 27
and 28 inverted, is mapped to a memory
address.

3-68

Table 3-19 SBI Diagnostic Control Register Bit Definition (Cont)

Bit

Name

Definition

<01>

<00>

FORCE STATE PARITY
ERROR

ENABLE SHORT TIMEOUT

In the SBIA, LOOP BACK MODE inverts
address bits 25 and 26 if bit 27 is reset, which
will be the case if the CPU write is to a memo-
ry address.

When the CPU writes a memory location that
is mapped to an 1/O adapter, the MBox writes
the command/address and write data
longword into the register file. The SBIA will
carry out the command as a normal CPU
write. When the command/address is trans-
ferred from the command/address latch to the
SBI, because LOOP BACK MODE is set and
address bit 27 is reset, address bits 25 and 26
are inverted.

The command/address, followed by the write
data, is transmitted on the SBI. When the
SBIA clocks the SBI receivers and looks at the
received data, if the address is less than the
memory separator (in the configuration regis-
ter), it will transfer the command/address and
write data to the register file and request
MBox service.

The MBox writes the data into memory
because the address, with bits 27 and 28
inverted (bits 25 and 26 in the SBIA),
addresses a different PAMM location. This
location is mapped to memory.

This diagnostic bit can also be used with a
CPU read in a similar manner for a further
check of the SBIA logic.

SS29 FORCE STATE PTY - If set, a state
machine parity error is forced during the CPU
ARB WAIT state.

SS29 ENA SHORT TIMEOUT - When set
enables an SBI timeout in 8 SBI cycles instead
of the normal 512 cycles. Read as a 0.

3-69

3.14.5 DMA Command/Address Registers
The DMA command/address register bit map is given in Figure 3-37 and defined in Table 3-20.

DMA COMMAND/ADDRESS REGISTER
DMAI DMAA DMAB DMAC

2008 0010 2008 0018 2008 0020 2008 0028
2208 0010 2208 0018 2208 0020 2208 0028

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RECEIVED SBI COMMAND/ADDRESS

RO

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

RECEIVED SBI COMMAND/ADDRESS

RO

Figure 3-37 DMA Command/Address Error Registers

Table 3-20 DMA Command/Address Error Registers Bit Definition

Bit Name Definition

<31:00> RECEIVED SBI

COMMAND/ADDRESS BUS REG <31:00> (SS32, SS33) - Every
time a command/address is loaded into a
DMA transaction buffer in the DC022, that
command/address is also loaded into the cor-
responding DMA command/address error reg-
ister. These error registers are actually TTL
register files addressed by the upper two bits
of the DC022 write address. SBI B<31:00>
are written in these registers, with bits
<31:28> being the SBI command codes and
bits <27:00> the longword address. These
error registers are locked if the SBIA or MBox
detects a DMA error.

3-70

3.14.6 DMA ID Registers
The DMA ID register bit map is given in Figure 3-38 and defined in Table 3-21.

DMA ID REGISTER

DMAI DMAA
2008 0014 2008 001C
2208 0014 2208 001C

DMAB

2008 0024
2208 0024

DMAC

2008 002C
2208 002C

s 14 13 12 " 10 00 o8 o © o 04 o 02 0
c - l | l M.T;i
Figure 3-38 DMA ID Error Registers
Table 3-21 DMA ID Error Register Bit Definition
Bit Name Definition
<31:08> ZERO (SS36) - Forced to 0 by the zero fill logic.
<07:00> RECEIVED SBI ID BUS REG <07:00> <SS23) - Each time a

command/address is loaded into a DMA
transaction buffer in the DC022, the SBI ID is
also loaded into the corresponding DMA ID
error register, an extension of the DMA com-
mand/address error registers. These error reg-
isters, like the command/address error
registers, are TTL register files and are
addressed in the same way, by the upper two
bits of the DC022 write address. Bits <07:05>
have the inputs at ground potential so they will
always be read as 0. Bits <04:00> are loaded
with REC SBI ID <04:00>. Like the DMA
command/address error registers, these regis-
ters are locked if the SBIA or MBox detects a
DMA error.

3-71

3.14.7 SBI Silo Register
The SBI silo register bit map is given in Figure 3-39 and defined in Table 3-22.

SB1 SILO REGISTER
2008 0030, 2208 0030

31

30

29 28 27 26 25 24

22 21 20 19 18 17 16

AFTER
FAULT

RECEIVED
SBI

INTER-
LOCK

I I I |

RECEIVED SBI ID <04:00> RECEIVED SBI TAG <02:00> MASK<03> MASK<02>

1D<04> l 1D<03> | 10<02> | 10<01> | 10<00> | TAG<02> | TAG<01> | TAG<00> [B<31> B<30>

T T 1
I RECEIVED SBI MASK OR FUNCTION RECEIJED s8I

MASK<01> MASK<00>] ,
OR SBI Ion S8l CONF <01:00>

OR SBI OR SBI
B<29> B<28> |[CONF<O01 >1CONF<00>

13 12 1 10 09 08

RO

07

06 05 04 03 02 01 00

! T I
RECEIVED TR <15:00>

TR<15> | TR<14> | TR<13> | TR<12> | TR<11> | TR<10> | TR<09> | TR<08> | TR<07> | TR<oe> | TR<0s> | TR<04> | TR<03> | TR<02> | TR<01> | TR<00>

T T I I T T

RO

]
I

MA-1as87

Figure 3-39 SBI Silo Register

Table 3-22 SBI Silo Register Bit Definition

Bit

Name

Definition

<31>

<30>

<29:25>

<24:22>

AFTER FAULT

RECEIVED SBI INTERLOCK

RECEIVED SBI 1D<04:00>

RECEIVED SBI TAG<02:00>

BUS REG D<31> (SS20) - Loaded with
AFTER FAULT, an indication that the SBI
fault condition has cleared. AFTER FAULT
is asserted for only one SBI cycle and is writ-
ten into the first silo location after the fault
clears. May be used to recognize frequently
occurring fault conditions.

BUS REG D<30> (SS20) - Loaded with
REC SBI INTLK from the SBI transceivers.

BUS REG D<29:25> (SS20) - Loaded with
REC SBI ID<04:00>, an indication of which
nexus has control of the SBI.

BUS REG D<24:22> (SS20) - Loaded with
REC SBI TAG<02:00>, an indication of the
type of SBI cycle as follows.

000: Read data

011: Command/address

101: Write data

110: Interrupt summary read
“111: Diagnostic tag.

DN =

3-72

Table 3-22 SBI Silo Register Bit Definition (Cont)

Bit Name Definition
<21:18> RECEIVED SBI MASK BUS REG D<21:18> (SS20) - Contents
or FUNCTION depend on the SBI tag. If the tag is 011, com-

mand/address, the silo is loaded with the SBI
function from bits <31:28>. Otherwise, the
silo is loaded with the mask bits. The function
codes are decoded as follows.
1. 0001: Read masked
2. 0010: Write masked
3. 0100: Interlock read masked
4. Ol111: Interlock write masked
5. 1000: Extended read
6. 1011: Extended write masked.
1. Mask <03> = I: Read or write to byte 3
2. Mask <02> = 1: Read or write to byte 2
3. Mask <01> = I: Read or write to byte 1
4. Mask <00> = |: Read or write to byte 1.
The mask bit meanings for read data are as
follows.
1. 0000: Valid read data
2. 0001: Corrected read data
3. 0010: Uncorrectable error.

<17:16> RECEIVED SBI CONF <01:00> BUS REG D<17:16> (SS20) - Loaded with
the SBI confirmation bits, which have the fol-
lowing meanings.
1. 00: No response
2. 0l: Acknowledge
3. 10: Busy
4. 11: Error on the command/address.

<15:00> RECEIVED SBI TR<15:00> BUS REG D<15:00> (SS19) - Loaded with

any SBI transfer requests that may be
asserted.

3-73

3.14.8 SBI Error Register
The SBI error register bits are given in Figure 3-40 and defined in Table 3-23.

S8l ERROR REGISTER
2008 0034, 2208 0034

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15, 14 13 12 1" 10 09 08 07 06 05 04 03 02 01 00
CIP cp
0 o 0 'rmg’:)ur TIMEOUT STATUS ° E::'QH o ° o o o o o o
<01> <00> CONF
i RO RIW RO RO RO RO i RO
Figure 3-40 SBI Error Register
Table 3-23 SBI Error Register Bit Definitions
Bit Name Definition
<31:16> ZERO (SS36) - Read as Os provided by the zero fill
logic.
<15:13> ZERO (SS32) - Read-only bits, forced to 0 by hardware
ground potential.
<12> CP TIMEOUT BUS REG D<12> (SS32) — Set when there is an SBI timeout on a

CPU reference for one of the following reasons.

1. Unsuccessful access: When the SBIA does
not receive an acknowledge confirmation for
a CPU command/address or write data with-
in 512 SBI cycles (102.4 us) from the time
the SBIA first requests the SBI. Unsuccess-
ful access can be caused by the following.

a.

SBIA is unable to win the SBI through
bus arbitration.

Target nexus is always busy when
accessed.

The address is for a nonexistent device
or address.

Combinations of the first two.

3-74

Table 3-23 SBI Error Register Bit Definitions (Cont)

Bit

Name

Definition

<I1:10>

<09>

<08>

<07:00>

CP TIMEOUT STATUS <01:00>

ZERO

CPU SBI ERROR CONF

ZERO

2. If the SBIA does not receive the read data
within 512 SBI cycles of the acknowledge for
the command/address, it is a read data
timeout.

When this bit is set, error summary register 23 is
set, which locks error summary register <31:26>
(type of reference), SBI error register <11:10, 08>,
and the timeout address register (referenced
address). Reset when the CPU writes it to a 1.
This will also reset <11:10, 08>,

BUS REG D<l11:10> (SS32) - Timeout status
bits are made up of two signals as follows.

1. Bit <01>: State machine is in the read pend-
ing state.

2. Bit <OO$: SBI confirmation equals 01, busy.

Together, these two signals indicate the type of
SBI timeout.

00: SBI nexus did not respond (no response).
01: Device was busy (busy).

10: Waiting for read data.

11: Cannot happen.

bl e

These bits are locked by error summary register
bit 23, and reset when the CPU writes SBI error
register 12.

(SS32) - Read-only bits, forced to 0 by hardware
ground potential.

BUS REG D<08> (SS32) - Set when the SBI
state machine enters the error abort state if the
SBI nexus has returned an error confirmation on a
CPU read/write command/address cycle. If this
bit is set, error summary register bit 23 is set,
locking the timeout address register, error sum-
mary register <31:26>, and bits <12:10> of this
register. Reset when the CPU writes bit 12.

(SS32) - Read-only bits, forced to 0 by hardware
ground potential.

3-75

3.14.9 SBI Timeout Address Register
The SBI timeout address register bits are given in Figures 3-41 and defined in Table 3-24.

SBI TIMEOUT ADDRESS REGISTER
2008 0038, 2208 0038

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
SBI LONGWORD PHYSICAL ADDRESS
[¢] 0 0o 0
<27> <26> <25> <24> <23> <22> <21> <20> <19> <18> <17> <16>
4 L ! 1 1 n A 4
| RO
|
15 14 13 12 1 10 08 08 07 06 05 04 03 02 01 00
SBI LONGWORD PHYSICAL ADDRESS
<15> <14> <13> <12> <11> <10> <09> <08> <07> <06> <05> <04> <03> <02> <01> <00>
1 1 1 | i i A d 1 1 | 5 i A &
o |

Figure 3-41 SBI Timeout Address Register

Table 3-24 SBI Timeout Address Register Bit Definition

Bit Name Definition

<31:28> ZERO (SS36) - Forced to 0 by the zero fill logic.

<27:00> SBI LONGWORD PHYSICAL
ADDRESS BUS REG D<27:00> (SS27) - Timeout address
register is loaded with the physical address, for
the CPU command, every time a com-
mand/address is transferred from the file data
latch to the command/address latch. Locked if
error summary register bit 23 is set.

3-76

3.14.10 SBI Fault/Status Register
The SBI fault/status register bits are given in Figure 3-42 and defined in Table 3-25.

SBI FAULT/STATUS REGISTER
2008 003C, 2208 003C

31 30 29 28 27 2 2 24 23 2 21 20 19 18 17 16
UNEXPCTD|INTER- | MuLTIPLE | sa S8l sl .
s8I WRITE |READ LocK TRANS. | XMITTER P1 PO FAULT | FAULT SBI FAULT
PARITY |SEQUENCE|DATA SEQUENCE| MITTER | DURING o 0 PARITY | PARITY o o LATCH | INTERUPT | FAULT | siLO
FAULT |FAULT FAULT FAULT FAULT FAULT ERROR ERROR ENABLE WIRE LOCK
| RO R/W RIW RO RO
15 14 13 12 1 10 09 08 07 06 05 04 03 02 o1 00
o 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0
| o]

Figure 3-42 SBI Fault/Status Register

Table 3-25 SBI Fault/Status Register Bit Definitions

Bit

Name

Definition

<31>

<30>

<29>

SBI PARITY FAULT

WRITE SEQUENCE FAULT

UNEXPECTED READ DATA

SS11 FAULT REG B<31> - Set if the SBIA
detects an SBI parity error on received SBI infor-
mation. Bits <23:22> indicate an address/data or
a control parity error. Register written every SBI
cycle and locked when SBI FAULT is asserted.
Cleared when SBI FAULT is deasserted. Valid
only if bit 19 is set.

SS11 FAULT REG B<30> - Set if the SBIA is
expecting write data and receives SBI information
with no parity error, but the tag does not indicate
write data (101). Also locked when SBI FAULT

- is asserted and clears when SBI FAULT clears.

Valid only if bit 19 is set.

SS11 FAULT REG B<29> - Set if the SBIA
receives information with the SBIA ID (10000)
with a read data tag (000), but the SBIA is not
expecting read data (no read pending). Locked
when SBI FAULT is asserted and clears when
SBI FAULT clears. Valid only if bit 19 is set.

3-77

Table 3-25 SBI Fault/Status Register Bit Definitions (Cont)

Bit

Name

Definition

<28>

<27>

<26>

<25:24>

<23>

<22>

<21:20>

<19>

INTERLOCK SEQUENCE FAULT

MULTIPLE XMITTER FAULT

SBI TRANSMITTER DURING
FAULT

ZERO

SBI P1 PARITY ERROR

SBI PO PARITY ERROR

ZERO
FAULT LATCH

SS11 FAULT REG B<28> - Set if the SBIA
receives a valid command/address for an inter-
lock write masked but the interlock flip-flop is not
set (an interlock read has not occurred). Locked
when SBI FAULT is asserted and clears when
SBI FAULT clears. Valid only if bit 19 is set.

SS11 FAULT REG B<27> - Set if the SBIA
detects an ID that is not the same as the ID it
transmitted on the SBI. Locked when SBI
FAULT is asserted and clears when SBI FAULT
clears. Valid only if bit 19 is set.

SS11 FAULT REG B<26> - Sets when the
SBIA was the nexus transmitting on the SBI.
Locked when SBI FAULT is asserted and clears
when SBI FAULT clears. Valid only if bit 19 is
set.

(SS33) - Read as 0 provided by hardware ground
potentials.

SS11 FAULT REG B<23> - Indicates an SBI
parity error over SBI B<31:00>. Valid only if bit
19 is set. Locked when SBI FAULT is asserted
and clears when SBI FAULT clears.

SS11 FAULT REG B<22> - Indicates an SBI
parity error over SBI TAG <02:00>, SBI ID
<04:00>, or SBI MASK <03:00>. Valid only if
bit 19 is set and is locked when SBI FAULT is
set. Clears when SBI FAULT clears.

(SS33) - Forced to 0 by ground potentials.

BUS REG D<I19> (SS33) - If an SBI nexus
(including the SBIA) detects an SBI fault, the
nexus asserts SBI FAULT. The SBIA, upon
reception of SBI FAULT, sets the fault latch,
which keeps SBI FAULT asserted. It remains
asserted until the CPU clears the fault latch by
writing a 1 to bit 19. SBI FAULT is asserted for
the following SBI error conditions.

3-78

Table 3-25 SBI Fault/Status Register Bit Definitions (Cont)

Bit Name Definition
1. Interlock sequence fault
2. Unexpected read fault
3. Write sequence fault
4. Multiple transmitter fault
5. Parity fault.
When this bit sets, fault/status register <31:26>
and <23:22> are locked.

<18> FAULT INTERRUPT ENABLE SS21 FAULT INTR ENA - CPU sets this bit to
enable an SBI fault to generate an interrupt. The
interrupt is asserted if the fault latch, bit 19, is
set.

<17> SBI FAULT WIRE SS33 BUS REG D<17> - Indicates the state of
the SBI FAULT signal.

<16> FAULT SILO LOCK SS33 BUS REG D<16> - Set when the silo locks
due to an SBI fault. Reset when the CPU resets
the fault latch, bit 19.

<15:00> ZERO (SS36) - Forced to 0 by the zero fill logic.

3.14.11 SBI Silo Comparator Register .
The SBI silo comparator register bits are given in Figure 3-43 and defined in Table 3-26.

SBI SILO COMPARE REGISTER

2008 0040. 2208 0040
31 30 29 28 27 26 26 24 23 22 21 20 19 18 17 16
COMPAR- [SILO CONDITIONAL COMPARATOR COMMAND/MASK COMPARATOR TAG COUNT FIELD
ATOR LOCK LOCK LOCK CODE
SILO INTERUPT [UNCONDI- CMD/MASK CMD/MASK CMD/MASK CMD/MASK|
LOCK ENABLE | TIONAL <01> <00> <03> | <02> |, <01> | <00> |TAG <02> TAG <01>) TAG <00>| <03> , <02> <01> | <00>
| o
15 14 13 12 1 10 09 08 07 06 05 04 03 02 01 00
MAINTENANCE TR <15:00>
| REQ <07:04> MAINT
MAINTENANCE SBI RE T
<15>) <> <13 <> <> <10 | <09> | <08> <07> | <06> | <05> | <04> <03> <02> , <01> <00>
WO/READ AS ZEROS

Figure 3-43 SBI Silo Comparator Register

3-79

Table 3-26 SBI Silo Comparator Register Bit Definition

Bit

Name

Definition

<3l>

<30>

<29>

<28:27>

<26:23>

COMPARATOR SILO LOCK

SILO LOCK INTERRUPT
ENABLE

LOCK UNCONDITIONAL

CONDITIONAL LOCK
CODE <01:00>

COMPARATOR COMMAND/MASK

SS21 CMP SILO LOCK - Set if the count in the
silo counter has reached F. When this bit is set,
the CPU is interrupted if bit 30 is set. Cleared
when the CPU loads the silo count field with a
count other than F.

SS25 SILO LOCK INTR EN - The CPU sets
this bit to enable an interrupt when bit 31, CMP
SILO LOCK, is set.

SS25 LOCK UNCOND - When set, the silo
counter counts on each SBI cycle (no comparison
is made). Causes a silo lock within 16 SBI cycles,

depending on the count loaded into the silo count
field.

SS25 COND LOCK CODE <01:00> - Deter-
mine the comparisons that enable counting the
silo counter to achieve a silo lock. If the SBI data
matches the silo comparator bits, for the enabled
comparison, the counter is enabled to increment.
The conditions are as follows.

1. 00: No compare (no comparison is made)
2. O01:SBIID
3. 10: SBI ID and SBI TAG

4. 11: SBI ID and SBI TAG and SBI
COMMAND/MASK.

SS25 COMP CMD/MSK <03:00> - Provide the
basis for the silo comparison, when it is enabled to
compare the command/mask. If the SBI tag is
011, command/address, this field is compared
with SBI B<31:28>, the SBI function. If the SBI
tag is other than 011, this field is compared to the
SBI mask bits.

3-80

Table 3-26 SBI Silo Comparator Register Bit Definition (Cont)

Bit

Name

Definition

<22:20>

<19:16>

<15:00>

COMPARATOR TAG

COUNT FIELD

MAINTENANCE TR <15:00>

SS25 COMP TAG <02:00> - Provide the basis
for the silo comparison when enabled to compare
the tag. This field is compared with SBI TAG
<02:00>.

SS19 COUNT FIELD - The CPU loads the silo
counter with the 1’s complement of the number
of SBI cycles to be loaded into the silo after a
comparison is made. When the count reaches F,
the silo is locked.

SS25 MAINT TR <15:00> — Provide the means
to simulate SBI transfer requests, SBI interrupt
requests, and SBI alert for diagnosing the inter-
rupt logic and SBI priority arbitration logic. Also
provide a means of testing the lower 16 bits of the
silo. Controlled by SBI maintenance register bits
<04:02> as follows.

1. The asserted MAINT TR <07:04> bit
causes the corresponding SBI REQ <07:04>
bit to be asserted if SBI maintenance register
<04>, MAINT REQ ENA, is set.

2. If MAINT TR <03> and SBI maintenance
register <04> are both set, SBI ALERT will
be asserted.

3. If SBI maintenance register <03> is set, the
asserted MAINT TR <I15:00> causes the
corresponding SBI TR <15:00> to be assert-
ed when a CPU command/address is trans-
mitted on the SBI. (See SBI maintenance
register bit 03.)

4. MAINT TR <15:00> causes the corre-
sponding SBI TR <15:00> to be asserted if
SBI maintenance register bit 02, FORCE
MAINT TR, is set.

3-81

3.14.12 SBI Maintenance Register
The SBI maintenance register bits are given in Figure 3-44 and defined in Table 3-27.

S8l MAINTENANCE REGISTER
2008 0044, 2208 0044
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
FORCE FORCE FORCE FORCE MAINTENANCE 1D <04:00>
PO WRITE UNEXPCTD| MULTIPLE 0 0 0 o 0 0 0
REVERSAL | SEQUENCE |READ XMITTER
ON SBI FAULT FAULT FAULT <04> <03> , <02> , <01> , <00>
R/W ; RO
15 14 13 12 1 10 09 08 07 06 05 04 03 02 01 00
FORCE FORCE FORCE FORCE USE
0 0 0 o |Revensa| O o |oara 0 0 o | Sorenuer e | Ewane | s | enance
ON SBI TIMEOUT REQUEST |SEQUENCE| TR DATA [»]
RO R/W RO R/W % RO R/W
Figure 3-44 SBI Maintenance Register
Table 3-27 SBI Maintenance Register Bit Definition
Bit Name Definition
<31> FORCE PO REVERSAL ON SBI SS24 FRC PO REV ON SBI - When set, this
causes the SBIA to transmit bad PO parity on the
SBI for all SBIA to SBI transactions including
CPU read/write and DMA read data.
<30> FORCE WRITE SEQUENCE
FAULT SS24 FORCE WSQ FAULT - When set, forces
SBI TAG 01 to a logic 1. When used with a CPU
write to an SBI nexus register, it forces the write
data tag to 111, the diagnostic tag, causing a
write sequence fault because SBI devices are look-
ing for a tag of 101, write data.
<29> FORCE UNEXPECTED

READ FAULT

SS24 FORCE UNEXP READ - When set, the
maintenance ID, bits <27:23>, with a tag of zero,
are repeatedly transmitted on the SBI (the data is
undefined). When the nexus, as selected by the
maintenance ID, receives read data (TAG = 0), it
should assert BUS SBI FAULT because of the
unexpected read data.

3-82

Table 3-27 SBI Maintenance Register Bit Definition (Cont)

Bit

Name

Definition

<28>

<27:23‘>

<22:20>
<19:16>
<15:12>

<ll>

<10:09>
<08>

FORCE MULTIPLE
TRANSMITTER FAULT

MAINTENANCE ID <04:00>

ZERO
ZERO
ZERO
FORCE P1 REVERSAL ON SBI

ZERO
FORCE READ DATA TIMEOUT

SS24 FORCE MULTI XMIT - Used to force a
multiple transmitter fault in any selected nexus.
The CPU will load the maintenance ID with the
ID of the selected nexus, then read that nexus
configuration register. On the cycle after the
command/address is transmitted on the SBI, the
SBIA will enable the SBI to continually transmit
a TAG = 111 with the maintenance ID (the data
is undefined).

When the nexus transmits the read data, the ID
transmitted by the nexus is the SBIA’s ID. It is
ORed with the maintenance ID and, as long as
the bits are not masked, causes the nexus to
detect a multiple transmitter fault.

SS24 MAINT ID <04:00> - Used to generate
the maintenance ID in the following instances.

Generation of unexpected read fault
Generation of multiple transmitter fault
Used by the silo as the compare ID
Used to check ID logic.

RN =

(SS33) - Forced to 0 by ground potentials.
(SS36) - Forced to 0 by the zero fill logic.
(SS32) - Forced to 0 by ground potentials.
SS24 FRC P1 REV ON SBI - When set, causes

the SBIA to transmit bad P1 parity on the SBI for
all SBIA to SBI transactions. This includes CPU

‘read/write and DMA read data.

(SS32) - Forced to 0 by ground potentials.

SS24 FORCE TIMEOUT - Presets the state
machine timeout counter to all 1s when the state
machine enters the read wait start state. The tim-
er expires on the first count, generating a timeout
condition while waiting for CPU read data.

3-83

Table 3-27 SBI Maintenance Register Bit Definition (Cont)

Bit

Name

Definition

<07:05>
<04>

<03>

<02>

<01>

<00>

ZERO

FORCE SBI INTERRUPT
REQUEST

FORCE TR SEQUENCE

FORCE MAINTENANCE TR

FORCE ISR DATA

USE MAINTENANCE ID

(SS32) - Forced to 0 by ground potentials.

SS24 MAINT REQ ENA - When set, enables
SBI silo comparator register <07:04> and 03 to
force interrupt requests and ALERT on the SBL

SS24 FORCE TR SEQ - Enables SBI silo com-
parator register <15:00> to assert TR <15:00>
on the SBI when a CPU command/address is
transmitted. Used in conjunction with a loopback
read to test the SBIA and SBI nexus arbitration
logic.

SS24 FORCE MAINT TR - Unconditionally
asserts the TR corresponding to SBI silo compara-
tor register <15:00>.

SS24 FORCE ISR DATA - Used to enable the
SBIA to respond to an interrupt summary read
(ISR) to check the circuitry that sets priorities on
the ISR data and generates the vectors.

During the response cycle of an ISR, the SBIA
enables the write data latch to be transmitted on
the SBI along with a TAG, MASK, and ID of 0.

SS24 USE MAINT ID - Enables the use of the
maintenance ID, bits <27:23> for diagnostic pur-
poses (see bits <27:23>).

3-84

3.14.13 SBI Unjam Register
The SBI unjam register bits are given in Figure 3-45 and defined in Table 3-28.

SBI UNJAM REGISTER
2008 0048, 2208 0048

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
o] 0] [¢] 0 0 [o] 0 0 0 0 0 0 [o] 0 0 0
15 14 13 12 1 10 09 08 07 06 05 04 03 02 01 00
[} ' 0 [0) 0 0 0 0 o] o 0 0 o] 0 0
Figure 3-45 SBI Unjam Register
Table 3-28 SBI Unjam Register Bit Definitions
Bit Definition
<31:00> (SBAQ) - The SBI unjam register does not exist as a hardware register. When the SBIA

decod

es the unjam register address for a CPU write to
sequence is initiated. If this register is read, the contents
zero fill logic on SS36. For a read, the unjam sequence

the unjam register, the unjam
show as all Os, provided by the

will not be done.

3.14.14 SBI Quadclear Register
The SBI quadclear register bits are given in Figure 3-46 and defined in Table 3-29.

SBI QUADCLEAR REGISTER
2008 004C, 2208 004C

31 30 29

28

27

26

25 24 23 22

21

20

19 18 17 16

SBI FUNCTION CODE

= QUADWORD ALIGNED PHYSICAL ADDRESS

ADR <26> ADR <25> JADR <24> ADR <23>]ADR <22>1 ADR <2|>l ADR <20> ADR <1 9> ADR <18> JADR <1 7>]ADR <16>

10

09 08 07 06

05

04

03 02 01 00

QUADWORD ALIGNED PHYSICAL ADDRESS

ADR <15> IADR <14> 'ADR <13> IADR <12> ADR<11> | ADR <10> ADR <09> JADR <08> ADR <07>’ADR <06>l ADR <05>IADR <04> ADR <03> ADR <02>1ADH <01>IADR <00>

Figure 3-46 SBI Quadclear Register

3-85

MR 14968

Table 3-29 SBI Quadclear Register Bit Definition

Definition

The purpose of the quadclear register is to clear
ECC errors in SBI memory. The quadclear regis-
ter does not exist as a physical register. When the
CPU writes the SBI quadclear register, the CPU
register address, in the command/address, is
decoded as a quadclear operation. The write data
is used to generate the SBI command/address.
Two longwords of all zero data are supplied by
the SBIA. Bits <31:28> must be 1011, as they
become the SBI function code, extended write
masked. If this register is read, the quadclear is
not done, and the read data is all Os supplied by
the zero fill logic.

Written as 0 because the address must be a mem-
ory address, not an 1/0 address. Also read as a 0
provided by the zero fill logic.

ADR <26:00> - Become the quadword address
in the command/address. Also read as a 0 provid-
ed by the zero fill logic.

Bit Name

<31:28> SBI FUNCTION CODE

<27>

<26:00> QUADWORD ALIGNED
PHYSICAL ADDRESS

3.14.15 SBI Vector Register

The SBI vector register bits are given in Figure 3-47 and defined in Table 3-30.

SBI VECTOR REGISTER

2008 0090 TO 2008 009C
2208 0090 TO 2208 009C .
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0 0 (4] 0 (4] 0 0 0 0 o] o] 0 2] 0 0 0
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
0 0 o o 0 0 4 1 REQUEST TR LEV
LEVEL Et 0 0
1 1
NOTE:
THE REGISTER FORMAT SHOWN IS FOR IPR
LEVELS 14,15, 16.AND 17. VECTORS FORIPR
LEVELS 19, 1B, 1C. AND 1 EARE READ FROM A
PROM. THESE VECTORS AND THE ADDRESSES
ARE AS FOLLOWS.
INTERRUPT
PRIORITY
ADDRESS INTERRUPT VECTOR LEVEL
2008 00A4, 2208 00A4 COMPARE INTERRUPT 50 (IPR19)
2008 O0AC, 2208 O0AC SBI ALERT 58 (IPR 1B)
2008 0080, 2208 00BO SBI FAULT 5C (IPR1C)
2008 00BO. 2208 00BO SBIA ERROR 60 (IPR1C)
2008 0088, 2208 00B8 SBI FAIL 64 (IPR 1E)
Figure 3-47 SBI Vector Register

3-86

Table 3-30 SBI Vector Register Bit Definitions

Bit

Name

Definition

<31:00>

<31:12>
<11:09>

<08>

<07:06>

<05:02>

<01:00>

VECTOR

ZERO
ZERO

LOGIC ONE

REQUEST LEVEL

TR LEVEL SS31

ZERO

The CPU reads the appropriate vector register in
response to the arbitrated interrupt priority
requests, which it uses, along with the 1/0 adapt-
er number, to build the vector register. If the
interrupt being serviced originated on the SBI, the
vector is made up of the interrupt priority request
level and the TR level. If the interrupt being ser-
viced originated on the SBIA, the vector is read
from a 32 X 8 PROM (see Tables 3-8 and 3-9 and
Figure 3-16).

(SS36) - Provided by the zero fill logic.

(SS36 or SS31) - If the interrupt being serviced
originated on the SBI, these Os are forced by
ground potentials in the hardware on SS31. If the
interrupt is a local SBIA interrupt, these Os are
provided by the zero fill logic.

(SS31) SS31 BUS REG <08> — Tied to +3 V for
an SBI interrupt and always read as a logic 0 from
the PROM.

SS31 BUS REG <07:06> - Provided by the two
least significant address bits, which correspond to
the request level, for an SBI interrupt. Provided
by the PROM for a local SBIA interrupt.

BUS REG <05:02> - The TR level is represent-
ed by bits <05:02> if the interrupt is an SBI
interrupt. If the interrupt is a local SBIA inter-
rupt, these bits are provided by the PROM.

SS31 BUS REG <01:00> - Read as 0s provided
by the PROM for local SBIA interrupts, or
inverting +3 V for an SBI interrupt.

3-87

A.1 ABUS INTERFACE

Appendix A is a review of the ABus interfac
in the command/address, write data, or rea

MBOX

MAP2, 1; MCD3,2,1

MCC4
Mcc4

MAP2, MCDR

Mccsa
MCCé
MCc4
MCcC4
MCc4
MCcC4
Mcc4
MCc4
MCC4
MCC4
Mcca
MCc4
McCc4

ABUS DATA ADDRS <31:00> H

APPENDIX A
ABUS PROTOCOL

e signals as shown in Figure A-1. The ABus signals contained
d data may be found in Figures A-2, A-3 and A-4.

 ABUS CMD MASK <03:00> H

ABUS LEN STAT <01:00> H

ABUS ADR DAT PTY H

ABUS CTRL PTY H

ABUS MEMORY LOCK H

ABUS MSKED CMD H

 ABUS WR CMD H

ABUS CPU BUF DONE H

_ ABUS CPU BUF ERROR H

SB ABUS I0A REQUEST [N] H

MCC ABUS I0A SELECT [N] H

MCC ABUS DMA DONE [N] H

MCC ABUS DMA ERROR H

MCC ABUS ADDRS CTRL <01:00>L |

MCC ABUS MBOX OUT H

MCC ABUS CPU BUF SEL H

CLK

CLKS
CLK?7
CLK5

CLK SBA[N] CLOCK5 141 B H

CLK SBA[N] CLOCK5 141 D H

CLK SBA[N] RESET 141 L

EBOX

EBC1, J
EBC1

ABUS IPR RETURN <04:00> H

ABUS IPR SELECTN] H

CSsL

CLO9
CLO9

CL ABUS ENABLE H

ABUS DEAD[N] L

EMM

EMM3
EMM3

EMM3 SBIAAC LO L

EMM3 SBIA DC LO L

Figure A-1

A-1

SBA4,3.2,1
SBA2,1
SBA3
SBA4
SBA4
SBAS
SBAS
SBAS
SBAS
SBAS
SBAS
SBAS
SBAS
SBAS
SBAS
SBA5
SBAS

SBA6
SBA6
SBA6

SBAD
SBAS

SBAQ
SBAQ

SBAQ
SBAQ

SBIA

ABus Interface

MR-14966

ADDRESS/DATA DATA LENGTH/
PARITY STATUS ADDRESS/DATA

1 CONTROL 1 COMMAND/MASK l
PARITY 1 0 3 2 1 0 31 2827 00

D D r[J r I l l [ooool LONGWORD ADDRESS J

MR.14978

Figure A-2 ABus Command/Address Cycle Format

ADDRESS/DATA DATA LENGTH/

PARITY STATUS ADDRESS/DATA
l CONTROL l COMMAND/MASK l
PARITY 1 3 31 2423 1615 0807 00

2 1 0
I I I l I BYTE3 l BYTE 2 I BYTE 1 | BYTE oJ
LONGWORD ALIGNED DATA

DDIIOJ{

MR-14979

Figure A-3 ABus Write Data Cycle Format

ADDRESS/DATA DATA LENGTH/

PARITY STATUS ADDRESS/DATA
1 CONTROL l COMMAND/MASK l
PARITY 1 0 3 2 10 31 2423 1615 0807 00

D D (L]] | IBYTE3IBYTEZIBYTE1[BYTEOI

LONGWORD ALIGNED DATA

MR. 14980

Figure A-4 ABus Read Data Cycle Format

A.1.1 MBox/SBIA Interface
ABUS DATA ADDRS <31:00> H - These 32 lines carry 32 bits of data for read data or write data
cycles, or a 28-bit longword address for command/address cycles.

ABUS CMD MASK <03:00> H - The meaning of the command/mask bits depends on the type of ABus
cycle as follows.

1. Command/address cycle: The command/mask bits designate an ABus command when trans-

ferred on the command/address cycle according to Table A-1 and Figure A-2. A DMA
command may differ from a CPU command.

Table A-1 ABus Commands

Command/Mask Command
<03:00> Command Application
0001 Read CPU/DMA
0010 Read lock CPU/DMA
0100 Read modify CPU

1000 Write DMA

1101 Write mask CPU/DMA
1110 Write mask unlock CPU/DMA

2. Write data cycle: The mask bits indicate which byte is to be written. If MASK<03> is set, byte
3 (bits <31:24>) is to be written. If MASK<01> is set, byte 1 (bits <08:15>) is to be written,
and so on (see Figure A-2).

3. Read data return cycle: The command/mask field is not used for the read data return cycle (see
Figure A-4 for the ABus read data cycle format).

ABUS LEN STAT <01:00> H - The use of this field also depends on the type of ABus cycle (see Figures
A-2, A-3, and A-4).

I. CPU command/address cycle: The length/status bits are used for a CPU read or write to
designate which words, odd or even, or if a longword is to be read, according to Table A-2.

Table A-2 Length/Status for CPU Read/Write

CPU
LEN STAT - Read/Write
<01:00> Function
01 Even word
10 Odd word
11 Longword

A-3

2. DMA command/address cycle: During a DMA command/address cycle, the length/status bits
indicate the number of bytes to be involved in the DMA transfer according to Table A-3.

Table A-3 Length/Status for DMA Command/Address Cycle

LEN STAT DMA Command/Address
<01:00> Function

00 Longword

01 Quadword

10 Octaword

3. Write data or read data return cycle: During either of these two ABus cycles, the length/status
bits indicate whether the data is good or not according to Table A-4.

Table A-4 Length/Status for Data Cycles

LEN STAT Data Cycle
<01:00> Function
00 Good data
11 Bad data

(uncorrectable error)

ABUS ADR DATA PTY H - ABUS ADR DATA PTY H is odd parity computed over the longword
address (command/address cycle) or data bits (data cycle), ABUS DATA ADDRS <31:00>.

ABUS CTRL PTY H - This odd parity bit is computed over the command/mask and length/status bits.
ABUS MEMORY LOCK H - ABUS MEMORY LOCK is asserted by the MBox when it processes a
CPU read lock request. It is asserted by the SBIA for a DMA interlock read. ABUS MEMORY LOCK

will remain asserted until a write unlock is received or a timeout occurs.

ABUS MSKED CMD H - This bit, when set, tells the MBox that the ABus command is for a masked
operation. It allows the MBox microcode to branch before decoding the command field in the
command/address.

A-4

ABUS WR CMD H - Like the previous bit, ABUS WR CMD allows the MBox microcode to branch
before decoding the command field in the command/address. This bit indicates that the ABus command is
for a write.

ABUS CPU BUF DONE H - ABUS CPU BUF DONE is asserted by the SBIA to inform the MBox that
a CPU read or write transaction is complete. A CPU write is complete when the nexus has acknowledged
the command/address and write data. A CPU read is complete when the read data is placed in the register
file.

ABUS CPU BUF ERROR H - ABUS CPU BUF ERROR is asserted any time a CPU read/write is
aborted for any of these conditions.

1. There is a parity error when the command/address or write data is removed from the register
file for a CPU read/write.

2. The address specified in the CPU command/address is an SBI address but the SBI is not
enabled, or the address is not a valid SBI or SBIA register address.

3. The SBIA is unable to gain control of the SBI at the CPUs transfer request level within 102.4
us.

4. The addressed SBI nexus continually transmits a busy response, or does not transmit any
response, to a CPU command/address for 102.4 us after the CPU/SBI state machine leaves the
idle state.

5. The SBIA receives an error response for a CPU command/address from the addressed nexus.

6. The SBIA does not receive the proper number of acknowledges for command/address and write
data within 102.4 us.

7. The SBIA does not receive read data, for a CPU read, within 102.4 us of the acknowledge for
the command/address.

SB ABUS I0A REQUEST [N] H - Each SBIA asserts its SB ABUS IOA REQUEST line when it needs
MBox service for a DMA transfer. For a DMA write, it will be asserted when both the command/address
and write data have been written into the register file. For a DMA read it is asserted when the com-
mand/address has been written into the register file. It is dropped when the MBox loads the register file
address to read the command/address for the DMA request.

MCC ABUS IOA SELECT [N] H - The MBox will assert MCC ABUS IOA SELECT for the SBIA
adapter it will service. This signal is used to enable access to the register file.

MCC ABUS DMA DONE [N] H - The MBox asserts MCC ABUS DMA DONE to notify the SBIA
being serviced that the MBox has completed its portion of the DMA transaction. For 2 DMA write, the
MBox has successfully stored the write data. For a DMA read, the MBox has loaded the read data return
words into the register file.

MCC ABUS DMA ERROR H - The MBox asserts MCC ABUS DMA ERROR when it determines that
it cannot process the command/address received from the SBIA. Its assertion will clear the request in the
SBIA.

A-5

MCC ABUS ADDRS CTRL <01:00> L - The address control bits are used in the selected SBIA (MCC
ABUS IOA SELECT [N] asserted) to control the loading, holding, or incrementing of the register file
address according to Table A-5. These bits are asserted low, and in the table a logic 1 indicates an asserted
signal.

Table A-5 MCC ABUS ADDRS CTRL

ADDRS CTRL Register File
<01:00> L Function

00 Hold address

0 1 Increment address
1 0 Not used

1 1 Load address

MCC ABUS MBOX OUT H - MBox out controls whether the SBIA register file, for the SBIA selected
by SB ABUS I0A SELECT [N], will be read or written. It is also used, with MCC ABUS CPU BUF SEL
H, to control the two least significant bits of the register file address being loaded by the MBox (see Table
A-6). If MCC ABUS MBOX OUT H is asserted (a logic 1), it indicates that data will be coming out of the
MBox and the register file will be written. If MCC ABUS MBOX OUT H is a logic 0, data will be going to
the MBox, and the register file will be read. If MBox out is not asserted, the SBIA cannot drive the ABus
data lines.

MCC ABUS CPU BUF SEL H - This signal is used, along with MCC ABUS MBOX OUT H, to control
the register file address loaded by the MBox in the selected SBIA. For DMA transactions, the two most
significant bits select the DMA transaction buffer that is responsible for the DMA request (see Table A-6).
All addresses in the table are assumed to be the address loaded when both address control bits are asserted.

A.1.2 Clock/SBIA Interface

CLK SBA[N] CLOCKS5 141 B H - The ECL clock phase B to the SBIA is used to clock the ECL logic on
the SBA module. This clock line is called CLK SBIA[N] CLOCKS 141 B H on the clock module.

CLK SBA[N] CLOCKS5 141 D H - The ECL clock phase D to the SBIA is used to clock the ECL logic on
the SBA module. This clock line is called CLK SBIA[N] CLOCKS 141 D H on the clock module.

CLK SBA RESET 141 L - This is a master reset from the clock module.

A.1.3 EBox/SBIA Interface

ABUS IPR SELECT[N] H - ABUS IPR SELECT is used by the EBox to poll the IO adapters for
pending interrupts. The EBox polls the adapters in modulo 4 order; therefore, even though there are only
two SBIAs, each SBIA will be polled every fourth ABus cycle.

ABUS IPR RETURN <04:00> H - ABUS IPR RETURN <04:00> is the encoded value of the highest

priority interrupt the 10 adapter has pending, when polled by the EBox, with the assertion of ABUS IPR
SELECT[N].

A-6

A.1.4 Console/SBIA Interface

CL ABUS ENABLE H - This bit is controlled by the console with MCSR<01>. When this bit is asserted,
the 10 adapters are enabled. When the register bit is reset, it forces an initialize in both SBIAs. It is used
while the system is being booted up to prevent undefined states from having an effect on the IO adapters.
It is also used to prevent CPU diagnostics from disturbing the SBI nexus.

ABUS DEAD[N] L - ABUS DEAD is asserted as a result of the assertion of SBI FAIL, or for diagnostics,
by the setting of diagnostic register bit <06>. It is used to forward a reboot request from another processor
on the Cl to the console, or to inform the console of an SBI power failure. It interrupts the console.
A.1.5 EMM/SBIA Interface

EMM3 SBIA AC LO L - AC LO from the EMM is used to assert BUS SBI FAIL on the SBI.

EMM3 SBIA DC LO L - DC LO from the EMM is used to assert BUS SBI DEAD and force an initialize
within the SBIA.

Table A-6 Register File ECL Address Control

MCC ABUS CPU MCC ABUS Register File

BUF SEL H MBOX OUT H ECL Address Comments

0 0 00* Prepare to read the DMA
command/address

0 | 00* Prepare to write a CPU com-
mand/address for an ABus diagnostic
cycle

1 0 0011 Prepare to read the CPU read data
return word

1 1 0010 Prepare to write the CPU
command/address

* Bit determined by which DMA transaction buffer requested service. For an ABus diagnostic cycle, these bits equal 00.

A-7

B.1 SBI SIGNAL NAMES

APPENDIX B
SBI PROTOCOL

Appendix B is a brief review of the SBI. The technician should have a working knowledge of the SBI. If
not, refer to the technical description for one of the VAX 11/780 SBI adapters.

Table B-1 contains a list of SBI signals and a brief description of each. The signals are separated by signal
groups. These same signals are shown in Figure B-1.

Table B-1 SBI Signal Names and Description

Field

Description

Arbitration Group
Arbitration Field

[TR <15:00>]

Information Transfer Group
Information Field

[B<31:00>]

Mask Field
[M<03:00>]

Identifier Field
[ID<02:00>]

Tag Field
[TAG<02:00>]

Establishes a fixed priority among nexus for access to and control
of the information transfer path

Bidirectional lines that transfer data, command/address, and
interrupt information between nexus

Encoded to indicate that a particular byte within the data field is
to be read or written. With the read data, the mask bits indicate if
the data is correct or in error

Indicates the logical source or destination of information con-
tained in B<31:00> -

Determines if the SBI cycle is for a command/address, read data,
write data, or ISR

Table B-1 SBI Signal Names and Description (Cont)

Field

Description

Response Group
Confirmation Field
[CNF<01:00>]

Function Field
[F<03:00>]

Parity Field
[P<01:00>]

Fault Field

[FAULT]

Interrupt Request Group
Request Field
[REQ<07:04>]

Alert Field

[ALERT]

Control Group

Clock Field
[CLOCK]

Fail Field
[FAIL]

Dead Field
[DEAD]

Unjam Field
[UNJAM]

Interlock Field
[INTLK]

The receiving nexus specifies its response to an SBI cycle: 00 = no
response; 01 = acknowledge; 10 = busy; and 11 = error

Specifies the command code. The function field is bits <31:28>
of the command/address (see Figure B-4)

Indicates even parity over the SBI information. PO is computed
over the information in B<31:00> while Pl is computed over
M<03:00>, ID<04:00>, and TAG<02:00> (see Figure B-2)

A cumulative SBI error line indicating that a nexus has detected
an error condition

Each signal represents a level of priority whereby a nexus requests

interrupt service

A signal that allows SBI memory to interrupt due to a power loss

Six control lines that are used to generate the SBI clock signals

The assertion of AC LO within a nexus causes the assertion of
FAIL on the SBI

The assertion of DC LO within a nexus causes the assertion of
DEAD on the SBI

A reset signal to all SBI nexus

A signal that indicates that a shared location is being modified by
a nexus

B-2

Table B-1

SBI Signal Names and Description (Cont)

Field

Description

Unused Signals

Multiprocesser
[MP<02,01>]

Spare
[SPARE<01:00>]

Two unused lines

Two additional unused lines

ARBITRATION

TR <15:00>

INFORMATION TRANSFER

P <1:0> (PARITY)

TAG <2:0> (TAG)

1D <4:0> (IDENTIFIER)

M <3:0> (MASK)

B <31:00> (INFORMATION)

RESPONSE
FAULT

TRANSMIT/
RECEIVE
NEXUS

CNF <1:0> (CONFIRMATION)

VAN BV N AN N N A NN

CONTROL
UNJAM

\Z AVAVAVAVAVIEIVA

FAIL

DEAD

INTLK (INTERLOCK)

CLOCK (6 LINES)

INTERRUPT REQUEST

REQ <7:4> (REQUEST)

ALERT

MP1-2

SPARE (2 LINES)

NNTS S

Figure B-1

EVV\/V

SBI Signal Names

TRANSMIT/
RECEIVE
NEXUS

MR.14968

B.2 SBI PARITY COMPUTATION
Figure B-2 shows how even parity is computed over the SBI information.

| l ~ A ~ — N -
P1 | PO
PARITY TAG IDENTI - MASK
FIELD FIELD FIER FIELD FIELD INFORMATION FIELD
_J
(D e N L \ ~
P <1:.0> TAG <2:0> ID <4:.0> M <3:0> B <31:00>
° ™
COMMAND FORMAT
FUNCTION ADDRESS
FIELD FIELD
(.)
~N
F <3:0> A <27:00>

Figure B-2 SBI Parity Field Configuration

B.3 COMMAND ADDRESS FORMAT
Figure B-3 shows the format for a command/address cycle, and Figure B-4 shows the various SBI
functions (command codes) and indicates whether the mask field is used or not.

B <31:00>
—
/s N\
TAG 1D MASK FUNCTION ADDRESS
TAG <2:0> ID <4:0> M <3:.0> F <3:0> A <27:00>

TAG <2:0> = 011 = COMMAND/ADDRESS FORMAT

ID <4:0> = LOGICAL COMMAND SOURCE

M <3:0> = COMMAND DEPENDENT

F <3:0> = COMMAND CODE

A <27:00> = READ/WRITE, ADDRESS OF INTENDED NEXUS

MR-14970

Figure B-3 SBI Command/Address Format

MASK FUNCTION | ADDRESS
M <3:0> F <3:0> A <27:00>

MASK FUNCTION FUNCTION
USE CODE DEFINITION
IGNORED 0000 RESERVED
USED 0001 READ MASKED
USED 0010 . WRITE MASKED
IGNORED 0011 RESERVED
USED 0100 INTERLOCK READ MASKED
IGNORED 0101 RESERVED
IGNORED 0110 RESERVED
USED 0111 INTERLOCK WRITE MASKED
IGNORED 1000 EXTENDED READ
IGNORED 1001 RESERVED
IGNORED 1010 RESERVED
USED 1011 EXTENDED WRITE MASKED
IGNORED 1100 RESERVED
IGNORED 1101 RESERVED
IGNORED 1110 RESERVED
IGNORED 1M RESERVED

—
MR-14971

Figure B-4 SBI Command Codes

B-4

B.4 READ DATA FORMATS

Figure B-5 shows the three formats for read data.

LOGICAL
000 pesTinaTion]| 9000 ERROR-FREE DATA
TAG <2:0> ID <4:.0> M <3:.0> B<31:00>‘
LOGICAL
000 ||pestivation|| 000! CORRECTED DATA
TAG <2:0> ID <4:0> M <3:0> B <31:00>
000 LOGICAL 0010 UNCORRECTED DATA OR OTHER
DESTINATION MEANINGFUL INFORMATION
TAG <2:0> ID <4:0> M <3:0> B <31:00>
MR-14972
Figure B-5 Read Data Format

B.S WRITE DATA FORMAT

Figure B-6 shows the format for SBI write data.

LOGICAL
101 SOURCE MASK WRITE DATA
TAG <2:0> ID <4:0> M <3:0> B <31:00>

Figure B-6 Write Data Format

B.6 INTERRUPT SUMMARY READ FORMAT

Figure B-7 shows the format for interrupt summary read (ISR) and the response.

FIRST EXCHANGE:

MR-14973

B31 0807 0403 00
INTERUPT SUMMARY 110 COMMAND- IREQUEST]|
READ ER 0000 je———ZE RO+ LEVEL je—ZERO-»
TAG<2:0> ID<4:0> M<3:0> REQ<7:4>
SECOND EXCHANGE:] 831 171615 o100
INTERUPT SUMMARY TOGICAL
RESPONSE 000 ?(,%QJ NA- 0000 0 0
TAG<2:0> 1D<4:0> M<3:0> l T
BIT PAIRS
(BIT PAIRS = B17 AND BO1 - B31 AND B15)
MR-14974
Figure B-7 Interrupt Summary Formats

B.7 EXTENDED READ FORMAT
Figure B-8 shows the SBI cycles for an extended read. Note that the mask bits are not used with an

extended read.

COMMAND 0000
ADDRESS | 011 égggccAE" woaicaLLy| | 1000 :’;ESF:EQSL
FORMAT IGNORED)

TAG<2:0> ID<4:0> M<30> F<3:0> A<27:01>

(A0OO LOGICALLY IGNORED)
FIRST DATA TRANSFER

000 Destinal| TYPE OF FIRST 32 BITS OF
DATA RETRIEVED DATA
TION
READ DATA
FORMATS SECOND DATA TRANSFER
DATA TYPE OF SECOND 32 BITS OF
000 DESTINA| * ‘pata RETRIEVED DATA
TION
TAG<2:0> ID<4:0> M<3:0> B<31:00>

MR-14975

Figure B-8 SBI Cycles for Extended Read

B.8 EXTENDED WRITE FORMAT

Figure B-9 shows the SBI cycles for an extended write masked. The mask bits for the first write data
longword are with the command/address. The mask bits for the second write data longword are with the
first write data longword.

COMMAND/ o011 LOGICAL BYTE 1011 PHYSICAL
ADDRESS SOURCE COMBINATION ADDRESS
TAG <2:0> 1D <4:0> M <3:0> F <3:0> A <27:00>

FIRST DATA TRANSFER

101 LOGICAL BYTE FIRST 32 BITS OF
SOURCE COMBINATION WRITE DATA

WRITE DATA
FORMAT
SECOND DATA TRANSFER

0000
LOGICAL SECOND 32 BITS OF
101 (LOGICALLY
SOURCE IGNORED) WRITE DATA
TAG <2:0> 1D <4:0> M <3:0> B <31:00>

MR-14976

Figure B-9 SBI Cycles for Extended Write Masked

B.9 CLOCK SIGNALS

Figure B-10 shows the six SBI clock signals (TPH, TPL, PCLKH, PCLKL, PDCLKH, PDCLKL) and
how they are used to generate the four SBI clock phases (TO, T1, T2, T3).

e L LJ LJ L
PCLKH l q 100 NS F: | |
PCLKL | | ‘ | l

j—— 200 NS —=f
PDCLKH

TPL

[
[
.

1 L
PoCLKL | []
R

gy
PCLKLI :l Il:l I

S L —
NAB
TO (DERIVED) DRIVERS

PDCLKL l
T1(DERIVED) l—' | I r_‘

TPH |]'

TPL | !
PCLKH | |: l I |

AIE.LEI\:\E/)E(gS OPEN
R r—]
T2 (DERIVED) LA$CHES

PDCLKH | l | L |

ALL NEXHS CLOCK
T3 (DERIVED) W EE%E:LVEES I'—"L

TP“JII!!IIIII

MR-14977

Figure B-10 SBI Clock Signals

£

APPENDIX C
SBI ARBITRATION

C.1 SBI PRIORITY ARBITRATION

Appendix C covers the method used to allow SBI nexus access to the SBI. The primary hardware involved
is the DC101 priority arbitration chip. Each SBI nexus capable of accessing the SBI must have a DC101.
The SBIA has two DC101s because the SBIA can access the SBI for CPU read/writes and DMA reads.

Figure C-1, DCIOI Priority Arbitration Chips, shows the two DCI101s in the SBIA - one for CPU
transfers, the other for DMA reads. Refer to Figure C-1 for detail of the DC101s.

C.1.1 Priority Selection

Each SBI nexus is assigned an SBI priority, the nexus transfer request level (TR). Refer to the VAX
8600/8650 System Maintenance Guide (EK-86XVI-MG), for recommended priority levels. SBI transfer
requests range from 0 to 16, with TROO having the highest priority and TR16 the lowest priority. No SBI
nexus is assigned priority TR0O, which is reserved, to allow the nexus to hold the SBI for an additional
cycle. Also, although there is no TR16 request line, if no TR line (TR0OO through TR15) is asserted, a
nexus assigned TR16 can get control of the SBI.

Priorities are selected according to the 2’s complement of TR SEL 8, TR SEL 4, TR SEL 2, and TR SEL 1.
Backpanel jumpers are used to connect these lines to ground or +3 V potential. In the SBIA, the DC101
for DMAs has each TR SEL line hardwired to +3 V, or 1111, to provide a priority of TRO1. The TR SEL
lines for the CPU are connected to +3 V, +3 V, +3 V, and ground, or 1110, which provides a priority of
TRO2. Table C-1 shows the binary configuration for various TR levels. It also indicates the jumper
connection necessary to connect XMIT TR (DC101) to the BUS SBI TR line for the CPU TR. The XMIT
TR output for the DMA DCI101 is hardwired to BUS SBI TRO1, C47, so no jumper is necessary.

C-1

BUS SBI TROO

BUS SBI TRO1
BUS SBI TRO2
BUS SBI TRO3
[4
[J
[
[]
BUS SBI TR12
BUS SBI TR13
BUS SBI TR14
BUS SBI TR15
XMITTR L XMITTR L
TRO1 TRO2
1. (TRO1) | (TRO2)
SR e
DMA ARB OK L CPUARBOK L
PRIORITY ARBIT
[] DC101 [PRIORITY ARBIT
® o DC101
[] [4
[4 []
[] []
DMA cPU
SEND SEND
DMA HLD SEND HLD CPU HOLD SEND HLD
SEND SEND
MA TR
_.E—-A—T—— SEND TR _ﬂl— SEND TR
TR SEL 8 TR SEL 8
TR SEL 4 TR SEL 4
TR SEL 2 SEL TR SEL 2 SEL
TR SEL 1 TR SEL 1
— —d
SBI TO SBI TO
CLK CLK
T CLK T CLK
SBI T2 SBI T2
_EBE._C R CLK _&_K__c R CLK
MR-14967
Figure C-1 DCI101 Priority Arbitration Chips

Table C-1 XMIT TR Jumpers

Transmit
TR Jumper from XMIT TR L,

TR SEL DEVICE Jumper C83* to BUS SBI

8§ 421 TR Needed TR L on Pin
LLLTL 16 No - -
L LLH 15 Yes 15 C81
LLHL 14 Yes 14 C77
LLHH 13 Yes 13 C73
LHLL 12 Yes 12 C75
LHL H 11 Yes 11 C71
LHHL 10 Yes 10 C69
L HHH 09 Yes 09 Ce67
HLLL 08 Yes 08 C65
HL L H 07 Yes 07 C63
HL HL 06 Yes 06 C59
HL HH 05 Yes 05 C57
HHLL 04 Yes 04 C55
HHLH 03 Yes 03 Cs1
HHHL 02t Yes 02 Cs53
HHHH 01% Yes 01 C47

*Jumper connection made on SBS backpanel
tNormal configuration for CPU DC101
$Normal configuration for DMA DC101

C.1.2 DC101 Operation
The DC101s operate according to Figure C-1 and the following description.

When a nexus desires to transfer information on the SBI, if must first gain control of the SBI. The
assertion of the SEND TR input to the DC101 causes XMIT TR L to be asserted. This output is jumpered
to the BUS SBI TR line for the required transfer request priority. In Figure C-1, SEND TR is SEND
DMA TR for DMA read transactions or SEND CPU TR for CPU reads/writes.

The DC101s receive BUS SBI TRs at T2, latching them at -T2. Each DC101 that has SEND TR asserted
compares the received BUS SBI TR lines to the priority level selected for that nexus. If the nexus priority
level is higher than the received BUS SBI TR (lower number), the nexus gains control of the SBI. ARB
OK L is asserted to indicate that the nexus has control of the SBI and can transmit on the next cycle. The
nexus has control of the SBI for only one cycle.

There are cases when a nexus needs control of the SBI for more than one cycle. For example, a CPU write
transfers a command/address followed by write data. In this case, the SBIA needs control of the SBI for
two cycles.

The SBIA (SEND CPU TR) gains control of the SBI for the first cycle (TR02) by arbitrating for bus
control. When the SBI is needed for an additional cycle, SEND HOLD (SEND CPU HOLD for CPU
transactions) is asserted. This causes the assertion of TR00. Notice the diamond in Figure C-1 next to the
BUS SBI TROO line; this is a bidirectional line. The transmittal of TR0 by the CPU and reception of
TROO by any other nexus prevent all nexuses from asserting ARB OK for as long as TROO is asserted. In
the SBIA, SEND CPU HOLD is asserted for one cycle to allow the SBIA to transfer the write data.

C-3

