EK-KA86D-UG-002

VAX 8600/8650 System
Diagnostics User's Guide

For Internal Use Only

Prepared by Educational Services
of

Digital Equipment Corporation

1st Edition, October 1985
2nd Edition, March 1986

© Digital Equipment Corporation 1985, 1986.
All Rights Reserved.

The material in this manual is for
informational purposes and is subject to change
without notice.

Digital Equipment Corporation assumés no
‘reponsibility for any errors which may appear
in this manual.

Printed in U.S.A.

This book was produced on a Digital Word
Processing System. Book production was done by
Educational Services Development and Publishing
in Bedford, MA.

The following are trademarks of " Digital
Equipment Corporation: '

ol o1t/ PDP RT

DEC P/0S UNIBUS

DECmate Professional VAX

DECUS Q-Bus VMS

DECwriter Rainbow vT

DIBOL RSTS Work Processor

MASSBUS RSX

PREFACE

CHAPTER 1

.........
. . .
N N

Nt R WWWN

[l e e el el e e el e e e
DRI
=
e+ e 0 e
N =
“ .
[REE™

CHAPTER 2

« e s e e
B WNDNDNDNNNDNDNDN -
e s e s s s e »

AU WN -

NNONNNDNNDNNONNDNDN N
DY
N =

CONTENTS

Page

VAX 8600/8650 DIAGNOSTIC SYSTEM OVERVIEW
INTRODUCTION. v eeeeoosssscscssssossssscsossssoccssoscsel™
RELATED DOCUMENTATION.:ecoecoccsccscsosssccccsssncce
DIAGNOSTIC STRATEGY OVERVIEW::ssssssvssssssvssvvss
On-Line Error AnalysiS...ceccecccsccscscescscnne
Standalone TesSting.seeeecscescecccsccscscssscnnns
DIAGNOSTIC FEATURES..:cccsccccscsosscscscsssoscsssnsnsce
Hardware FeatuUreS..c.eeceesccsccsccscsccoccnoncns
Software FeatUreS.....cseveeeecscssaccsccscssnsssl™
CONSOLE SOFTWARE OVERVIEW::eooeosorsosscsscssccsssel
Console Operating ModeS....eeeeeeecccscssssssesssl
CIO MOA@eeeeeosooosasossnsosscsssssssssassnanssns
Macro ContexXt.ceeecccsessscccscscccccccccccscscs
Microhardcore ConteXt.ceseeeeocecsscocscnsnns
Diagnostic Context....ceceeeccessossssnscscsnns
PIO MOOCuuseessasssnossoasssscssosssssssnsssccssce
BOTTOM—-UP TEST PROCEDURE.:.:¢ccccscssccecocssssssssal=l0
SUMMARY ¢ v vvessvecsscnesnncssncaasssssassssnnssnnaal=l2

. .
e et e e
LU I |

L

VOO NI NUTW W

o o
[

PROM TESTS

OVERVIEW. ceeeoeesoscsoasossasssacsssasssossssosncconcnscalds
PROGRAM DESCRIPTION..:ececososcoscssosccssscssssssnel™
Power-Up OperatioN..ccececececceccsscssscsccccsnsaasel™
Self-Test EXECULION.eeeeeeessssssccsossssssssssnel=3
PROM Test DesSCriptionS...ccecesessessccccccccsecsss2=d
PROM Command LOOP.cessececosssscconsssssasssscnssl=9
PROM RTY SUPPOTLtccesceoscccsacssscosssenssesssesl=ll
Special ServiCeS.sceeessecessssssossscccsnccnsses2=l2
Unexpected Interrupt Handling.....eeecececcess2-12
Console Reboot Handling..e.eeeeeececseccesoesas2=13
PROM ERROR REPORTING. .+ s eanacaaccancase P R T
TROUBLESHOOTING PROCEDURES.::cececcecessssssccsesss2=15
SUMMARY . eeeeeceocccscssssssscsssssssssssssssnsoces2 17

T

iii

CONTENTS (Cont.)
Page

CHAPTER 3 EDOBA - CONSOLE DIAGNOSTIC N)

OVERVIEW. s ieeveeeceennnnonnnsnnnnnansssssssssssocesld-l
PROGRAM DESCRIPTION..esvesceosoccscosososscsnsocoseld=l
1 TeSt SeQUeNCEe.eteteeessesscsacscsssccncnnnnensessld=l
2 Loading and Running EDOBA...veeeeensn escseesssscnsesl=8
3 Error Reporting.c.eeeeeeeeeececssoeccosacacenanasali=1l
TROUBLESHOOTING e eeoeeesuoossosocssosossssssssesnsseeald—l2
SUMMARY . et teeteecceeecensossaccsssasosscanascansnnnald=l2

CHAPTER 4 MICROHARDCORE (MHC) TESTS

OVERVIEW. s teeeeeeceeceeesossscosassoscsnsascacennnsad=l
OPERATING INSTRUCTIONS..eceusevececsssscsscoooonesad=2
.1 MHC Command SUMMALY.eeeossssseeoercccosssonsesesad=d
OPERATING PROCEDURES..:csceteeseeccsoscsossosssansad=5
PROGRAM FUNCTIONAL DESCRIPTION....ccncanenannn cee..4-8
1 Program Overview.....coeeeeeecsoececcacsccccennnsod=8
2 Fault Detection and Error Reporting..c.eeeeeesse..4-9
3 Test DesCriptionsS...c.iieeeieeeeeecececcecsneennsad=12
4 End of PassS REPOIteseeecsssccssnosscsssccncssascd=16
SUMMARY . s ittt tvesencacasnnsssassonnssssscsssacnesad=l6

L - g A N N
e e e s e

W D DD B W NN

CHAPTER 5 MICRODIAGNOSTICS

OVERVIEW. et veeeseeceececeansccncossnsseonsccasesb=l \)
MICRODIAGNOSTIC OPERATION..veeseosvoosaccsscossaseasd=l
Purpose and Basic OperatioN..eeeceecceccccscecessb=1
Diagnostic Context Test Environment....eceeeeees.5-2
MICRODIAGNOSTIC SET.cceeesoccsscsssscscsccscscocassed=5
OPERATING PROCEDURES..:eecssascscecccccsssaannseee’=10
FAULT ISOLATION MESSAGES....ececeecccsesscesseseesad=18
UNUSUAL ERROR MESSAGES..........................,.5—23
DSM/DCP Communication FAailureS..ceeeesesseeessss5-24
Unexpected EBOX MiCrotrapS..ceceecececscccscccese5-25
Keep-Alive FailureS...ccceeceseecenssosvvesnssnss5=25
MICRODIAGNOSTIC CONTROL..::ceeeecsocasosccsoccsanssd=27
CONSOLE COMMANDS .. v0eeeccoesascssscssansssnscssassd=32
CLEAR DATA..ccevsessosnsssasossscsscnsssscssossesd=32
CONFIGURE (Arrays, SBIAS, FBOX) eeeeeocsconcsoecassd=33
CONTINUE (a microdiagnosStic).eeeeescececsecsseess5-33
DEPOSIT (Cache, Escratch, WBUS) ceeeevevscoseoseasd=33
DESELECT (Arrays, SBIAS, FBOX)eeesooooooaeseaosad=34
EXAMINE (Cache, EscratCh, WBUS) cveeeeeveeoscoesssb-34
GENERATE . ctteetenenssonsssnsssascssssscscssseesasd=34
RUN. . oteeeeeeeeesonsnoasossossssncssssssssoasssssessd=35
SELECT (Arrays, SBIAS, FBOX):.eeeeceososssscscseasd=36
SET DATA:.cieeeeacecccscsscscsssssssassanssnsesesd=36
SET ISOLATION.:..ceseescescosossossccosscssssonsesd=37
SET NAME....ciieeennnanaaaaans teseesreessesaness =38
SET SWITCH.:eeveoeeeoooososoossascascssnnsssnessd=38

R
. .
N =

s s e e e @

W ®OOOODDODOOPOPRODOPOIANANNN U W NN

)
wWN -

UL O W

HHEHERROQOIOOUV® WN -

WwWN~=O

iv

.

* s s s s

VP WWWw WWwWwNNN -
* e v e e Y
W N - N -

[W N N W I W W W e N Y

* e e e

CHAPTER 7

NNNNNuNNNdaada
SOSITN
ARNAONR VNS W N

DI T Y

Appendices

Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
. Appendix
| Appendix
Appendix

CRURTZTOTM@DUOOW >

CONTENTS (Cont.)
Page

SHOW CONFIGURATION (Arrays, SBIAS, FBOX)eeessoeso5-40
SHOW DATA..ccveeervsnvvvovenvsnsssnnssnnnnsssssssd—40
SHOW SWITCHES...eeeceeoceccccosocsscosaccnnnssesd—40
START . ceeseesecocsscosceacsccsscscssssocscsnssssd=4l

STEP:ceesesessceacscasesecsossnscnsscsssssssnssead—42

MACRODIAGNOSTICS

OVERVIEW . ceeeeeoeescoesssnossocssasssssncscsasseceesb—l
MACRO CONTEXT TEST ENVIRONMENT..u..eececscvcccaseccssb=2
Macro Context Initialization.....ceeeeeeececsoeaab6-2
CPU Initialization......eceeeeerenconsnsccncaneaab-4
MACRODIAGNOSTIC SEQUENCING::eessssssscssssssasascssb=5
EVKAA -- Macrohardcore DiagnostiCiseeeeececsceecsesb6=5
EDSAA -- VAX 8600/8650 Diagnostic Supervisor.....6-8
MacrodiagnosSticS..veeeeeseeeeseecessssssssnnasaab=ll
RL0O2 Resident MacrodiagnosticS....cceeeececeess.6-13
Booting the Operating SysteM.....c.eeeveceeeessa6-14
SHUTTING DOWN VMS..:eeeeeacossacsscoseascscsncsassab=1d
SUMMARY . et eeecoeensooosnenssonssssnsssssssssssassnssb=l1d

CONSOLE COMMAND SETS

INTRODUCTION . eeveeeeeoscceasacnasconsannssssosssansl=l
PROM COMMAND SETeececeeccosoosocssacssssacsscnssnnasl=l
EDOBA DIAGNOSTIC.eeeeovossssscsosssosncssassssssnnnnel=2
MICROHARDCORE CONTEXT:eeeoeeccnscccnsocnssscnssaasel—4
DIAGNOSTIC CONTEXT:eeeeosocesscscsascssosvcssosscnasel=5
Defining and Adding Trace ItemS....ccceececccceesl=5
Microstepping a MicrodiagnosticC....eeeeeeeeeeess7-12
MACRO CONTEXT:ceeeeceececocscscnsscssssssssncsnsael—18
Single Stepping MacroinstructionS........eeee...7-19
Single Clocking MicroinstructionS...eeeceeeessess?7-22
Microinstruction Tracing...ceceeecececcceaaesesss?=22
STATESTEP TraC@ecevsevsssssssssonsassssvssnsssns/=25
BreakpointS..ieeseeeeeeescecceesoscccscsacocnaeeesl=28

Console Command Sets

Console Support Microcode
Diagnostic Support Microcode
RLO2 Disk Organization

SDB Overview

Diagnostic Naming Conventions
Diagnostic Listings

Fault Isolation Overview
Remote Diagnosis

RL02 Maintenance and Utilities
Console Software Error Messages
Glossary of Terms

FIGURES
Figure No. Title Page ‘)

Standalone Testing -- Diagnostic Hierarchy......,..1-4
Console Software -- Modes of OperatioN..ceeseccescesl=7
CIO Mode ConteXtS.eeeecsescescscccscssccssccncsnscnsaesl=8
PROM Test Environment.....eeceeecccsccccscscocscese2=2
PROM Tests —=— Error DisplayS.ecccececscscescocsecsssa2=1l5
Simplified PROM Troubleshooting Flow Chart........2-16
EDOBA Test Environment.....cececeeeeecosscsosssesssas3d=2
Transferring Control to the PROM Code....ceceeeees.3-8
Starting EDOBA...ceceeccesoscccscsccssosossosscssesel3—8
Running EDOBA with TRACE Option Set....cccoeeeee..3-10
EDOBA Error DisSplayS..eeeeecesssssccssceccccssossaasd=1l
CONFIG. DAT File FOrMaAt.ceceeeeseccocssacccssccsesed=2
MHC Context Test Environment....eeeeecececcccsecsssd=3
MHC Command ReSPONSE.cccsescsssassccsssscsssscssceed=2
HELP MICRO CONTINUE DisSplay...ec.ccecccecccccananana 4-4
HELP MICRO START DiSplaY..cecscssccccccecccccccscesd=h
MHC START Command DiSplay.c.cececscecsscccccccocsssd=6
MHC Brief Error DisSplaY.eeeesecscscsscscscesscssssd=10
MHC Test Description from EDKAA.DOC..eeesseseossesd=1l
Sample Error DiSplay 2..eeececescecccccccscsascssoad=l2
0 MHC REPORT DiSPlaY.eeeecececocococscsosssasasssasad=12
Diagnostic Context Test Environment......cceeeeeeee5-3
Diagnostic Context Initialization (QUIET:ON).......5-4)
Diagnostic Context Initialization (QUIET:OFF)......5-4
Microdiagnostic Sequencinge.cccecscsccscsscocscsceseed=b
"MICROS.COM Command File...ececesccccescosccscccscanad=?
EBox Microdiagnostic Initialization...eeceeseeesss5-10
Sample Run of EDKBA (EBox Microdiagnostic)........5-11
EDKCA Command ProceduUre...e.ceoeeseecscscsscssosssssesad=l2
MBox Microdiagnostic Initialization....ceceeeeesso5-12

1
HFHOOJONPWNHFFHFOOIJOMPWNFUBWNHEWNEWN -

mmmu‘\mmmmmunmwmmmh-h-?Ab&bbubwuwwuwwwt-w.-

-10 EDKRA Command ProdeCuUr@....sceesceessescscssscssssed=l3
-11 IBox Microdiagnostic Initialization.....ceceeeecse5-13
-12 EDK5A Command ProceduUr€..seecescescccssscscsscssssd—ld
-13 Array Microdiagnostic Initialization.....eccse0...5-14
-14 Console Display When Running MICROS.COM.....ce....5-15
-15 TSTCPU.COM Command File....eeeesececscnsccssscaseaad=lb
5-16 L0205 Module Test Command File.....cceeeeeeeesecead-18
5-17 Isolation Message —=- Sample leecesccossocsscscsecsssd=19
5=18 Isolation MesSage == Sample 2..cccceccccccsccccsead=22
5-19 Isolation Message —- SampPle 3..ceeeecccacccsecessed=23
5-20 DCP Control Flow SUMMACY..eeessessssssscsscsscsessd=28
5-21 CCTRL/T> Status Display.sececeesscessscccscsssccesed=29
5-22 Single Step Mode Display.eceesecssscssssossscssessssd=3l
5-23 Diagnostic Context CommandS...ecesseccccsscssssssssd=32
6-1 MACRO Context Test Environment.....c.cceceeceeccessb6-3
6-2 Macro Context InitializatioN..sceeeeeesesceseccceesb=6
6-3 EVKAA DiSPlay.ueeeeeeeeesneeecsccoassscasssccscesassb=7
6-4 EDSAA Start-Up Display...... feeeieccassesassnesessab=9)
6-5 EDSAA.COM Command File...cceeeeceseccccsaccsasocessb=9

Figure No.

L T T T I I A |

1
HHOUONOAUS WN=HERRHERQ®OJO

-
wN -

o

NNNNNNNNNNGONIYIOO OO0 O
I

7-14
7-15
7-16
7-17
7-18
7-19
7-20
7-21
7-22
7-23
7-24
7-25
7-26
7-27
7-28
7-29
7-30
7-31
7-32
7-33
7-34
7-35
7-36
7-37
7-38
7-39
7-40

FIGURES (Cont.)
Title Page

HELP DEV Command =- DisSplay l...cceoececcccscssscssseb=9
HELP DEV Command —- DisSplay 2...cececscccscceacsceesb6=l0
HELP DEV Command -- Display 3...cecececcccssessessb-1ll
EVSBA Autosizer DisSplaY.eeeseesscececcsccscsesessab-12
EVKAB DiSpPlay.seeeeesoscsecsscccccccsssscssssssseab=l2
EVCBA DiSPlay.ceoescsececescsccscccsassssssscscanesb=12
Sample DEFBOO.COM Command File....ceceeeeeeeeneasab-15
VMS Bootstrap DisSplay.seesseessecscescsssssseceseeab-15
On-Line Diagnostics Displayeeeeececeeesccccccosssasb-16
UMS Shutdown DiSplayeeessescececssensccssscsasssesb-16
PROM Command EXAmMpPleS....cceeecececcccccsccccsosacsl/=2
EDOBA Trace Switch OptioN.ccceeceeecececcesccscncoeaal=3
EDOBA Test Select Switch Option....eceececececeescs7-4
MHC Quiet Mode Switch OptioN...cceeeeeccocccecsssces?=4
MHC Test Number Selection Switch Option..ceeeceeeee7-5
SHOW DEFINE Command DiSplay¥eeeeeesscescsscssssssansl/=6
SHOW NAME Command DiSplay.e.ececececcecsccsccscccssccesl=6
REPORT Command DiSpPlay..ecececsccccccesccccsscossssesl =6
TRACE ADD Command DiSplay.eeessesceececsasccacccossl=7
TRACE RESTORE Command DiSpPlaY.eceeeeeessssesccsssonsl=7
Displaying the CONFIG.COM Fil€.esevcescvccocnssnsesl-8
Displaying an SDB Signal Name File....ccececeevesss?=9
Defining a New SDB RegisSter...cceeceeescccsscessesl/=10
REPORT Display to Show Defined Register...........7-10
TRACE REMOVE Command DiSplay..eesceecccsccccocesssl/=10
Adding a Defined SDB RegisSter....ceeeeseseoascesess’/=11
Adding an SDB Signal Name.....eeoesseecscesssecassssl/=1l
Microdiagnostic Program Structure....ceecescesecess/=12
Setting a Micromark Breakpoint.....eeceeeeecescecss?=13
MIC Command DiSpPlayssssssssssssseccsccccssssssssss/=14
TMIC Command —=- DiSPlay leeeeececssccsscensscensasal=15
TMIC Command —=- DiSPlay 2.eseeceeceesccsasscsccssel=1b
Microstepping SUMMALY..ecesveseecccscsccsscsoascessl=17
Macrodiagnostic Program Structure....secececesecsecss/7-18
Macro Test Routine OvervieW....eeeeeeeceescccacess?=19
Depositing a Macro Test Routine......cceceececesss7-20
Examining a Macro Test Routine.....eeceeeceeecseas?=20
single Instructing a Macro Test Routine...........7-21
Enabling Cache and Starting the Routine...........7-21
Single Instructing and Checking ResultS.....eeeess7-21
TMIC Setup DiSpPlayeessesesooesseccsscesscecsccensssl=23

TMIC Display —— Step leceeeseovecscoscoscnscesenseal=23
TMIC DisSplay —— StepP 2cceeessssscsscscsssnssscsoeel=23
TMIC Display -- Step 3.....c.00000.n.. teesescssenesal=24

TMIC Display —— Step 4uveeeeeesececcecnsacsscoansssl=24
TMIC DiSplay == SEeP Seceseescesccnccscnsessoncsssl=24
STATESTEP Display —- Phase O.ceeeescocccccsssosassl=25

STATESTEP Display —- Phase l...eeveeecscsoscsoessal=25
STATESTEP Display —- Phase 2..eeeecceccccccccaneesl 26
STATESTEP Display —- Phase 3..cececeeccccccscessssl=26

Figure No.

7-41
7-42
7-43
7-44
7-45

LU
-
=)}

I(')(P nwm:x":v:v:v:’\n
HFN~UOAWN

1

LI U I U A T O I I I T O R |
BWUNHFEFLMONFHOJOAONDBWN - WN

GUGUHIEIIITTTEIEI D EE
|

Table No.

LI |

WWWNNNN -
1
WN B WN N -

FIGURES (Cont.)
Title Page

MACRO Routine Microstepping SUMMArY...eeceeeeceeess?=27
Setting an SDB Register Value Brecakpoint..........7-28
Stop On Register Value Breakpoint Display....e....7-29
Setting an SDB Signal Change Breakpoint...........7-30
Stop on SDB Signal Change Breakpoint Display......7-31
Clearing BreakpointS....eeeeeeeeeseesssssssaaaseasl=32
VAX 8600 Console Command Set SUMMALY..eeeececeeoees A=2
HELP Command —-= FOIrmat l...cceseccecccesscscsoscceessA=6

HELP Command -- FOrmMat 2....ceeescecccaccccccsceasesA=T
HELP Command -- Format 3, EXample l..cceecececseessA=7
HELP Command -- Format 3, Example 2....ccceeeeeess A7

Console/CSM CommunicationN.eeeeeeeeeeeeeeeeoeessassaB=3
Console/CSM ProtoCol SUMMALY.eeeeeeeeeescoenseoesssB=9
EBox Control Store Utilization

(DSM/Microdiagnostic) veeeseeeeseesesceeeaceaansessCl
DCP to DSM ProtocCol OVerview,.,....seseesesecenceesC=5
DSM to DCP Protocol OVervieW...eeeeeccscccccccsneeC=6
CONFIG.DAT File FOrMat..ceeeececcesccecccsacaoeoeeeE=2
MCDDO4.CDF Fil€.ueeeeesoeeaceocacosassoaacncnnsasssE=3
MCCKOLl.CDF Fil€uuseeessveseosscccsssoascssscsssssesE~3
MAPDO2.CDF Fil@.ieeeseooecsoascccaccsasoscanncnnsssE=d
VTERM SelectioN...iieeeeccsesessescscaccaccnsscccnsssE=5
SDB Visibility Channel Block Diagram.......eceee...E=6
Default Trace List....ieeeeecececcsccnconcnssscasecE=9
TRACE DEFINE EXAMPle..seeeecoccccccccccsccnnseosssE=10
Diagnostic Naming ConventionN...eeceeececeeeccaeaseoF=1
Fault Isolation SUMMAry.....eeeesesccscscsossscess H=3
Fault Isolation OvervieW....eesoeeeceeecsssccccases.H=6
Fault Isolation Design ProCesSS...ccceeceeccecceesss .H=8
Isolation Files Format...ceeeessessssccccasseasnaaoH=11
Remote Diagnosis OVerview...eeceeeeeeeeeeoeessaseasl-1
EXCHANGE Directory Command EXample.....ccceceeecee.Jd=6
EXCHANGE Copy Command EXampPle...sscsssccccscsccessed=6
Command File to Create a New RLO2 PacK..eeseeeeooesod=7
File to Update an Existing RL02 PacKissssssssssssod—12

TABLES
Title Page

Related DocumentatioN..eeeeecesesceccececanseenanasal=2
VAX 8600/8650 CPU Bottom-Up Test Procedure........l-11
PROM Test Descriptions == Part JT....eeeeeeeensessea2-4
PROM Test Descriptions == Part Il...ceeeeceeceaessel=6
PROM Command Set.uciesescescescenncsassasnesaeanses2=10
Console Interrupt VeCtOrS.seeseeeccccccccscsssessss2=13
EDOBA Test DesSCriptionS....ceeeeescececcccceeaeeeeea3d=3
EDOBA Switch Register OptionS..eiceeececeececcceesa3d=9
EDOBA Control CharacterS..ieeececesscscesosssasssss3=9

viii

)

j Table No.

LI T T O Y T T A O U S T N I |
NHHO

L T T U T A A O B N O |

I
HEOONAOAULOWNFENHEEMEBWNENENEHEULODWNFRFRRFRFOONOOAUOIS WM -

-
NHE O

I
[
w

L?mmu:mmmmmmmmmmmccommwm:vB’ma\mmmwmbbbhbbhnbhbp
1

-

Ul

E-16
E-17
E-18
E-19
E-20
)E—Zl
E-22

TABLES (Cont.)
Title Page

Illustrative MCH CommandS..eceseescsscccscsccssssssed=8
MHC Microcode FileB.ssesssssssssssssccccsssccccccsed=9
EDKAA T-11 Program ModuUleS...ceeeescoccscssccssssed=10
Clock Box Subtests (SC)eceesccccsceccnsssaccscsseesd=l3
EBox SDB and C/S Subtests (SS).eececccccscccscscssd=1l3
MCF+CTX+ Misc. EBox Subtests (SR)..seccececcccccssad=1l3
EBox Ucode SubtestS (SU)eeeceeccssscccsssssscsosesd=ld
IBoX SubteStS (SI)ecececscecsscassccccocscossssescd—ld
MBox Logic SubtestsS (SM) ceeecececsssscsscccssessssd-14
MBox Ucode SubtestsS (SN).eeececoccscascsossoscossssd—l5
FBOX SubtesSt (SF) ceeecscccecssossscscsccssscssssesd=l’
Last BoX SubtesSt (SL).ecececececcscccsccascsaseesasd=1lb
VAX 8600/8650 Microdiagnostic SetS.cecececscccssseed=5
Microdiagnostics Microcode FileS...eceeesesccssacea5=9
Microdiagnostic Module Test Command Files.........5-17
MHC/Micro Module Test Command FilesS......c.ceeeeane 5-17
MHC Module Test Command FileS..e.eeeeecccsccescessasd=-18
Micro/Macro Diagnostic DifferenceS...c.eeeececceccsssb-1
RL02 Resident VAX MacrodiagnosticS.....eceeeeeesss6-13
Command Set/Prompt Relationship..eeceecccccccsceccesssA=3
Architecturally Defined CommandS...cececsoescecesssA=5
CSM Overlay FileS.ceececeeccsecescsccacsccsasscsncssseB=2
CSM ReSPONnSe COd@S.eeeecsccsssscessssssscossscassseeB=5
CSM RegiSterS.seeeesccsceccsesssssscscescscssscscssseB=6
CSM Status Reason COd€S...cesessscssscccsscssssssseB=7
DSM Packet Format...ceesescecccccccsssscscssscccssssl=3
RLO2 File TYPESeeeevsesscssosscssccsssccsscsssssscsesaD=2
System Microcode FileS...eeeveeecccscccccssccceesssD=5
ABus Register FOrmat..c.ecceceeeccesccscscssccscacsssE-12
ARADR Register FOrMat...eeeeccsccccccccsccssceseeesE-13
ARBuUS Register FOrMAt..eeeeeesscsccccccccsscsassssE-14
DBus Register FOIrmat...ceseesscccccccssscocsssssssE-lD
EBFLSH Register Format..
EDPPE Register Format...
EFORK Register FOormatisssssssssssssssssssnssssnsssbE-18
EMCF Register FOrmMat....cceeeececccccssssccsscceesE-19
ESTALL Register Format..
EUPC Register Format....
EVABUS Register FOrmat....eecscesscessccsssssscssssbE=2l
FABUS Register FOrmat...c.cececececesccsccscssanessE-22
FAUPC Register FOrmat...cc.ceeccecesccscscsscsccsesesE=23
FMUPC Register FOrmat...ccceeesceecscecsscscssscssssesE=23
IBDBUF Register FOrmat.c.ceccececeesassccssccessssE-24
IBUF Register FOrmat...coeeescceccescsscssccssesessE=25
IBXERR Register FOrmat...c.ecceeeeecccesccccssecsessE=26
IDIAG Register FOrMat..eeecssssccsccccssassscesesesE-26
INCR Register FOrMaAt..eeecscscccececcssscccsccesesE=26
IOPSEL Register FOrmat..ececeeccscesscscsocscsossssE=27
IUPC Register FOrmMaAt..eeeceesccsessescssssocscsces e E=27
IVABUS Register FOrmat...ceeeesececsesesseossscccseesE~28

S N 1

s i 1

[Al

A A AY

ix

Table No.

E-23
E-24
E-25
E-26
E-27
E-28
E-29
E-30
E-31
E-32
E-33
E-34
E-35
E-36
E-37
E-38
E-39
E-40

U L UL s I T I |
>
-

L UL A |

RARRRRRRR R R x:F:xC4Cah GUmmmmm
HFERPOONOAUVAWNHFOBWNHBWN R

|
=
WO

K-15
K-16
K-17
K-18
K-19
K-20
K-21

TABLES (Cont.)
Title ' Page

MDBUSI Register FOIrMat.e.ceecsesecssssescscccsscnsesE=29
MDBUSM Register FOrMaAt..cecececcesccassossssnscscssE=30
MEMREQ Register Format.....ceicecececccccsccccccssessE=31
MUPC Register FOIrmMat..e.ecececcscccccscccocscsceacsE=32
NATRAM Register FOIrmMat..cseeevescossccscscsscsssssssb=32
OPAR Register Format....cesvcoscccsccccccsccossasseaaE-33
OPBUS Register FOrMat....eeeeesoescscsscsccsssssesE=34
OPCODE Register Format...csceesceecesscccsccscensssE=35
OPMCF Register FOormat...ccceeceecseccsccscsecscseseE=35
OPPORT Register FOrmat...ceeceessccasccsscccsscesaE=36
PAACK Register FOIMAt.eececescsescscsscscscsesesssE-38
PAMD Register Format....cceceeeeceseesccccccnccsssE-38
PAMM Register FOrmat..ceeceseccccscccosssccccssesssE~39
PARITY Register FOrMat....ceccecscscssscscssssnesseE=39
PSL Register FOrmat...ceeeeoescsccccsscscosssosscssesE=dl
REGBUS Register FOrmat....ccceeesecccassssssasssesE=dl
STALL Register Format.ececssscesssccsscscaceccsscsesb=42
UPCSAV Register Format...ceceececceccscscccssssssssE=43
WBus Register FOrmMat...cececescescsscsccssscsscssessE-44
Diagnostic Naming Convention (Fifth Letter)........F-2
MHC Microcode ListingS.ceceseccescsccccccccccssesssF-4
MHC MACRO-11 Program ListingS..eeccececceccccccccssF=-4
VAX 8600-Specific MacrodiagnosticS..sceeecessceses F-4
VAX 8600 Release PackageS..cseecscccsccssssssssccssd=3
Field Service Automatic Update Kitissssssssssssssssd—4
Customer KitS..eeeeeeosseescsccesssccccccsocccsccscd—d
VAX 8600 Diagnostic Kit 2.0..ccececccscsscccccscsasd=5
VAX 8600 Diagnostic Kit 3.0.cccececcscccaccscoasceasesd=5
Console Error Messages TableS.....ceceeenecccssesssK=3
Console Support Microcode (CSM) Fatal Messages.....K-4
General Console (DCN) Error MeSSage€S..eeeesecscscssK=5
General Console (DCN) Fatal MeSSageS..secescssesessK-5
General Console (DCN) Information MessagesS.........K-6
General Console (DCN) Warning MessageS....eeeseees K-7
Diagnostic Console (DCP) Error MessageS..... eeseK=9
Diagnostic Console (DCP) Fatal MesSSage€..scosseseeseK-11
Diagnostic Console (DCP) Information Messages.....K-12
Diagnositc Console (DCP) Warning MessageS.........K-12
Error Correction Routine (ECR) Error Messages.....K-13
Environmental Monitor Module (EMM) Error Messages.K-14
Environmental Monitor Module Fatal MessageS.......K-16
Hexadecimal Debugger (HEX) Warning MessageS.......K-17
Macro Control Program (MCP) Error MessageS........K-18
Macro Control Program (MCP) Fatal MessageS........K=19
Macro Control Program (MCP) Information Messages..K-20
Macro Control Program (MCP) Warning MessageS......K-21
Double Escratch Parity Error Fault (KAF)..........K=22
WBus Parity Error Faults (KAF)....eescecescescssecK=23
Uncorrectable CS Parity Error Faults (KAF)........K=-25

)

PREFACE

This manual describes the VAX 8600/8650 diagnostic software
system. It discusses how to use the system's software maintenance
tools to isolate hardware failures to a field replaceable unit

(FRU) . The reader must have had experience wusing VAX
macrodiagnostics and the Diagnostic Supervisor running on other
members of the VAX family. This manual emphasizes VAX

8600/8650-specific diagnostic information. For details on VAX
generic diagnostics, the reader must refer to the VAX Diagnostic
Supervisor User's Guide (EK-VXDSU-UG).

This manual is divided into seven chapters and several appendices.
An outline of the manual follows.

Chapter 1 -- VAX 8600/8650 Diagnostic System -- Chapter 1 provides
a functional description of the Diagnostic System that includes a
discussion of field maintenance strategies. It lists and explains
all the hardware and software components within the diagnostic
system, and how they tie together to provide a set of
troubleshooting tools for isolating hardware faults during
corrective maintenance.

Chapter 2 -- PROM Tests -- Chapter 2 describes the operation of
the PROM self-tests available on the system console module, and
the use of these tests to isolate faults in the console subsystem
hardcore logic.

Chapter 3 —-- EDOBA Console Diagnostic -- Chapter 3 describes the
purpose and operation of the T-11 based Console Diagnostic
Program, EDOBA, and the use of this program to isolate faults on
the console module and its immediate logic interfaces.

Chapter 4 -- Microhardcore (MHC) Tests -- Chapter 4 describes the
purpose and operation of the MHC tests and the use of MHC to
isolate faults in the hardcore logic.

Chapter 5 -- Microdiagnostics -- Chapter 5 describes the purpose
and operation of all the microdiagnostic programs for the system,
and the use of these programs to isolate logic faults in the CPU,
internal memory, and ABus interfaces.

xi

Chapter 6 -- Macrodiagnostics -- Chapter 6 describes the purpose
and operation of the VAX 8600 macrodiagnostic programs and the use
of these programs to isolate logic faults in the system.

Chapter 7 -- Console Command Sets -- Chapter 7 describes the
creative use of the Diagnostic Console command sets to perform
manual testing and fault analysis beyond what the diagnostics
normally provide.

Appendices -- The Appendices provide easy reference to information
and descriptions that support the theory and procedures described
in Chapters 1 through 7. For example, Appendix A contains a
summary of all the available console commands with illustrative
examples of how to use the on-line HELP facility. Appendix D
contains a summary description of the content and organization of
the files on the RL02 disk pack. This organization permits the
user to locate rapidly the most commonly used information without
wading through a welter of descriptive text.

WARNING

Some of the command descriptions and
sample program responses shown may
differ depending upon software
revision 1levels. In the early
stages of a new product, functional
enhancements and "bug" fixes mean
unavoidable changes to software and
hardware.

xii

CHAPTER 1
VAX 8600/8650 DIAGNOSTIC SYSTEM OVERVIEW

1.1 INTRODUCTION
This first chapter provides an overview of the VAX 8600/8650
diagnostic system. It includes general discussions of maintenance
strategy, basic software and hardware components, and modes of
console operation in preparation for the detailed descriptions in
Chapters 2 through 7.

NOTE
Unless otherwise specified, the
information in this user guide applies
to both the VAX 8600 and VAX 8650
systems.

In addition, all illustrations of macro
and microdiagnostic displays, listings,
and reports are provided as
representative examples, and may not
reflect the current revision.

1.2 RELATED DOCUMENTATION

This manual describes how to use the console front-end software to
test and troubleshoot the system. For detailed descriptions of the
hardware itself, the reader may need to refer to one or more of
the documents in Table 1-1.

1.3 DIAGNOSTIC STRATEGY OVERVIEW

The VAX 8600/8650 diagnostic testing and maintenance strategies
are aimed at isolating hardware faults to a FRU, module, or
subassembly as quickly and reliably as possible. To implement this
strategy, the system hardware design includes redundant hardware
logic circuits (parity and ECC) to detect, latch, and report
hardware errors at strategic test points throughout the system.
Special Error Handling Microcode (EHM), resident in the EBoX
control store, retrieves and formats the error information
detected by the hardware and passes it to the operating system for
"logging” in a system event file on the disk.

|
[
|
[

Table 1-1 Related Documentation

Title Document Number

Technical Descriptions

VAX 8600/8650 Console Technical Description EK-KA86C-TD
VAX 8600/8650 EBox Technical Description EK-KA86E-TD
VAX 8600/8650 System Power Technical Description EK-KA86P-TD
VAX 8600/8650 FBox Technical Description EK-FP86X-TD
VAX 8600/8650 IBox Technical Description EK-KA86I-TD
VAX 8600/8650 MBox/Memory Technical Description EK-KA86M-TD
VAX 8600/8650 SBIA Technical Description EK-DB86X-TD
VAX 8600/8650 System Clocks Technical Description EK-KA86K-TD
VAX 8600/8650 EMM Technical Description EK-KA86V-TD
VAX 8600/8650 System Description and Processor

Overview EK-KA86S-TD

User's Guides

VAX 8600/8650 System Hardware User's Guide EK-8600H-UG
VAX 8600/8650 System Maintenance Guide* EK-86XV1-MG
VAX 8600/8650 System Installation Manual EK-8600I-IN
VAX 8600/8650 System Fault Isolation Manual* EK-8600S-MM

* For Internal Use Only

In addition to the parity/ECC check circuits, the system contains
a diagnostic console subsystem, driven by a T-11 microprocessor,
that serves as the operator's console and diagnostic load device.
A Serial Diagnostic Bus (SDB) connects the console to the VAX CPU
to provide wvisibility to over 2000 key logic signals for
diagnostic testing and fault isolation. The SDB is also used to
load all the CPU control RAMs during system start-up and
initialization. A second bus, called the CBus, connects the
console subsystem to the EBox to provide the communications 1link
between the console front end and the VAX CPU. Both the SDB and

the CBus are exploited by the diagnostics during system test and
fault isolation.

Finally, a complete set of console software programs, resident on

the RL0O2 disk device, provide a set of software tools that do the
following.

. Start and stop the system
° Control and monitor system operation
. Load and run diagnostics

The diagnostic software provides the facilities for both on-line
and standalone testing. Which facility the service engineer uses

depends on the nature of the hardware fault and the type of
maintenance being performed.

)

)

1.3.1 On-Line Error Analysis

Intermittent hardware errors that the system can recover from are
logged in a system event file on the system disk. This class of
error may or may not —cause an occasional system crash.
Intermittent errors generally elude detection by standalone
diagnostics. Several types of diagnostic tools are available for
on-line testing of the system.

° System Program for Error Analysis and Reporting (SPEAR)
~- A user-mode program that retrieves and analyzes the_
errors logged in the system event file.

® System Dump Analyzer (SDA) -~ A VMS utility program thét
analyzes the core image of the operating system after a
crash and successful restart.

° User Environmental Test Package (UETP) -- A field
configurable set of program modules that can be run
on-line to exercise the system interactively and to
report failures within specific subsystems.

. Macrodiagnostics =-- Functional macrodiagnostic programs
that run on-line under control of the VMS operating
system.

This manual focuses on standalone test procedures. For information
on using SPEAR, SDA, and UETP, refer to the individual user guides
for these programs. The VAX 8600/8650 System Fault Isolation
Manual (EK-8600S-MM) also includes discussions of on-line testing.
Chapter 6 includes some discussion of on-line macrodiagnostics for
VAX 8600/8650 systems.

1.3.2 Standalone Testing

A complete set of diagnostic programs is available for standalone
testing of the system. These programs range in complexity from
simple T-11 PROM-based self-tests that validate the console module
hardcore logic on power-up, to VAX internal memory-based macro-
diagnostics that test the I/O subsystems. All of these programs,
with the exception of the PROM tests, are loaded from the RLO2
disk. Figure 1-1 summarizes the types of diagnostics that are
available for testing and troubleshooting the system.

The diagnostic program set was designed in a building block
format. As the user moves higher into each subsequent program
level, it should be assumed that the hardware at the previous
(lower) level is working. Moving from bottom to top in Figure 1-1,
the size and complexity of the hardware/software test environment
increases. The objective is to detect the fault at the simplest
level, thus making it easier to identify the source of the
problem.

[——————’ LOAD AND RUN VMS

TOP

INCREASING SIZE AND
COMPLEXITY OF THE
HARDWARE/SOFTWARE
TEST ENVIRONMENT

BOTTOM

MR-15382

Figure 1-1 Standalone Testing -- Diagnostic Hierarchy

Each level includes one or more of these test programs.

EMM -- During power-up, the 8085 microprocessor on the
Environmental Monitoring Module (EMM) executes a set of
PROM-based self-tests to check out the EMM. Refer to VAX
8600/8650 EMM Technical Description (EK-KA86V-TD) for
details on the EMM tests.

ROM> —-- During power-up, the T-11 microprocessor executes
the PROM self-tests to validate the console module

hardcore logic. Chapter 2 describes the operation of the
PROM tests.

EDOBA -- A T-11 based console module diagnostic is
invoked by the T command in the PROM tests. Chapter 3
describes the operation and use of EDOBA.

MH> -- The T-11 based MHC diagnostic tests the CPU
hardcore logic. Chapter 4 describes the operation and use
of MHC.

DC> -- The T-11 based Diagnostic Control Pregram (DCP)
controls loading, running, and monitoring a complete set
of CPU microdiagnostics. Chapter 5 describes the
operation and use of the microdiagnostics.

® >>> =-- The T-11 based Macro Control Program (MCP)
controls loading, running, and monitoring VAX internal
memory-based macrodiagnostics. These macrodiagnostics
test the CPU hardcore instruction set used by the VAX
diagnostic supervisor. Chapter 6 describes the operation
and use of macrodiagnostics.

° DS> -- The VAX internal memory-based diagnostic
supervisor controls loading, running, and monitoring of
most of the VAX macrodiagnostics. Chapter 6 describes the
operation and use of the supervisor and the VAX
macrodiagnostics.

The exact sequencing of the diagnostics will depend on the type of
maintenance being performed. During installation and preventive
maintenance, a straight-line, bottom-up approach will most likely
be used. In the case of demand corrective maintenance, the
approach will probably differ depending upon the initial customer
complaint and the individual troubleshooting style of the service
engineer. For example, it would probably be fruitless to run
microdiagnostics if the customer was complaining about occasional
disk errors from drive 3. Each of the following chapters will
include more detailed discussions of recommended test sequences.

1.4 DIAGNOSTIC FEATURES

To improve the maintainabilty of the VAX 8600/8650 computer
systems, extensive hardware and software features were added so
that the user would have a comprehensive set of maintenance tools
for detecting and isolating hardware faults. For most failures,
the user should be able to use these tools to localize the source
of the problem and to identify the FRU that needs to be replaced.

1.4.1 Hardware Features
1. A console front-end system includes the following.

A T-11 microprocessor

An 8 Kbyte (KB) PROM

A 256 KB dynamic RAM

Three serial ASCII ports (local, remote, and EMM)
An RLO02 disk subsystem

A Time-Of-Year clock (TOY)

Refer to the VAX 8600/8650 Console Technical
Description (EK-KA86C-TD) for a more detailed

scussion of the console hardware.

2. The SDB provides the console with the ability to control
logic facilities within the CPU and to record the state
of thousands of key logic signals within the CPU modules.

3. An 8-bit parallel bus (CBus), connected to a dual-port
register file, provides a communications link between the
CPU and the console software.

4. Extensive hardware parity generation and checking
circuits at strategically located test points within the
CPU modules detect and report hardware errors.

1.4.2 Software Features

1. A complete set of console software programs uses the
power of the PDP-11 instruction set to control the
hardware features described above.

2. A set of console commands organized into logical sets
permit the operator or service engineer to control the
?PU dfring normal operation or diagnose the system when

t fails.

3. A complete set of diagnostic programs and support files
resident on the RL02 disk pack are used to test and
troubleshoot the system.

The presence of a physically separate and independent subsystem
overcomes the problems associated with systems where the
diagnostics must be loaded and run using hardware that needs to be
tested.

1.5 CONSOLE SOFTWARE OVERVIEW

The console software is essentially a T-11 program, EDOAA,SAV,
that is booted from the RL02 disk during system power-up and
start-up. A comprehensive set of program overlays provide the
means for controlling the console subsystem and the VAX CPU.

1.5.1 Console Operating Modes

From the user's perspective, there are two distinct modes of
operation that the console software may operate in. These are
summarized in Figure 1-2.

° Console I/0 Mode (CIO) -- In this mode, the VAX CPU is
normally halted and the console software accepts and
processes commands from either the local or remote ports.

° Program I/0 Mode (PIO) -- In this mode, the console
software is "slave" to the macro program running in the
VAX CPU, and does not accept or process commands from
either the local or remote ports. Any user input is
passed to the VAX CPU.

)

/—\ VAX CPU
PIO BASED MACRO

PROGRAM

CONSOLE
— AP START OR
(LCL/REM) g CONTINUE

T11 BASED
CONSOLE
SOFTWARE

MA-15383

NOTE: CONTROL-P DOES NOT SWITCH MODFS
IF THE TERMINAL SELECT SWITCH IS
IN ONE OF THE TWO DISABLE POSITIONS.

Figure 1-2 Console Software -- Modes of Operation

1.5.1.1 CIO Mode -- Three separate CIO mode contexts are provided
to facilitate the handling of function-specific console tasks.

1. The MACRO context (default on power-up) is used for
initializing the CPU and running VAX macrocode.

2. The MICROHARDCORE context is used to test the CPU
hardcore logic before running microdiagnostics.

3. The DIAGNOSTIC context is used to run microdiagnostic
test programs and to isolate machine faults.

Switching between contexts affects the state of the machine
significantly because local initialization is performed by each
context on entry.

Once in CIO mode, the user may select one of three contexts as
summarized in Figure 1-3. Each context provides access to a unique
set of commands designed to support specific console functions. A
general set of commands is available in all three contexts. When
in either the macro or diagnostic contexts, the user may use the
DEBUG command to access commands in the HEX program overlay.
Refer to Appendix A for a complete summary of all the command
sets.

A PROM command is available from all three contexts that permits
the user to access the PROM-based code.

1-7

START OR

CONTINUE PIO
MODE
POWER ON/
INITIALIZATION 1 POR
HALT
Cl0 MODE
- MACRO
MHC
peeus acn
EXIT (SN IACR!
HEX
DEBUGGER
COMMAND
DIAG
SET MACRO
DEBUG DIAG MHC MHC
EXIT De> DIAG MH>
wA15384
Figure 1-3 CIO Mode Contexts
1.5.1.1.1 Macro Context -- The macro context is the default on

power-up initialization; it is used for normal control of the VAX
CPU when loading and running macrodiagnostics. The macro context
may also be entered from either the diagnostic or microhardcore
contexts with the MACRO command. The command will cause the
console software to invoke a reinitialization of the macro
context. When in macro context, the VAX CPU control RAMs are
loaded with system-level microcode to support running the
operating system and macrodiagnostics. During the initialization
process, Console Support Microcode (CSM), resident in the EBox
control store, provides the communication link between the VAX CPU
and the console software via CBus protocol. Appendix B provides a
description of the CSM.

When in macro context, the console software displays the >>>
prompt to indicate it is ready to accept and process commands.
The following command sets are available in the macro context.

° General command set
) Macro command set
* HEX debugger command set

Once in macro context, the user may use either the START or
CONTINUE commands to enter PIO mode assuming, of course, that some
type of macroprogram has been loaded into VAX internal memory.

1.5.1.1.2 Microhardcore Context == The microhardcore (MHC)
context may be entered from either the macro or diagnostic
contexts by typing the MHC command. No VAX CPU initialization is
required on switching; the console software simply transfers
control to a set of MHC program overlays and responds with the MH>
prompt to indicate it is ready to accept commands. When in the MHC
context, the user has access to the following command sets.

° MHC command set
° General command set

After running the MHC tests, the user may switch to either the
macro or diagnostic contexts via the MACRO or DIAG commands,
respectfully.

1.5.1.1.3 Diagnostic Context -- The diagnostic context may be
entered from either the macro or microhardcore contexts when the
user types the DIAG command. When the context is entered, the
console software initializes the VAX CPU for running
microdiagnostics. It switches control to the DCP overlay which
responds with the DC> prompt, indicating it is ready to accept
commands. Diagnostic Support Microcode (DSM) is loaded into the
EBox control store to provide the communications link between the
console software and the microdiagnostics. Appendix C contains a
description of the DSM.

Once in diagnostic context, the user can load and run
microdiagnostics to test the CPU, internal memory, and ABus
interfaces. While in this context, the user has access to the
following command sets.

“

L) General command set
. Diagnostic command set
L] HEX debugger command set

From here, the user may switch to either the macro or micro-
hardcore contexts via the MACRO or MHC commands, respectively.

1.5.1.2 PIO Mode -- When operating in PIO mode, the console
software services requests from the VAX CPU and provides special
monitoring functions to the total system. PIO mode can only be
entered from the MACRO context by typing either the START or
CONTINUE command. PIO mode is entered automatically if an
automatic warm-start or cold-start attempt is made either at the
completion of a console reboot, or after console initialization.

PIO mode is exited upon receipt of a <CTRL/P> from either the
local or remote port if the Terminal Select Switch on the SCP is
not in one of the two DISABLE positions. If disabled, the <CTRL/P>
simply passes to the VAX CPU with no change in console mode. It
may also be exited if the VAX CPU halts (such as for a Keep Alive
Failure [KAF]). PIO mode always exits to CIO mode in the macro
context.

1-9

When PIO mode is exited via a <CTRL/P>, the VAX CPU continues to
run. The user must type a HALT command to halt the VAX CPU. Most
of the console commands that affect the state of the CPU are not
allowed unless the CPU is halted.

While running in PIO mode, the console software does not process
any operator commands from either the local or remote ports. Any
data received from either port is simply passed to the
macroprogram running in the VAX CPU as ASCII data. When in PIO
mode, the console software services the following functions.

° Independent character transfers between the CPU and the
local or remote ports

. Passing requests to the EMM port from the CPU, and
passing responses and unsolicited warning messages from
the EMM port to the VAX CPU

° Servicing "logical console" requests from the CPU

® Handling CPU control store parity error correction where
possible

) Handling detection and recovery of CPU ERROR HALTS and
CPU KEEP ALIVE FAILURES

. Handling CI reboot operations (ABus DEAD Interrupt)

[Handling detection of and recovery from power failures

. Handling CPU requests to access the RL02 disk

. Providing TOY information to the CPU with 10 ms
resolution

. Handling updating of the LED iﬁdicators on the SCP

1.6 BOTTOM-UP TEST PROCEDURE

This section summarizes a straight-line procedure for testing a
system from the time the power is turned on to the point where the
user can log into VMS. First, make sure the diagnostic pack is
mounted in the RL02 and the system disk contains the VMS operating
system. Perform the following steps to invoke the PROM command
parser and get to the ROM> prompt.

1. Install the RLO2 disk pack.

2. Place the Terminal Control Switch in the LOCAL position
to turn on the power.

3. Type any key on the console terminal when the "bell"
sounds.

At this point, execute the command procedure summarized in Table
1-2. If any of the tests result in errors or abnormal responses,
refer to the appropriate chapter for a detailed description of
that step in the procedure.

Table 1-2 VAX 8600/8650 CPU Bottom-Up Test Procedure

Prompt Command Action Time (minutes)

ROM> T Load and run EDOBA, the console 3
diagnostic (2 passes).

ROM> B Boot the console software to load 3
and start EDOAA.SAV. Press <CTRL/C>
when the message "Initializing CPU"
is displayed.

>>> MHC Switch to microhardcore context. .2

MH> START Run all the microhardcore tests. 20

MH> DIAGNOSE Switch to diagnostic context. .25

DC>> @MICROS Run all the VAX CPU micro- 30
diagnostic programs.

DC>> MACRO Switch to macro context. 5

>>> @EDKAA Load and start EDKAA.EXE, the *
VAX macrohardcore diagnostic.

>>> @EDSAA Load and start the VAX 8600/8650 3
diagnostic supervisor.

DS> RUN EVSBA Load and run the VAX autosizer *
@CONFIG. +

DS> SEL ALL Select all available devices. *

DS> RUN xxxxx Run CPU and adapter diagnostics. # *

Press <CTRL/P> to return to
the >>> prompt.

>>> BOOT Load and start the operating *
system using the DEFB0OO.COM
command file.

* Time will vary depending upon system configuration, number of
passes run, number of programs run, etc.

+ The file CONFIG.COM, if available, may be submitted instead of
running the autosizer.

+ "xxxxx" is the name of the diagnostic to be run.

1-11

1.7 SUMMARY

This chapter presents an overview of the system's hardware and
software which are designed to improve the system maintainability
and availability, two very important factors in any large computer
system. The following chapters will describe how to use these
features in more detail.

CHAPTER 2
PROM TESTS

2.1 OVERVIEW

An 8 Kbyte PROM on the console module contains a PDP-11 self-test
program for checking the console module hardcore logic on
power-up. Besides the console self-tests, the PROM code also
provides a minimal command set so the user can manually test the
console logic. It also includes code to load the root console
software program into T-11 RAM from the RL02 during system
start-up and initialization. The PROM code facilities can be
accessed from either the local or remote port. This chapter will
describe how the PROM code operates, how it displays any errors
detected, and how the PROM command set is used. Figure 2-1
summarizes the PROM test environment.

2.2 PROGRAM DESCRIPTION

PROM code initialization is performed whenever the machine power
is turned on or whenever a power failure recovery is being
attempted. Only part of the program is performed when a console
reboot is requested by the CPU interrupt (TSTRT) or by the REBOOT
command. Initialization begins with the execution of a set of
self-tests and ends with the booting of the console program from
the RLO2.

Optionally, the user may wish to use the limited PROM command set
to test the console further or perform some I/0 register
manipulation.

Invisible to the user is the fact that the console PROM is
composed of two 4 Kbyte sections, only one of which is enabled at
a time. When a segment is enabled, it occupies the T-11 address
space between 164000(8) and 173776(8). This location reduces the
amount of console memory space needed to run the 8 Kbyte PROM to
only 4 Kbyte. Switching between segments is handled mainly by the
PROM code itself, with the exception of a power-up condition.

2.2.1 Power-Up Operation

On power-up, the T-11 microprocessor first issues a console INIT
pulse to clear most of the console hardware registers (which
disables all T-11 interrupts and enables the lower segment of the
PROM). The T-11 microprocessor then vectors to the PROM address
172000(8). Immediately after, the PROM begins a series of
self-tests designed to verify logic critical to operation. It is
assumed, however, that the T-11 chip and its instruction set are
fully operational. The following subsection describes the
self-tests in detail.

2-1

~

oesiuw

G3Sv8 WOud

f

1831-4138

b3

JUAWUOITAUY 3IS9] WOHd

1-Z ?anbrg

[ruvsn] /

AVS'VE003

[1uvsn]

Wvy

a [
!l @
— b3
z
WOud il
- . dJs —
48 8
35] 8
22020 V60100 o _ = 22000 >
vigs waw LNI _ J10SNOd_
(> o Aﬂmaﬂ > T
3JHOVD St $03 HOLV¥IS3 Wed S$OvEd
l— - -
WAVd SOW Wvydai AX3INOD 40W WvHad
L te EN | !
sn8 do |
snam
31040 §5300V
W

SNE aw

VAl

vA3

HINI

r T T T T T T T

(-

When a self-test fails, the console loops indefinitely. In some
cases, the front panel LEDs are used to indicate the failing test
number. Most of the time, however, there will be an error message
displayed on the CTY. ‘

If none of the sclf-tests fail, the PROM code turns off the four
front panel LEDs and sets up all T-11 interrupt vectors to point
to the "unexpected interrupt handler" entry to the PROM (172010).
It then transfers control to the upper 4 Kbyte segment. The upper
segment begins by sending a <RETURN><LINE FEED> sequence (followed
by a bell sound) to the CTY to signal the operator that the
self-tests have completed and that the console program is about to
be booted. A pause of three to four seconds occurs between the
ringing of the CTY bell and the beginning of the RL02 boot
sequence, during which any key typed on the CTY causes the PROM to
enter its command input loop and display the ROM> prompt.

The RLO2 boot sequence consists of a series of RL0O2-access tests
prior to the actual boot attempt. These tests are explained below
in the section describing the B command.

2.2.2 Self-Test Execution

The execution of the PROM self-tests occurs immediately after
power is supplied to the T-1l processor and surrounding circuitry.
It i5 assumed that the T-11 internal logic is operational.

Test loop controls similar to those found in diagnostic programs
are used. A test will loop on error; respond to <CTRL/S>,
<CTRL/Q>, and <CTRL/O> (if the test outputs anything); and will
exit the loop in response to ¢CTRL/E> (only for some tests) .
Furthermore, a special trigger signal is asserted immediately
after detection of the error and negated at the end of each test
loop. This serves as a trigger input for oscilloscopes and
analyzers by asserting the signal CL09 DIAG TRIGGER H on the CPU
backplane.

The tests are arranged in a building block fashion so that 1logic
is used only after it is tested. Because the CTY interface may be
nonfunctional, the initial tests rely on the front panel LEDs to
contain test numbers. When one of the primitive tests fails, the
front panel LEDs will contain the test's number. As soon as the
CTY interface is tested, the system banner is printed. The CTY is
used to report errors beyond that point while the LEDs remain in
their last set state (1001 [test 9]).

Errors reported to the CTY are displayed in the following format.

CONSOLE SELF-TEST DETECTED ERROR: TEST #n SUBTEST #n
"descriptive message"

"data header"

"data ..."

The first couple of self-tests verify the integrity of the PROM
code, the front panel LEDs, and much of the T-11 addressing and
data paths.

Upon receiving power, the front panel LEDs are forced to the ON
state. At this time, the PROM code begins its first test, which
is to calculate the additive checksum of the entire 8 Kbyte PROM.
If unsuccessful, the code falls into a "BR ." instruction and the
LEDs remain in the "1111" state. Note that the "1111" state will
also remain if some other critical T-11 logic is broken.

2.2.3 PROM Test Descriptions
Table 2-1 1lists all of the PROM tests executed up to the point
where the program displays the system banner.

At this point, the CTY interface, cable, and printer are assumed
to be operational. Test failures from here on are reported on the
CTY, and CTY input may also be recognized where indicated. The
remaining tests in the PROM initialization are 1listed in Table
2-2. Tests that allow the <CTRL/E> input character can be exited
if they fail, otherwise the test will loop indefinitely. The other
input control characters can be used to stop (<XCTRL/S>), resume
(<CTRL/Q>) test execution, or suppress (<CTRL/0>) error report
output.

Table 2-1 PROM Test Descriptions -- Part I

Test No. Title/LED State/Description

0 PROM CHECKSUM TEST
LED state = 1111
An additive checksum of both the lower and upper
segments of the PROM is calculated. The result should
be 377(8). On error, a "BR ." is executed.

1 SCP SDB CHANNEL TEST

LED state = 0001 --> 0010 --> 0100 --> 1000

A floating 1 pattern is shifted through the LEDs at a
fairly slow speed so the operator can tell if there is
an LED failure. The test checks most of the SDB control
logic and the SCP LED logic which is used by subsequent
tests to report test numbers. The test is open-ended and
cannot fail.

2 CTY INTERFACE MODE REGISTER 1 BIT TEST
LED state = 0010
Alternating 01010101 and 10101010 patterns are written
and read from the CTY's PCI_MODE_REGISTER_l.

Table 2-1 PROM Test Descriptions -- Part I (Cont.)

Test No.

Title/LED State/Description

3

10

11

CTY INTERFACE MODE REGISTER 2 BIT TEST

LED state = 0011

Alternating 01010101 and 10101010 patterns are written
and read from the CTY's PCI_MODE_REGISTER_2.

CTY INTERFACE COMMAND REGISTER BIT TEST

LED state = 0100

Both a 01010101 and a 10101010 pattern are written and
read from the CTY's PCI_COMMAND REGISTER.

CTY INTERFACE RESET TEST

LED state = 0101

A pattern is loaded into the PCI_COMMAND REGISTER and a
PCI RESET is performed. If the command register clears,
then the PCI's RESET input is connected and working.

CTY INTERFACE TXRDY BIT TEST

LED state = 0110

The local PCI is configured to run in its normal
operating mode (9600 baud, 8-bit, no parity, 1 stop
bit). The TXRDY bit in the PCI status register is then
expected to set within 100 ms. If ok, the PCI transmit
register is loaded and the TXRDY bit is expected to
clear immediately.

CTY INTERFACE RXRDY BIT TEST

LED state = 0111

The local PCI is reinitialized, but this time in local
loop back mode. A character is transmitted and the
RXRDY bit in the PCI status register is expected to set.
When the RECEIVED CHARACTER_BBGISTER is read, the RXRDY
bit is expected to clear.

CTY INTERFACE LOOPBACK TEST

LED state = 1000

This is essentially the same as the previous test except
that several loopback transmissions are performed to
ensure the PCI and crystal can handle it.

CTY BANNER TEST

LED state = 1001

This is an open-ended test that relies on the operator
to observe the system banner.

Table 2-2 PROM Test Descriptions -- Part II

Test No.

Title/Control Characters/Description

12

13

14

15

16

PARITY ERROR LATCH TEST

Allowable control characters are <CTRL/S>, <CTRL/Q>,
<CTRL/0>, <CTRL/E>.

Tests whether the 1latch responsible for indicating
parity errors can be set and cleared directly.

PARITY CIRCUIT TEST, PART 1

Allowable control characters are <CTRL/S>, <CTRL/Q>,
<CTRL/0>, <CTRL/E>.

Simultaneously tests that RAM location 0 will hold a
01010101 pattern. If all right, parity RAM location 0 is
expected to contain 1.

PARITY CIRCUIT TEST, PART 2

Allowable control characters are <CTRL/S>, <CTRL/Q>,
<CTRL/0>, <CTRL/E>.

Simultaneously tests whether RAM location 0 will hold a
10101010 pattern. If all right, parity RAM location 0 is
expected to contain 0 (since the "force parity error"
bit in MCSRO was set prior to depositing the pattern).

58 KB RAM DATA/ADDRESS TEST, BOTTOM-UP

Allowable control characters are <CTRL/S>, <CTRL/Q>,
<CTRL/0>, <CTRL/E>.

A modified moving-inversions test is performed on the
first 58 Kbytes of physical RAM. The test verifies all
data faults that are likely to occur in the console RAM
configuration, as well as verifying all addressing
faults in the positive (incrementing) direction. On
error, the address, expected data, and received data are
displayed.

58 KB RAM DATA/ADDRESS TEST, TOP-DOWN

Allowable control characters are <CTRL/S>, <CTRL/Q>,
<CTRL/0>, <CTRL/E>.

A modified moving-inversions test is performed on the
first 58 Kbytes of physical RAM. The test verifies all
data stuck-at faults likely to occur in the console RAM
configuration, as well as all addressing faults in the
negative (decrementing) direction. On error, the

_address, expected data, and received data are displayed.

Table 2-2 PROM Test Descriptions -- Part II (Cont.)

Test No.

Title/Control Characters/Description

17

20

21

22

23

24

MAP RAM LOCATION 0 QV TEST

Allowable control characters are <CTRL/S>, <CTRL/Q>,
<CTRL/0>, <CTRL/E>.

A loop is first performed that uses the first mapping
RAM location (MAPROO) to initialize all of physical
memory with 0s and good parity, and places each 4 Kbyte
page number in the first location of its own 4 Kbyte
page boundary. The process is repeated to check that the
first byte of each page contains the correct value.

MAPPING RAM DATA TEST, BOTTOM-UP

Allowable control characters are <CTRL/S>, <CTRL/Q>,
<CTRL/0>, <CTRL/E>.

This test uses the memory pattern verified by the
previous test to check that all mapping RAM locations
can access pages uniquely, in the positive direction.

MAPPING RAM DATA TEST, TOP-DOWN

Allowable control characters are <CTRL/S>, <CTRL/Q>,
<CTRL/0>, <CTRL/E>.

This test uses the memory pattern verified by the
previous test to check that all mapping RAM locations
can access pages uniquely, in the negative direction.

MAPPING RAM ADDRESSING TEST

Allowable control characters are <CTRL/S>, <CTRL/Q>,
<CTRL/0>, <CTRL/E>.

This test uses the memory pattern verified by the
previous tests to check that all mapping RAM locations
are themselves uniquely addressable. The memory mapper
is then turned off.

TOY CHIP ACCESS TEST

Allowable control characters are <CTRL/S>, <CTRL/Q>,
<CTRL/0>, <CTRL/E>.

This test checks that registers in the console's TOY
chip can be accessed to verify that the TOY chip is
receiving power from the +5 B signal input from the BBU.

RTY INTERFACE MODE REGISTER 1-BIT TEST

Allowable control characters are <CTRL/S>, <CTRL/Q>,
<CTRL/0>, <CTRL/E>.

Normal operation patterns are loaded into the RTY's
PCI_MODE_REGISTER_1 and checked.

Table 2-2 PROM Test Descriptions -- Part II (Cont.)

Test No.

Title/Control Characters/Description

25

26

27

30

31

32

RTY INTERFACE MODE REGISTER 2-BIT TEST

Allowable control characters are <CTRL/S>, <CTRL/Q>,
<CTRL/0>, <CTRL/E>.

Normal operation patterns are loaded into the RTY's
PCI_MODE_REGISTER_2 and checked.

RTY INTERFACE COMMAND REGISTER BIT TEST

Allowable control characters are <CTRL/S>, <CTRL/Q>,
<CTRL/0>, <CTRL/E>.

Both a 01010101 and a 10101010 pattern are written and
read from the RTY's PCI_COMMAND REGISTER.

RTY INTERFACE RESET TEST

Allowable control characters are <CTRL/S>, <CTRL/Q>,
<CTRL/0>, <CTRL/E>.

A pattern is loaded into the PCI _COMMAND REGISTER and a
PCI RESET is performed. If the command register clears,
it means the PCI's RESET input is connected and working.

RTY INTERFACE TXRDY BIT TEST

Allowable control characters are <CTRL/S>, <CTRL/Q>,
<CTRL/0>, <CTRL/E>.

The remote PCI is configured to run in its normal
operating mode (1200 baud, 8-bit, no parity, 1 stop
bit). The TXRDY bit in the PCI status register is then
expected to set within 100 ms. If ok, the PCI transmit
register is loaded and the TXRDY bit is expected to
clear immediately.

RTY INTERFACE RXRDY BIT TEST

Allowable control characters are <CTRL/S>, <CTRL/Q>,
<CTRL/0>, <CTRL/E>.

The remote PCI is reinitialized, but this time in local
loopback mode. A character is transmitted and the RXRDY
bit in the PCI status register is expected to set. When
the RECEIVED CHARACTER _REGISTER is read, the RXRDY bit
is expected to clear.

RTY INTERFACE LOOPBACK TEST

Allowable control characters are <CTRL/S>, <CTRL/Q>,
<CTRL/0>, <CTRL/E>.

This test duplicates the function of the previous test
in order to verify that the remote PCI can handle
consecutive character transmissions.

Table 2-2 PROM Test Descriptions -- Part II (Cont.)

Test No. Title/Control Characters/Description

33 SCP SDB LOGIC TEST
Allowable control characters are <CTRL/S>, <CTRL/Q>,
<CTRL/0>, <CTRL/E>.
This test checks the continuity of the SDB control
channel on the SCP. This test will affect the state of
the front panel LEDs, but is done so quickly it is
unnoticeable.

34 "CL15 TSTRT" INTERRUPT TEST
Allowable control characters are <CTRL/S>, <CTRL/Q>,
<CTRL/0O>.

This test checks that the TSTRT interrupt input to the
console is not asserted. This interrupt is not maskable
through the PSW, so it must be cleared before the
console program will run.

35 UNEXPECTED INTERRUPT TEST
Allowable control characters are <CTRL/S>, <CTRL/Q>,
<CTRL/O>.

This test checks that after a full console reset there
are no pending (or stuck) interrupts to the T-11
microprocessor. This ensures the proper start-up of RT
and the console kernel.

2.2.4 PROM Command Loop

When the PROM code signals the completion of the self-tests by
ending the bell character to the CTY, the operator can type any
key to signal the PROM to enter its command null loop. While in
the null loop, the PROM code may service the RTY device, as well
as the CTY, for possible input (provided the front panel switch is
in the REMOTE position and a remote connection has been made). The
PROM gode indicates its readiness for input by displaying the ROM>
prompt.

The command parser in the PROM is extremely simple. It accepts
single-character commands and alphanumeric arguments. Table 2-3
lists the commands available to the user.

Table 2-3 PROM Command Set

Command

Description

B

D addr data

E addr

S addr

T [filename]

Boot the console software from the RLO2. This
command begins by testing the interface between
the console and the RL02 controller. The sequence
of tests follows.

1. Checks for AC LOW and DC LOW conditions in the
BAll.

2. Checks that console-generated BUS INIT reaches
the RL0O2 controller and clears all RLO2
controller registers.

3. Checks that RLCS, RLBA, and RLDA will retain a
full complement of patterns.

4. Performs an RL02 MAINTENANCE TRANSFER to
verify DMA logic between the console and RLOZ,
and other logic on the RLV12 controller.

5. Checks that the first word read in from the
RL0O2 boot block contains "240" (NOP).

If any of the above checks fail, a message is
reported to both the CTY and RTY, and the B
command aborts. There is no test looping
capability. If a drive or controller status error
is detected during the actual booting of the
device, a number of retries are made.

Deposit the data word to the specified address.
The address must be an even number.

Examine the data word at the specified address.
0dd addresses are made even by dropping the low
order bit.

Start the T-11 execution at the specified address.
The address must be an even number. The
command-argument delimiter is optional.

Without any argument, this command reruns the PROM
self-tests and then loads and runs the console
diagnostic program (EDOBA) for two passes. If a
filename is specified, the self-tests are not run
and the file is loaded and started at location
200. The default filename extension is .SAV.

Table 2-3 PROM Command Set (Cont.)

Command Description

Q addr data This command allows direct deposits to Q-Bus
registers. The addresses 174400, 174402, 174404,
and 174406 are the RLCS, RLBA, RLDA, and RLMPR
registers, respectively. All other addresses are
rejected.

R addr This command allows direct examines of Q-Bus
registers. The addresses 174400, 174402, 174404,
and 174406 are the RLCS, RLBA, RLDA, and RLMPR
reqisters, respectively. All other addresses are
rejected.

v With this command, the PROM code enters a loop
which allows characters to pass directly between
the CcTY and RTY. The escape sequence
"<CTRL/P><XCTRL/X><XCTRL/P>" can be entered from
either input device to force the PROM code to exit
this mode.

X This command complies (less any switches) with the
description of same in Chapter 11 of Digital
Standard 032. It is intended to be used for binary
data transfers between T-11 memory and a computer
using the remote port input. It is not intended
for human use and will work properly only when
issued from the RTY device.)

2.2.5 PROM RTY Support

The PROM code services the RTY port with a much simpler procedure
than the console program's. This simplicity is necessary since the
PROM code has neither a timer nor an interrupt capability.

After the PROM code completes its power-up self-tests, which
include loopback tests on the RTY PCI, it configures the PCI to
operate with default characteristics (same defaults used by the
SET TERMINAL command). Once the PCI is set up, 'and if the front
panel Terminal Control Switch is in the REMOTE position, the PROM
asserts the DTR signal to the modem, thus allowing the modem to
turn on-line. If the DSR and CD signals from the modem are sensed
as TRUE, then all character output to the CTY will also be sent to
the RTY port, and input will be accepted from either. Note that
because the DTR signal to the modem is not asserted until the end
of the self-tests, it will be virtually impossible to establish a
modem connect to the RTY port during system power-up
initialization while the PROM is still running. However, a
terminal connected locally with a NULL MODEM cable should be able
to get control of the PROM code; this is why this scheme becomes
useful.

Once the PROM asserts DTR to the modem, the dial-in capability is
activated. When the console program starts running, it begins to
service the RTY port immediately, thus giving the remote user
control throughout PROM-to-console program transitions, and vice
versa. This means that if T-11 control transfers to the PROM
because of some unexpected condition, such as for a T-11 HALT or
unexpected interrupt, the PROM can continue to service the remote
connection.

During the handling of connections and disconnections of the
remote terminal by the PROM code, the state of the front panel
indicators is updated in accordance with how those indicators are
defined in this document.

NOTE
The console diagnostic EDOBA invoked
with the PROM T command tests the RTY
interface which causes the remote port
to be disconnected. This prevents
running EDOBRA from the remote port.

2.2.6 Special Services

The console PROM code provides two special services to the console
program. The first is to handle unexpected interrupts and the
second is to handle console rebool requests. These services are
described next.

2.2.6.1 Unexpected Interrupt Handling -- Whenever the PROM code
receives control of the T-11, whether by first-time power-up, a
console reboot, or an unexpected interrupt, it first disables T-11
interrupts by raising the Interrupt Priority Level (IPL) in the
PSW to 7 (highest). It then loads all T-1l1 interrupt vectors with
a pointer to the PROM's unexpected interrupt service routine
(172010). The new PSW, in the location following each vector
location, contains a 4-bit ID in the condition code field such
that a single service routine entry can be used for all interrupt
vectors.

There are 16 possible vectored interrupts on the console module, 2
of which are unused and can never occur. Each vector is dedicated
for one specific device. Table 2-4 lists the vectors, priority
levels, and ID codes for all possible console interrupts.

The same devices handled by vectors 24, 70, and 140 are always
handled by the PROM code as unexpected interrupts.

N

Table 2-4 Console Interrupt Vectors

Vector IPL ID I/0 Device

24 * 00 PROM restart

60 4 01 Remote PCI transmit/receive/modem
64 4 02 Local PCI transmit/receive

70 4 03 Q-Bus reply timeout

100 6 04 Unused

104 6 05 TOY 1 ms interrupt

110 6 06 CPU control store parity error
114 6 07 STOR RDY

120 5 10 TXCS RDY

124 5 11 RXCS DNE

130 5 12 Q-Bus adapter

134 5 13 EMM PCI transmit/receive

140 7 14 Console RAM parity error

144 7 15 Unused

150 7 16 System ac low

154 7 17 ABus dead

* Unmaskable by PSW

When the PROM receives control at its unexpected interrupt service
routine, it decodes the 4-bit ID number in the condition code
field of the PSW and displays the vector through which the
transfer was made. Then, the PROM code displays the contents of
the T-11 registers (RO through R7 and PSW) at the time of the
interrupt. In the case of vector 140, console RAM parity error,
the PROM code constructs the address of the parity error (from the
PECAS and PERAS registers) and displays this, along with the
contents of the location and whether ‘or not the parity error is
hard or soft.

Because most of the interrupts on the console are level-sensitive
rather than edge-sensitive, there is no easy way for the PROM to
dismiss the interrupt and return to the previous T-11 instruction
stream. Thus, the PROM code enters its command loop and waits for

operator intervention, or a CPU reboot request, to restart the
console program.

2.2.6.2 Console Reboot Handling -- In addition to the 16 vectored
interrupts described in the previous section, there is another
which forces the console to begin execution at the PROM entry
responsible for handling console reboots (172004). When the T-11
interrupt facility 1is enabled (MCSRQ<0>=1), it treats this
interrupt as an unmaskable, edge-sensitive input which saves the
PC and PSW, forces the IPL to priority 7, and vectors the T-11
directly to the reboot address. This same operation occurs when
the T-11 microprocessor executes a HALT instruction.

If the entry into the reboot/halt routine was caused by a TSTRT
interrupt (generated either by an instruction or the console's
REBOOT command), the message "?Console Reboot Initiated" is
printed and the console reboots the RL02. The CPU will cause a
TSTRT interrupt if it feels the console has not updated the TOY
register for a considerable period of time.

If the cause of the entry was due to a T-11 HALT instruction, the
"?T-11 HLT" message is printed, followed by the T-11 registers

saved prior to the halt. The PROM code then enters its command

loop and waits for input. While the PROM code waits in its command

éoop, it is still sensitive to TSTRT interrupt requests from the
PU.

2.3 PROM ERROR REPORTING
If the PROM self-tests detect any errors, they are reported by two
different methods depending upon which test detected the failure.

If the failure is detected before test 12(8), the failing test
number is indicated by the 4-bit code displayed in the SCP
indicators, and the failing test loops indefinitely. The only way
to stop the program is to power down the system. You can refer to
the test descriptions listed in Paragraph 2.2.3 to determine which
logic function failed. In most all cases, excluding power-supply
problems, the L0201 console module is bad and should be replaced.

Tests 12(8) through 35(8) provide error message displays on the
console. TTY and accept user input (<CTRL/E>, <CTRL/S>, <CTRL/Q>,
and <CTRL/0>) to permit user control of the PROM code. Like the
previous tests, the program will loop continuously on the failing
test, but the user can press <CTRL/E> to cause an exit from the
failing test and proceed with the next test in sequence. Figure
2-2 shows the general format of the error messages along with a
couple of examples. In most cases, the message will call out the
functional logic area that is failing. Like the previous tests,
most of the error message displays indicate that you have a bad
L0201 console module.

Finally, after successful completion of test 35(8), the PROM will
perform several RLO2 tests to verify the RL02 Q-Bus interface and
then proceed to boot the console software from the RL02 disk. If
any solid RL02 interface faults are detected, they will be
reported on the console terminal. If all the other tests run
successfully, and only the RL02 tests fail, you most likely have
an RL02 disk subsystem problem.

)

EXP'D

DATA RAM
ADDR

General Format:

CONSOLE SELF_TEST DETECTED ERROR: TEST ¢ nn, SUBTEST § sss
optional: may be followed by a descriptive error message

Sample Outputs:

CONSOLE SELF TEST DSTECTED ERROR: TEST # 000033, SUBTEST ¢ 000001
SCP LOGIC ERROR

CV'D

000016 000000

CONSOLE SELF_TEST DETECTED ERROR: TEST ¢ 000015, SUBTEST & 000001

CELL ERROR

XOR
000000 000010

2.4

Figure 2-2 PROM Tests -- Error Displays

TROUBLESHOOTING PROCEDURES

Let's summarize the operation and use of the PROM tests using the
simple troubleshooting flow chart shown in Figure 2-3. The figure
summarizes what should happen when you first turn on the power

switch.
position

1.

2.

Assume that the Restart Control Switch is in the HALT
and the standard RL02 disk pack is installed.

Turn the Terminal Control Switch to the LOCAL position.
The fans start up and the SCP indicators rapidly twinkle
from "1111" to "COO0l1 --> 0010 --> 0100 --> 1000" to
"0010" through "1001."

The PROM banner is displayed on the CTY and the SCP
indicators remain at "1001."

The RLO2 READY light blinks as the boot block is read.

The console software is loaded. It self-starts and then
displays its banner and initializing messages.

Finally, the macro context prompt >>> is displayed,
indicating it's ready to accept console commands .

Figure 2-3

POWER ON

NO SCP LEDs
ILLUMINATED
N

CONSTANT LOOP
WITH SCP=1111

INVESTIGATE EMM/MPS SUBSYSTEM
PROBLEM.

REPLACE THE L0201 MODULE.

CONSTANT LOOP
WITH SCP=XXXX

N

REPLACE THE L0201 MODULE.

gg:wg;g:"“ CHECK CTY BAUD RATE SETTING OR
JUNK OUTPOT INVESTIGATE CTY PROBLEM.
IN
PROM ERROR [,
M REPLACE THE L0201 MODULE.
DISPLAYED
N
RLO2 ERROR v REPLACE THE L0201 MODULE OR
MESSAGE —————— INVESTIGATE AN RLO2 SUBSYSTEM
DISPLAYED PROBLEM.
in
RLOZ READY Y INVESTIGATE AN RLO2 SUBSYSTEM
FAILS TO > Protiem:
BLINK -
N

CONSOLE SOFTWARE INVESTIGATE AN RLO2 SUBSYSTEM
FAILS TO LOAD [PROBLEM OR TRY ANOTHER DISK
AND START PACK.

“>>>0
PROMPT

Simplified PROM Troubleshooting Flow Chart

<

CONSOLE OK ~ USE BOOT COMMAND TO
LOAD OPERATING SYSTEM.

MR-15386

If this sequence fails, the flow chart should help you decide how
to correct the problem. The four major sources of problems follow.

1.

(EMM/MPS)

Nothing happens -- investigate power system problems

2. Tests 00(8) through 11(8) pass but no PROM banner is
displayed -- investigate CTY problems (terminal, cables,

baud rate setting)

3. PROM banner displayed followed by PROM error messages --
replace the L0201 console module

4. All PROM tests pass but console software fails to load
and start -- investigate RL02 disk subsystem fault or a

bad disk pack

)

2.5 SUMMARY
The PROM tests check out the T-11 processor, RAM, and hard core

logic required for accessing the RL0O2 used to load T-1l1 programs.
The next step in bottom-up testing is to load and run EDOBA, the
console diagnostic, which performs more extensive testing of the
console subsystem. That is the subject of the next chapter.

CHAPTER 3
EDOBA - CONSOLE DIAGNOSTIC

3.1 OVERVIEW

EDOBA is a T-11 based console module diagnostic designed to test
extensively all the logic on the console module, including the
clock, SDB, CBus, Q-Bus, and local and remote PCI interface logic.
It assumes that the console hardcore logic, tested by the PROM
tests, is working. Figure 3-1 shows what the test environment is
when running EDOBA. Note that EDOBA is a T-11 based test program
that does not test any of the VAX CPU logic itself. The hardware
used and tested by the console diagnostic is outlined by the
broken lines.

3.2 PROGRAM DESCRIPTION

The following sections describe the test sequences, operating
procedure, and error message formats. Also included is a
description of the switch register options used to control EDOBA
operation.

3.2.1 Test Sequence

There are 162(10) major tests, T001(8) through T242(8). Table 3-1
groups tests by type and describes the general function and number
of subtests in each. An asterisk indicates that a special test
fixture is required; the test is ignored unless the fixture is
installed.

voLum

JUDWUOITAUZ 3IS9L Vd€0ad

S1S3L g3svs

WOHd (L1

~

1-¢ @anb1g

r— 777"

L

s “ B rvsvaoas | [<] _
Ww3 P » > E ALL 310W34

E 1z 3

—) Wvy =
(> e B _

FRES)4

]

WOud
43S — —
] g _
32070 2

72000 v60100 _ @ 2000 U E _

vigs 3710SNOD

503 =
JHIVD SOl $o3 HOLVHIS3 we4d SOoved
_— e o]
WWvVd SOW Wvyal AX3LINOD 40W WvHO4
L bt 3 § 4
SN8 40 |
SNEM
31040 $S300V
w
sN8 aw
VAL

Table 3-1 EDOBA Test Descriptions

Test No. of
No. Description Subtests

SDB Control Logic Tests

001 SDMS REGISTER TEST (CL20) 3

002 SDDB REGISTER TEST (CL20) 3

003 SDCS REGISTER TEST (CL20) 3

004 CL18 STOP CLOCK TEST (CL18) 2

005 DB SINGLE STEP MODE TEST (CL19) 3

006 SDB NORMAL MODE TEST (CL19) 2

007 SDB LOOPBACK TEST, NORMAL MODE (CL19) 2

Tester SDB Channel Continuity Tests

0lo0 SDB CHANNEL 0 CONTINUITY TEST (CL21) 1*
011 SDB CHANNEL 1 CONTINUITY TEST (CL21) 2%
012 SDB CHANNEL 2 CONTINUITY TEST (CL21) 2%
013 SDB CHANNEL 3 CONTINUITY TEST (CL21) 1*
014 SDB CHANNEL 4 CONTINUITY TEST (CL21) 2%
015 SDB CHANNEL 5 CONTINUITY TEST (CL21) 1*
016 SDB CHANNEL 6 CONTINUITY TEST (CL21) 2%
017 SDB CHANNEL 7 CONTINUITY TEST (CL21) 1*
020 SDB CHANNEL 8 CONTINUITY TEST (CL21) 1*
021 SDB CHANNEL 9 CONTINUITY TEST (CL21) 1*
022 SDB CHANNEL 10 CONTINUITY TEST (CL21) 1*
023 SDB CHANNEL 11 CONTINUITY TEST (CL21) 1*
024 SDB CHANNEL 12 CONTINUITY TEST (CL21) 1*
025 SDB CHANNEL 13 CONTINUITY TEST (CL21) 2%
026 SDB CHANNEL 14 CONTINUITY TEST (CL21) 2%
027 SDB CHANNEL 15 CONTINUITY TEST (CL21) 1*
030 SDB CHANNEL 16 CONTINUITY TEST (CL21) 1*
031 SDB CHANNEL 17 CONTINUITY TEST (CL21) 1*
032 SDB CHANNEL 18 CONTINUITY TEST (CL21) 1*
033 SDB CHANNEL 19 CONTINUITY TEST (CL21) 1*
034 SDB CHANNEL 20 CONTINUITY TEST (CL21) 1*
035 SDB CHANNEL 21 CONTINUITY TEST (CL21) 1*
036 SDB CHANNEL 22 CONTINUITY TEST (CL21) 1*
037 SDB CHANNEL 23 CONTINUITY TEST (CL21) 1*
Miscellaneous Register Tests

040 MCSRO REGISTER TEST (CLO08) 3

041 MCSR1 REGISTER TEST (CL08) 2

042 MCSR2 REGISTER TEST, PART 1 (CLO08) 3

043 MCSR2 REGISTER TEST, PART 2 (CL08) 3

* Indicates a special test fixture is required; the test is
ignored unless the fixture is installed.

Table 3-1 EDOBA Test Descriptions (Cont.)

Test No. of
No. Description Subtests

Miscellaneous Console Functions Tests

044 CL09 DC LOW TEST (CL20) 2%
045 CL CSM REQ TEST (CLO09) 2%
046 EMM3 CPU AC LO TEST (CLO08) 2%
047 CL09 SYS AC FAULT TEST (CLO08) 4*
050 CL CPU PF INTR TEST (CLO09) 2%
051 CL UNHANG RESET TEST (CL18) 2*
052 CL MASTER RESET TEST (CL09) 2%
053 CL ABUS ENABLE TEST (CL09) 2%
054 CL ARRAY DC OK TEST (CL09) 3%
055 CL09 CPU ALIVE TEST (CLO08) 3%
056 CL09 ERROR 0 TEST (CL08) 2%
057 CL09 ERROR 1 TEST (CLO08) 2*
060 CL09 ERROR 2 TEST (CL08) 2%
061 CL09 CPU CS PE TEST (CLO8) 6%
062 CL09 ABUS REQO TEST (CL08) 2%
063 CL09 ABUS REQ1 TEST (CLO0S8) 2%
064 CL09 ABUS REQ2 TEST (CLO0S8) 2%
065 CL09 ABUS REQ3 TEST (CLO8) 2%
066 CL09 ABUS DEAD INTR TEST (CL08) S5*
067 SIDO REGISTER TEST (CL12) 2%
070 SID1 REGISTER TEST (CL12) 2%
071 SID2 REGISTER TEST (CL12) 2%
072 CL IDO BIT TEST (CLO08) 2%
073 CL ID1 BIT TEST (CLO08) 2%
074 CL ID2 BIT TEST (CLO08) 2%

EMM PCI Tests

075 EMM PCI MODE REGISTER 1 TEST (CL10) 3
076 EMM PCI MODE REGISTER 2 TEST (CL10) 3
077 EMM PCI COMMAND AND STATUS REGISTER TESTS (CL10) 4
100 EMM PCI REGISTER ADDRESSING TESTS (CL10) 3
101 EMM PCI TxRDY BIT TEST (CL10) 1
102 EMM PCI LOCAL LOOPBACK TEST, 19.2K BAUD (CL10) 1
103 EMM PCI BUS LOOPBACK TEST, 19.2K BAUD (CL10) 1
104 EMM PCI BUS INHIBIT TEST (RTS DEASSERTED) (CL10) 1
Remote PCI Tests, Part 1
105 REMOTE PCI MODE REGISTER 1 TEST (CL10) 3
106 REMOTE PCI MODE REGISTER 2 TEST (CL10) 3
107 REMOTE PCI COMMAND AND STATUS REGISTER

TESTS (CL10) 4
110 REMOTE PCI REGISTER ADDRESSING TESTS (CL10) 3

* Indicates a special test fixture is required; the test is
ignored unless the fixture is installed.

3-4

Table 3-1 EDOBA Test Descriptions (Cont.)

Test No. of
No. Description Subtests

Remote PCI Tests, Part 2

111 CDSRS TEST (CL11) 2%
112 CL11l RTERM CARRIER TEST (CL10) 2%
113 CL11 RTERM DSR TEST (CL10) 2%
114 CRTS TEST (CL10) 2%
115 ASSERT CDTR TEST (CL10) 2%
116 REMOTE PCI TxEMT/DSCHG TEST (CL10) 1*
117 CL RTERM DSC TEST (CL10) 1%
120 REMOTE PCI TxRDY TEST, PART 1 (CL10) 1*

Remote PCI Tests, Part 3

121 REMOTE PCI LOCAL LOOPBACK TEST, 75 BAUD (CL10) 1
122 REMOTE PCI LOCAL LOOPBACK TEST, 110 BAUD (CL10) 1
123 REMOTE PCI LOCAL LOOPBACK TEST, 150 BAUD (CL10) 1
124 REMOTE PCI LOCAL LOOPBACK TEST, 1800 BAUD (CL10) 1
Remote PCI Test, Part 4

125 REMOTE PCI SPLIT BAUD RATE TEST (CL10) 1*
SCP Interface Tests, Part 1

126 SCP CHANNEL CONTINUITY TEST (SCP1) 1
127 SCP CHANNEL INIT TEST (SCP1l) 1
130 SCP LED DRIVE/SENSE TEST (SCP1) 3
SCP Interface Tests, Part 2

131 SCP SWITCH INPUT TEST (SCP1) 2%
CBus Tests, Part 1

132 CL15 TSEL TEST (CL13) 3
133 CL15 TXCS RDY TEST, PART 1 (CL13) 3
134 CL15 RXCS DNE TEST, PART 1 (CL13) 3*
135 CL15 STOR RDY TEST, PART 1 (CL13) 3*
136 CL15 TSTRT TEST (CL13) 3

* Indicates a special test fixture is required; the test is
ignored unless the fixture is installed.

Table 3-1 EDOBA Test Descriptions (Cont.)

Test No. of
No. Description Subtests

CBus Tests, Part 2

137 CBUS RAM DATA TEST, TTL PORT, PART 1 (CL16) 2%
140 CBUS RAM ADDRESSING TEST, TTL PORT (CL16/CL17) 1%
141 CBUS ACCESS TEST, ECL PORT (CL16) 2%
142 CBUS RAM ADDRESSING TEST, ECL PORT (CL16/CL17) 1%
143 CL15 TXCS IE TEST (CL13) 5%
144 CL15 RXCS IE TEST (CL13) 5%
145 CL15 STOR TIE TEST (CL13) 5%
146 CL15 TSTRT TEST (CL13) 4%
147 CL15 TXCS RDY TEST, PART 2 (CL13) 2%
150 CL15 TXCS RDY TEST, PART 3 (CL13) 2%
151 CL15 RXCS DNE TEST, PART 2 (CL13) 2%
152 CL15 RXCS DNE TEST, PART 3 (CL13) 1%
153 CL15 STOR RDY TEST, PART 2 (CL13) 2%
154 CL15 STOR RDY TEST, PART 3 (CL13) 1*
155 CL15 TSEL SENSED BY ECL PORT TEST (CL13) 2%
156 CL TTX INTR TEST (CL15) 4%
157 CL TRX INTR TEST (CL15) 4%
160 CL RL0O2 INTR TEST (CL15) 4*

TOY Clock Tests

161 TOY SOFTWARE-MASTER-~RESET TEST (CL22) 16
162 TOY COUNTER GROUP 1 REGISTER TEST (CL22) 8
163 TOY COUNTER GROUP 2 REGISTER TEST (CL22) 8
164 TOY COUNTER GROUP 3 REGISTER TEST (CL22) 8
165 TOY COUNTER GROUP 4 REGISTER TEST (CL22) 8
167 TOY COUNTER GROUP 5 REGISTER TEST (CL22) 8
170 TOY MASTER MODE REGISTER TEST (CL22) 2
171 TOY COUNTER REGISTER COUNT TEST (CL22) 15
172 CL22 TOY 15 OUT TEST (CL22) 1
RAM Parity Tests

173 RAM DATA PARITY TESTS (CL06) 3
Mapped RAM Data and Addressing Tests

(64 Kbytes to 256 Kbytes)

174 MAPPED RAM DATA/ADDRESSING TEST (CL04) 2

* Indicates a special test fixture is required; the test is
ignored unless the fixture is installed.

Table 3-1 EDOBA Test Descriptions (Cont.)

Test No. of
No. Description Subtests
T-11 Interrupt Tests
175 CL19 ENA TXRDY TEST (CL20) 3
176 CL19 ENA STOR RDY TEST (CL20) 3
177 UNSOLICITED INTERRUPT TEST (CLO02) 3
200 CL15 TSTRT INTERRUPT TEST (CLO02) 3
201 CL04 CSL PE INTR INTERRUPT TEST (CL02) 6
202 CL09 SYS AC FAULT INTERRUPT TEST, PART 1 (CL02) 5*
203 CL09 ABUS DEAD INTR INTERRUPT TEST (CL02) 4
204 CL22 TOY 1MS INTR INTERRUPT TEST (CL02) 6
205 CL15 TXCS RDY INTERRUPT TEST (CL02) 5
206 CL15 STOR RDY INTERRUPT TEST (CLO02) 5
207 CL31 OBA INTR INTERRUPT TEST (CLO2) 6
210 CL10 ETERM RDY INTERRUPT TEST (CL02) 5
211 CL11 RTERM INTR INTERRUPT TEST (CL02) 6
212 CL10 LOCAL RDY INTERRUPT TEST (CL02) 5
213 CL30 RPLY TIMEOUT INTERRUPT TEST (CL02) 4
T-11 Interrupt Tests
214 CL09 CPU CS PE INTERRUPT TEST (CLO2) 4*
215 T-11 MANUAL RESTART INTERRUPT TEST (CL02) 3%
Q-Bus Adapter Tests
216 QCSRO0 REGISTER TEST (CL29) 4
217 QCSR1 REGISTER TEST (CL29) 3
220 QBA ADDRESS REGISTER TEST (CL27) 2
221 QBA DATA REGISTER TEST (CL27) 2
222 CL31 CSL MASTER PEND TEST (CL29) 5
223 QBA TIMEOUT COUNTER TEST (CL20) 6
224 CL30 RPLY TIMEOUT TEST, PART 1 (CL20) 6
225 OBA SIMULATED-READ-CYCLE TEST, PART 1 (CL23) 13
226 QBA SIMULATED-READ-CYCLE TEST, PART 2 (CL23) 2
227 OBA SIMULATED-WRITE-CYCLE TEST (CL23) 13
230 OBA SIMULATED-INTR-ACK-CYCLE TEST,

PART 1 (CL23) 8
231 SIMULATED-INTR-ACK-CYCLE TEST, PART 2 (CL23) 3
232 QBA CL32 SREC SACK TEST (CL29) 3
233 QBA SIMULATED-DMA-READ TEST, PART 1 (CL23) 24
234 QBA SIMULATED-DMA-READ TEST, PART 2 (CL23) 3
235 QBA SIMULATED-DMA-WRITE TEST (CL23) 24
236 CL30 RPLY TIMEOUT TEST, PART 2 (CL29) 2
* Indicates a special test fixture is required; the test is

ignored unless the fixture is installed.

3-7

Table 3-1 EDOBA Test Descriptions (Cont.)

Test No. of
No. Description Subtests

RLO2-Specific QBA Tests

237 RL02 REGISTER READ TEST (CL23) 10
240 RL0O2 REGISTER WRITE TEST (CL23) 10
241 RL02 REGISTER WRITE/READ TEST (CL23) 2
242 RL0O2 DMA READ TEST (CL23) 3

* Indicates a special test fixture is required; the test is
ignored unless the fixture is installed.

3.2.2 Loading and Running EDOBA

When at one of the three possible CIO mode contexts (macro [>>>],
diag [DC>], or macrohardcore [MH>]), type the PROM command to
transfer control to the PROM code, which responds with the ROM>
prompt as shown in Figure 3-2. At this point, typing T will load
EDOBA from the RLO2 and self-start it at location 200(8), as shown
in Figure 3-3.

>>>PROM
PROM restart =-- confirm (Y/N) Y

?T11 HLT
?REGS 140272 000102 000211 026464 033244 033702 000740 000162 000000

ROM>

Figure 3-2 Transferring Control to the PROM Code

ROM>T

EDOBA V35 (25-Jun-1985)

CONFIDENTIAL DIAGNOSTIC SOFTWARE
PROPERTY OF
DIGITAL EQUIPMENT CORPORATION

Use Authorized Only Pursuant to a Valid Right-to-Use License
0 ERRORS DETECTED; O TOTAL ERRORS AFTER PASS ¢ 1

0 ERRORS DETECTED; O TOTAL ERRORS AFTER PASS § 2~
ROM>

Figure 3-3 Starting EDOBA

3-8

EDOBA runs two complete passes, which takes approximately three
minutes, and then returns to the ROM> prompt to await user input.
EDOBA provides switch register option and control character
recognition features so the user can control program operation.
Pressing <CTRL/G> will signal EDOBA to pause at the end of the
current test, display the SWR prompt, and wait for user input. At
this time, the user may choose to type one of the following.

° <CTRL/P> -- to exit to the ROM> prompt
° <CTRL/C> -- to restart EDOBA at location 200(8)
° XXxXxX (8) -- to resume execution with the SWR=xxxxxx (8)

Note in Figure 3-2 that the software first displays the contents
of the T-11 registers, then the ROM> prompt. The format of the
dump is as follows.

?REGS (RO) (R1l) (R2) (R3) (R4) (R5) (SP) (PS) (PC)
Table 3-2 lists the EDOBA switch register options.

EDOBA also responds to the control characters shown in Table 3-3.

-

Table 3-2 EDOBA Switch Register Options

Bit Number SWR Description

s 100000 Exit subtest loop and proceed

14 040000 Loop on failing subtest

13 020000 Inhibit error display

12 010000 Enable trace

11 004000 Inhibit test iterations

9 001000 Loop on test # in <07:00>

<07:00> 000xxx Select test xxx for loop
Table 3-3 EDOBA Control Characters

Control Key Function

<CTRL/S> Suspend output

<CTRL/Q> Resume output

<CTRL/G> Enter SWR-CHANGE mode

<CTRL/U> Erase command line

<CTRL/C> Restart EDOBA

<CTRL/P> Exit to the PROM CLI

Figure 3-4 shows how to use the TRACE option. Note that the
priority software disclaimer message is not displayed when the
program is restarted. It is important to remember that changes in
the switch register are .not recognized by the program until it is
restarted. If the user presses <CTRL/G> to enter the SWR prompt
and the switch settings are changed, the program will not respond
Eolfhe new settings. To overcome this limitation, proceed as
ollows.

1. Press <CTRL/G> to get back to the SWR prompt.
2. Press <CTRL/P> to get back to the ROM> prompt.
3. Type S 200 as shown in Figure 3-4.

Note how certain tests are skipped because the special
manufacturing tester was not cohnected. After successful
completion of EDOBA, the user types the B command at the ROM>
prompt to load and start the console software (EDOAA.SAV).

ROM>S 200

EDOBA V35 (25-Jun-1985)
SWR = 000000 NEW = 100000

BEGIN TEST #000001
BEGIN TEST #000002
BEGIN TEST #000003
BEGIN TEST #000004
BEGIN TEST #000005
BEGIN TEST #000006
BEGIN TEST #000007
IGNORE TEST #000010
IGNORE TEST #000011

-

IGNORE TEST #000036
IGNORE TEST #000037
BEGIN TEST #000040
BEGIN TEST #000041
IGNORE TEST #00042
BEGIN TEST #000043°G

SWR = 010000 NEW = “P
ROM>

Figure 3-4 Running EDOBA with TRACE Option Set

)

3.2.3 Error Reporting
EDOBA's message format is shown below.

ERROR DETECTED BY TEST #xxx, SUBTEST #yyy
"descriptive error message"
"expected and received data"

The "descriptive error message" will, in most cases, be a console
module signal name and print designation that point to the logic
that was being tested when the fault was detected. The user must
refer to the program listing to obtain further details about the
test sequence. In most cases, a subtest failure will isolate the
fault to a few components, ensuring quick repair of the console
module.

The "expected and received data," (good/bad) information, is
unique to the specific subtest failing. Each data item has a
header that indicates what the data represents. In some cases, the
data field will be blank if it has no meaning. Figure 3-5 shows
two sample error displays.

General Format:

ERROR DETECTED BY TEST #xxx, SUBTEST #$yyy
"descriptive error message”
"expected and received data"

EXAMPLE 1:

ERROR DETECTED BY TEST #4, SUBTEST $1
"CL18 STOP CLOCK" FAILURE (CL18)

EXAMPLE 2:

ERROR DETECTED BY TEST #40, SUBTEST $2
"MCSRO REGISTER BIT FAILUR (CLO08)

EXPD RCVD

000242 000252

Figure 3-5 EDOBA Error Displays

3.3 TROUBLESHOOTING

Since the majority of logic testing performed by EDOBA is meant to
verify logic circuits on the L0201 console module, replacing the
L0201 module will correct most faults. If further analysis is
required, it may be necessary to refer to the program listings and
logic prints to determine the cause of the fault. It also may
require using an oscilloscope to observe backplane signals, or
having to extend the module to observe signals on the board. The
following general procedure will outline the approach.

1. Restart EDOBA at location 200.

2. At the switch register prompt, type 40000 and press
<RETURN> (loop on failing subtest).

3. Let several error messages be displayed and then press
<CTRL/G> to get back to the SWR prompt.

4. Using the error message type out, refer to the listing to
determine the details of the test sequence.

5. Relate the ‘test sequencing information to the L0201 logic
prints to determine the signals to be observed.

6. Now type 60000 and press <RETURN> to resume looping with
the error type out inhibited.

7. Using signal tracing, perform the required waveform
measurements to isolate the fault.

3.4 SUMMARY

EDOBA, the T-11 based console subsystem diagnostic, performs
extensive testing of the console module and its immediate
interfaces to the VAX CPU, local and remote ports, and the EMM.
The next step in the bottom-up test procedure is to load and
initialize the console software in preparation for running EDKAA,
the MHC diagnostic. That's the subject of the next chapter.

3-12

(orsee -
CHFRS

CHAPTER 4
MICROHARDCORE (MHC) TESTS

4.1 OVERVIEW

EDKAA has been developed to verify proper operation of the VAX CPU
hardcore logic required to successfully load and run micro-
diagnostics. Microdiagnostics require the following.

1. Loading microcode into the CPU's control RAMs
2. Sequencing this microcode to test the CPU logic circuits

3. Using the CBus to communicate between the console and the
EBox

4. Using the SDB to retrieve signal state information
It's the task of EDKAA, a T-1l1 based diagnostic, to test the CPU
logic that must be operational to perform these functions. Prior
to running EDKAA, you should have successfully run EDOBA, the
console diagnostic.

EDKAA also requires that the correct information be contained in

the fil .DAT on the load media. This file contains the
and revision levels of the SDB signal name files. Figure 4-1

shows a sample of CONFIG.DAT information.

Figure 4-2 summarizes the microhardcore context test environment.
Note that the main test code is based in T-11 RAM, but some tests
will require loading test microcode into the VAX CPU control
stores.

¢ DF Sey
CDFS60 -

>>>SHOW EONPIG.DAT/ASCIT
! SDB Cad information files for M5 machines.
! Version: 003.000
| Released: December 21, 1985
cs

CLKC03.CDF 1CLK

CSAB02.CDF ICSA B2

CSBB02.CDF 1CSB B2

EBCC05.CDF {EBC CS

EBDD02.CDF {EBD D2

EBEB02.CDF 1EBE B2

EDPC02.CDFP {EDP C2

FBABO1.CDFP {FBA E7

FBMCO1.CDP IFBM C5

IBDF0S5.CDP 1IBD FS

ICAHO2.CDP 1ICA H4

ICBFO1.CDFP 1ICB F5

IDPF02.CDF 1IDP F4

MAPD02.CDF IMAP D2

MCCRO1.CDF IMCC K1

MCDDO4 .CDF IMCD D4

MTMBO1.CDF IMTM Bl

1VBAAO1.CDF {VBA Al (SBI VISIBILITY MODULE #1)
IVBBAO1.CDF {VBB Al (SBI VISIBILITY MODULE $#2)
>>

Figure 4-1 CONPEE.DAT File Format
CDFFes .
CDFg6s-
4.2 OPERATING INSTRUCTIONS

To start EDKAA, type MHC at either the macro or diagnostic context
prompts (>>> or DC>). Once MHC has been started, it will display
the version name and number, followed by the MHC prompt (MH>), and
then wait for the user to type a command. Figure 4-3 shows the
typical response to the MHC command.

>>>MHC
CONFIDENTIAL DIAGNOSTIC SOFTWARE
PROPERTY OP
DIGITAL EQUIPMENT CORPORATION
Use Authorized Only Pursuant to a Valid Right-to-Use License
Initializing MHC
MH>

Figure 4-3 MHC Command Response

JUSWUOITAUY 3IS3L 3IXd3IUOD DHMW Z-v @anbig

L1
SVIQOHIIW XVA
Q3sve L1
L oHW —
m. (=3 D A S 4 c
[TEN 2 N9a 2 W3dow ALL3LONIY
i = Wvu L
(> =
m 4@ .300W 01D..
WOHd il
1]
j— 8 8
z2o00 Yeoi30 o - T o>
) v
ﬁ vigs Waw ﬁ INI 310SNDD

G (== (™ &)

82830
vanwia vaivia G
wvivia wwnwia vvivia Mo
IHOVD S21 553 HOLVHDS3 SoWed Sovas
s sl]
vawwya
Wivd SOW [1X3INOD 0N WVHG4
| 14 3 1]
sne do |
snam
31049 55320V
W
sna aw
VAL
VA3

HANI

4.2.1 MHC Command Summary

Once at the MH> prompt, type HELP MICRO CONTINUE to display a list
of the available commands with brief descriptions, as shown in
Figure 4-4.

MH>HELP MICRO CONTINUE
CONTINUE
Command Syntax:
CONTINUE
Description:
This command can be used to continue testing after execution was
paused due to an error detected and the /PAULT:PAUSE switch selected.
MH>

Figure 4-4 HELP MICRO CONTINUE Display

The user may append one or more switches to any START or LOOP
command .

To obtain a list of the switches with their descriptions, simply
type the HELP MICRO START command. Figure 4-5 shows the output.

MH>HELP MICRO
MICRO help available:
CONTINUE START REPORT
LOOP
Select
help available:
CONSOLE_COMMAND_SYNTAX DIAGNOSTIC_COMMAND SET FRONT_PANEL
GENERAL_COMMAND_SET HEX_DEBUG_COMMAND_SET MACRO_COMMAND_SET
MICROHC_COMMAND_SET REGISTERS_SUPPORTED
Select
MH>
MH>HELP MICRO START
START
Command Syntax:
S(TART) (iQ, C, E, P, I, L, M, N, R, S, Ul] [/switches]
where '/switches'’ can be any combination of the following:
/FAULT:{ ISOLATE, CONTINUE, LOOP, PAUSE }
/PRINT_MODEz{ VERBOSE, BRIEF, QUIET}
/NUMBER:START_TEST[,END_TEST]
/PASS :dec_num
where 'dec_num' specifies the number of iterations to make
through the entire test series. The default of
one pass is made if this switch is not used.
Description:
The start command causes the selected test group to run for one pass,
or for the number of passes specified by /PASS. By default the entire
test group is run, unless the /NUMBER switch is used to specify a range
of tests within that group. The test group is selected by appending
a single letter character to the START command or to its abbreviated
form of "S".

Figure 4-5 HELP MICRO START Display (Sheet 1 of 2)

A brief description of what each START command does is listed below:
s Run all tests in all groups (approx. 20 minutes)

sQ Run most tests in all groups (qQuicker, approx. 10 min.)

sC Run all Clock tests

SE Run all Ebox tests (group R, S, and U)

SP Run all Fbox tests

-3 4 Run all Ibox tests

SL Run all Last multi box access tests

SM Run all Mbox logic tests

SN Run all Mbox ucode tests

SR Run only the Ebox MCP-CTX RAM and basic ucode tests

ss Run only the Ebox SDB and control store tests

su Run only the Ebox expanded ucode tests
The switch options available on this command are listed below.
/FAULT:{ ISOLATE, CONTINUE, LOOP, PAUSE } default = ISOLATE

/FPAULT: ISOLATE

Continue after reporting a test-detected error.

/FAULT : CONTINUE

Continue after reporting a test-detected error.

/FAULT : LOOP

Loop indefinately on the next failing test. Only °C will

stop this loop.

/FAULT : PAUSE

Pause at MH> prompt after reporting an error. The

CONTINUE command can be used to resume tolting at the next test.
/PRINT__HOD!:[VERBOSE, BRIEF, QUIET} efault = VERBOSE

/PRINT_MODE : VERBOSE

Reports errors in long form, with RAM chip callouts.

This cancels QUIET mode.

/PRINT_MODE:BRIEP

Reports errors in short form, with NO RAM chip callouts.

This cancels QUIET mode.

/PRINT_MODE:QUIET
Supp all P except for error reports, which are
displayed in VERBOSE form.

/NUMBER:START TEST[,END_TEST] default = 1,LAST

Specifies the series of test numbers to be run. This range
applies to the group or groups of tests being run. Test
numbers in MHC are in HEXadecimal format.

/PASS:dec_num default = 1
This switch overrides the default pass count of 1. If a range
of tests is selected with /NUMBER then those tests will be

- repeated, in sequence, /PASS number of times.

> .

Figure 4-5 HELP MICRO START Display (Sheet 2 of 2)

4.3 OPERATING PROCEDURES

The first step is to switch to microhardcore context by typing the
command MHC at either the >>> or DC> prompts. The console software
will load and start the required T-11 root overlay, perform the
‘required initialization to switch to the MHC context, display
program revision information, and wait at the MH> prompt for
command input. While at the MH> prompt, you have access to any
command in the general command set plus the additional set of MHC
commands described in the previous section.

To run a complete pass of all 103 tests, type the following.
MH>START

All 103 tests will run in a predefined sequence and display
performance status as each test completes. At the end of the last
test, an END OF PASS message is displayed and EDKAA returns to the
MH> prompt. Figure 4-6 summarizes the output to the START command.
A complete pass of the START command will take approximately 20
minutes. If you want a quicker test run, the STARTQ command will
run all the tests in less than 10 minutes, but perform less
extensive RAM data testing. By pressing <CTRL/C>, each subtest may
be exited. The program will abort when the current subtest
completes, and will return to MH>.

MH>STARTQ
CLK - (C-1) L0217 (CLK) SDB Shift [OK]

CLK - (C-2) L0217 (CLK) SDB shift chain LOAD function [OK]
CLK - (C=3) L0217 (CLK) Vis Mux Selects [OK]

CLK - (C-4) L0217 (CLK) Vis data and LD _FUNC REG_B [OK]

CLK - (C-5) L0217 (CLK) Load Frequency Reg (3Kl

CLK - (C-6) L0217 (CLK) CLK2_START H circuit [OK]

CLK - (C-7F L0217 (CLK) CLK3 Mark Bit [OK]

CLK - (C-8) L0217 (CLK) Burst Counter read and write [OK]
CLK - (C-9) L0217 (CLK) CPU Clock Stop [OK]

CLK - (C-A) L0217 (CLK) Mark Bit Stop Condition [OK]

CLK - (C-B) L0217 (CLK) Burst Counter Ability to Count [OK]
CLK - (C-C) L0217 (CLK) WBus and FBOX T3 to T3 shift loop {OK]

CLK - (C-D) L0217 (CLK) WBus T2 Clk-EBE,EDP,FBA,IDP WBus Ena (OK)

CLK - (C-E) L0217 (CLK) Stop FBOX in phase 0 and phase 1 [OK])
BOX - (S=1) Modules SDB Shift and Loopback [OK]

(8-2) L0215 (CSA) Medule SDB Shift and Loopback [OK])

(S=3) SDB Select Line and Enable [OX]

(S-4) L0215 (CSA)/L0216 (CSB) SDB Control Channel {OK]

(S=5) L0209 (EDP) Module SDB Control Channel [OK])

(S-6) L0210 (EBC) Module SDB Control Channel [OK]

(S-7) L0219 (EBE) Module SDB Control Channel [OK]

(6-8) L0219 (EBE) Module ICR Time Base Counter [OK]

(S=9) L0210 (EBC) Module DIAG & EIS Reg CLK3 [OK]

(S-A) L0210 (EBC) Module MCF RAM CLK3 [OK)

(S-B) L0217 (CLK) CLK 141 Reset [OK]

(S-C) L0215 (CSA)/L02T6 (TsB) ECS "55° data test [OK]

(S-D) L0215 (CSA)/L0216 (CSB) ECS "AA" data test [OK]

(R-1) L0216 (CSB) UPC+UPC SAVE Initilization [OK])

(R-2) L0215/L0216 (ECS) "55" 1 WORD (VSTERM) test [OK]

(R-3) L0215/L0216 (ECS) "AA" 1 WORD (VSTERM) test [OK]

(R-4) L0210 (EBC) MCF ram data test [OK]

(R-5) L0210 (EBC) MCP ram address test [OK]

(R-6) L0210 (EBC) Context ram data test [OK]

(R-7) L0210 (EBC) Context ram address test [OK]

(R-8) L0215/L0216 (ECS) RAM PARITY [OK]

(R-9) L0210 (EBC) MCF RAM PARITY TEST [OK]

(R-A) Quiescent State for UTRAP + STALL (DKAUBA) [OK]

(R-B) L0216 (CSB) BASIC UPC UPDATE TEST (DKAUAA) (OK]

(R-C) L0216 (CSB) EXPANDED UPC UPDATE TEST (DKAUAA) [OK]

0 00 0 00 09 0D M 09 000 00D Mmoo mmmomm
4
2

LI T T R T T U T TN U Y IO N I T T T O T N I}

(R=D) L0216 (CSB) UJUMP register TEST (DKAUBA) [OK]

Figure 4-6 MHC START Command Display (Sheet 1 of 2)

)

(U-1) L0216 (CSB) MicroStack TEST (DKAUBA) [OK]

(U-2) L0209 (EDP)/L0210(EBC)WBUS REQ CTX (DKAUBA) ([OK]

(U-3) L0209 (EDP) SHIFT COUNTER FUNCTION (DKAUBA) [OK]
(U-4) L0209/L0206/L0212/L0205 DATA PATH (DKAUBA) [OK]
(U-5) L0216 (CSB)/L0209 (EDP) Branch Cond. (DKAUBA) [OK]
(U-6) L0209 (EDP) ALU FUNCTION (DKAUBA) ([OK])

(U-7) L0209 (EDP) SCRATCH PADS DATA (DKAUBA) [OK]

L0219(EBE)/L0201(CSL) CBUS/CSL-INT (DKAUBA) [OK]
(U-9) LO219(EBE)/L0201(CSL) EBCS REGISTER (DKAUBA) [OK]
(I-1) SDB shift and loopback [OK]

(I-2) SDB Select Line and Enable [OK]

(I-3) L0208 (IBD) Module SDB Control Channel [OK]
(I-4) L0207 (ICA) Module SDB Control Channel [OK]
(I-5) L0217 (CLK) CLK_141 _Reset [OK]

(1-6) L0207 (ICA) ICS “upc tegiltot test [OK]

(I-7) L0207 (ICA) ICS "55" data test [OK]

(I-8) L0207 (ICA) ICS "AA" data test (OK]

(I-9) L0207 (ICA) ICS address test [OK]

(I-A) L0208 (IBD) IDRAM "55" data test [OK]

(I-B) L0208 (IBD) IDRAM "AA" data test [OK]

(I-C) L0208 (IBD) IDRAM address test [OK]

(I-D) L0207 (ICA) ICS Ram Parity test [OK]

(I-E) Quiescent State for I BOX control signals ([OK]
(I-F) L0207 (ICA) UJUMP Micro-code TEST (DKAIAA) (OK]
(M-1) SDB shift and loopback [OK]

(M=2) L0222 (MTM) SDB shift and Lloopback (OK]

(M-3) SDB Select Line and Enable [OK]

(M-4) L0217 (CLK) CLK_141 R.lot {oK]}

(M-5) L0220 (MCC) MCS™"55¥ data test [OK]

(M-6) L0220 (MCC) MCS "AA" data test [OK]

(M=-7) L0220 (MCC) Cycle ram "S5" data test [OK]

(M-8) L0220 (MCC) Cycle ram "AA" data test [OK]

(M-9) L0220 (MCC) ACCESS ram data test [OK]

(M-A) L0220 (MCC) Cvcle ram address test [OK]

(M-B) L0220 (MCC) MCS ram address test [oK]

(M=C) L0220 (MCC) Access ram address test [OK]

(N-1) L0220 (MCC) BASIC UCODE FUNCTION (DKAMAA) [OK]

L0220 (MCC) BASIC STACK UCODE (DKAMBA) [OK]
(N-3) L0220 (MCC) STACK PUSH LEVEL (DKAMCA) [OK]
(N-4) L0220 (MCC) STACK POP LEVEL (DKAMDA) [OK]

(F-1) L0213 (FBM) F BOX present VSTERM [OK]

(P-2) L0212 (FBA) SDB shift and lcopback [OK]

(F-3) L0213 (FBM) SDB shift and loopback [0OK]

(F-4) F Box Modules SDB Select Line and Enable ([OK]
(F-5) L0217 (CLK) CLK_141 Reset [OK]

(F-6) L0212 (FBA) UPC register tests [OK]

(F-7) L0213 (FBM) UPC register toltl (oK}

(F-8) L0212 (FBA) Control Store 5" data test [OK]
(F-9) L0212 (FBA) Control Store "AA" data test [OK]
(F-A) LO213 (FBM) Control Store "55" data test [OK]
(F-B) L0213 (FBM) Control Store "AA" data test [OK]
(F-C) L0213 (FBM) Control Store address test [OK]
(F-D) L0212 (FBA) Control Store address test [OK]
(F-E) L0213 (FBM) Decode ram "S5" data test [OK]

(F-F) L0213 (FBM) Decode ram "AA" data test [OK]

(F~10) L0213 (FBM) Decode address test {OK]}

(F-11) L0213 (FBM) Basic Micro-code test (DKAFAA) [OK]

(P-12) L0212 (FBA) Basic Micro-code test (DKABAA) [OK]
(F-13) L0213 (FBM) Expanded UPC update (DKAFBA) ([OK]
(F-14) L0212 (FBA) Expanded UPC update (DKABBA) [OK]

(F-15) L0212 (PBA) Micro-code test (DKABCB) [OK]
VAX-8600 - (L-1) CLK and E,I,M Boxes uWord Mark Bit [OK]
VAX-8600 - (L-2) VTERM HASTEI RESET TEST [OK]

PASS COUNTER = 00001, ¢ OF ERRORS = 00000, TOTAL # OF ERRORS = 00000

MH>

[+
o
*®
{ I T O N DN N N AN R B I N |
<
1
@
~

g
L I T I I O T O T I T T T T T T O T TN T TR T LAL L R T I T T I O I O IO I I IO B O
o
~
o

MMM NN NN TN TN T NN NN EE XX R R R R T R R I E R R E AN NN NN M NN M oA N - O D E@EEEMmm
®
o
*

Figure 4-6 MHC START Command Display (Sheet 2 of 2)

4-7

To suppress all output except errors and END OF PASS, you can use
the /MODE:QUIET switch appended to the START command. This switch
is especially useful if you're running EDKAA via the RD port over
a 1200 baud line, or only have a hard-copy local console device.

Table 4-1 illustrates how several commands and the available
switches are used to modify program operation.

These examples should show how to modify program operation using
commands and switches. Ideally, the user should find a VAX
8600/8650 system and experiment with other combinations. Remember,
any time the program pauses on error, you have access to the
general command set to retrieve additional information.

Table 4-1 Illustrative MCH Commands

Command Description

SE Run one pass of all the EBox tests

SC/PASS:5 Run five passes of all the clock tests

LM/NU:5 6/MODE:QUIET Loop continuously on the MBox control
store RAM data tests

SM/FAULT : PAUSE Run one pass of all the MBox tests, but

pause and return to the MH> prompt when
an error is detected
CONTINUE Resume testing after a pause on error
REPORT Display current program statistics
(passes, error count, etc.)

4.4 PROGRAM FUNCTIONAL DESCRIPTION

This section describes the structure and organization of EDKAA and
includes examples of program output and brief descriptions of each
test. If you need additional detail, refer to the document
EDKAA.DOC in the microfiche library. Prepared by the designer, it
is a comprehensive description of the program's purpose,
structure, and operation.

4.4.1 Program Overview

EDKAA consists of 103 subtests that functionally test the VAX CPU.
These tests have been subdivided into nine CPU box-related groups.
The operator may select to execute one or all of these group
tests. The groups reside on the RL02 load media and are only
loaded into memory when selected by the operator. The program only
reports messages to the operator console and the remote port. It
does not create or modify any files on the RL02 load device. EDKAA
does not require that any special initialization files (i.e.,
DCLOAD.COM, DSM.INI, or LOAD.COM) be executed before starting.

There is one root section and nine disk resident overlays. Three
overlays are for the EBox testing. There is one overlay for each
FBox, IBox, and clock box. The overlay for the MBox has beén
divided, the additional overlay providing additional microcode
coverage for the MBox. The files for EDKAA &dre mapped into and
called by the root console software segment. EDKAA uses 12
additional files that contain microcode information which needs to
be 1loaded into the CPU control stores for testing the
microsequencers. These files all have the .BPN extension and are
listed in Table 4-2.

Table 4-2 MHC Microcode Files

File name Size Reason

DKABAA,.BPN 1 FBA C/S file - load #1
DKABBA .BPN 1 FBA C/S file - load #2
DKABCA.BPN 1 FBA C/S file - load #3
DKAFAA .BPN 2 FBM C/5 file - load #1
DKAFBA .BPN 1 FBM C/S file - load #2
DKAIAA.BPN 7 IBox C/S file - load #1
DKAMAA .BPN 9 MBox C/S file - load #1
DKAMBA .BPN 9 MBox C/S file - load #2
DKAMCA .BPN 9 MBox C/S file - load #3
DKAMDA .BPN 9 MBox C/S file - load #4
DKAUAA.BPN 4 EBox C/S file - load #1
DKAUBA.BPN - 37 EBox C/S file - load #2

The root section (MHCMHC) of EDKAA is resident in low memory. The
other nine sections are resident on the console disk (RL02) and
are loaded into an overlay area in low memory when needed. For the
current version of the console, this overlay area starts at
location 100000(8). When the operator selects the IBox test, for
example, the IBox overlay section is loaded by the root section
and control is then transfered to the program code in the overlay.
Upon completion of the IBox subtests, control is returned to the
root section. Table 4-3 lists the different overlay listing names,
section names, segment numbers, base addresses, and functions.

4.4.2 Fault Detection and Error Reporting

wWhen an error is detected, there are three general types of error
displays that may be output. The major difference between them is
the amount of detail they provide. In early versions of the
program, the user may only have the brief format to work with and
will need to refer to the EDKAA.DOC to extract the additional
fault isolation information required. As the program matures,
there will be fewer and fewer cases where the user will have to do
this.

Table 4-3 EDKAA T-11 Program Modules

Listing Section Segment Base ﬁ)
Names Names Number Address Function

MHCMHC MHCCOD 4 062450 Root controller and handlers
MHCEBA EBACOD 14 100002 EBox MCF, CTX + logic tests
MHCEBB EBBCOD 15 100002 EBox microcode tests

MHCEBC EBCCOD 16 100002 EBox SDB and C/S tests

MHCFBX FBXCOD 17 100002 FBox logic, RAM + Ucode tests
MHCIBX IBXCOD 20 100002 IBox logic, RAM + Ucode tests
MHCMBA MBACOD 21 100002 MBox logic, RAM tests

MHCMBB MBBCOD 22 100002 MBox Ucode tests

MHCCLK CLKCOD 23 100002 Clock logic tests

MHCLMT LMTCOD 24 100002 Logical Multi-box Tests

Figure 4-7 shows an example of the brief error display. Note that
it was the EBox UTRAP/STALL logic test that failed, the failure
was detected in STAGE 01, and there is a l-bit difference between
the expected and actual data. What does this all mean? Figure 4-8
shows the information you would find in EDKAA.DOC that describes
the failing test and how to interpret the expected/actual data. It
looks 1like it detected a result. parity error and most likely is
the EBox module(s) containing the UTRAP/STALL logic.

MHC>STARTE

.
.
.
.
.
-

E BOX - CONTEXT RAM ADDRESS TEST [OK]
E BOX - CONTROL STORE RAM PARITY [OK]

E BOX - MCF RAM PARITY TEST [OK]

STAGE 01, EXPECTED 263F, ACTUAL 223F
STAGE 01, EXPECTED 263F, ACTUAL 223F
STAGE 01, EXPECTED 263F, ACTUAL 223F
STAGE 01, EXPECTED 263F, ACTUAL 223F
STAGE 01, EXPECTED 263F, ACTUAL 223F
STAGE 01, EXPECTED 263F, ACTUAL 223F
STAGE 01, EXPECTED 263F, ACTUAL 223F

ERROR **** E BOX - QUIESCENT STATE FOR UTRAP AND STALL TEST *#*##

Figure 4-7 MHC Brief Error Display

E BOX MICRO CODE TEST PROCEDURE

This defines the procedure that was followed to test the EBOX
hardware that is covered by the Micro-Hard-Core diagnostic.

MICRO SEQUENCER TESTS

E BOX - (R-A) QUIESCENT STATE FOR UTRAP + STALL (DKAUBA)

SETUP:

Requires Functional Microcode be loaded. (DKAUBA.BPN)

TEST PROCEDURE:

o Execute Master Reset Sequence.
o Load starting address of "QUIESCENT STATE" microcode [0050]H.
o Set sdb control bits as follows:

1.Consol opl = 0
2.Consol op0 = 0

REPEAT> o Burst system clock 1 cycle to execute first Microinstruction.
of UCODE routine.
o Read the following 63. SDB signals in the sequence shown.

STAGEL>
EXPECT=263F

EBD EN ETRAP H = 0 <MSB>
EBD EN ETRAP DLY L = 1 \
EDP WBUS ERROR DLY H = 0

= 7

= 1

EDP OPR PAR ERR H = 0
= T

-EBC F

ER
CSB USTK PAR ERR H
H

CSB CSPE RESET A H =
EBD EB PORT STAT 3 C
EBC MCF-MEM REQ LTH L =
-EBD9 MEM REQ IN PROG H

H
0
0
H

EBC MCF-OP WRT LTH L =
-EBD9 OP WRT LST CYC H
-EBD9 OP WRT IN PROG H
EBC MCF-EN OWSTL LTH L

LI

Figure

4-8 MHC Test Description from EDKAA.DOC

Figure 4-9 shows an example of the second type of message. Note
how the command uses the /NUMBER:C,C switch to select only test C
and calls for verbose printout with /MODE:VERBOSE with
abbreviations (/N:C,C/M:V). This display provides additional
information that calls out the module (L0215) or even the RAM chip
(E140) that's most likely the culprit. Tt also includes the RAM
address along with the good/bad data patterns. Figure 4-10 shows a
third example that includes signal callout information (Paragraph
4.4.4).

MH>SS/N:C,C/M:V

E BOX - (S-C) L0215 (CSA)/L0216 (CSB) ECS "55° data test

SECTION SLOT COMPONENT MODULE TERM-MOD SYMBOL SIGNAL
CPU 3 El40 L0215 (CSA) CSA USRC2 S
CPU 3 El40 L0215 (CSA) CSA USRC2 3

ADDR =0004 GOOD = 055555555555D55 BAD.= 050555555555D55

Figure 4-9 Sample Error Display 2

MH>REPORT
SECTION, TOTAL # OF ERRORS

CLOCK (sC) = 00000
E SDB/CS(SS8) = 00000
E RAMS (SR) = 00000
E UCODE (SU) = 00009
I BOX (s1) = 00000
M BOX (SM) = 00000
F BOX (SF) = 00000

VENUS (SL) = 00000
PASS COUNTER = 00001, # OF ERRORS = 00009, TOTAL # OF ERRORS = 00009
MH>

Figure 4-10 MHC REPORT Display

4.4,.3 Test Descriptions

Tables 4-4 through 4-12 1list all of the tests organized by the
functions being tested. The string enclosed in parentheses in the
table title is the command that invokes that series of tests. If
the MODE: switch is set to turn QUIET off, the test descriptions
shown in the tables will be displayed as test headers.

)

Table 4-4 Clock Box Subtests (SC)

CLK -- (C-1) L0217 (CLK) SDB SHIFT

CLK -- (C-2) L0217 (CLK) SDB SHIFT CHAIN LOAD FUNCTION

CLK -- (C-3) L0217 (CLK) VIS MUX SELECTS

CLK -- (C-4) L0217 (CLK) VIS DATA AND LD FUNC__REG__B

CLK -- (C-5) L0217 (CLK) LOAD FREQUENCY REG -

CLK -- (C-6) L0217 (CLK) CLK2 START H CIRCUIT

CLK -- (C-7) L0217 (CLK) CLK3 MARK BIT .

CLK -- (C-8) L0217 (CLK) BURST COUNTER READ AND WRITE

CLK -- (C-9) L0217 (CLK) CPU CLOCK STOP

CLK -- (C-A) L0217 (CLK) MARK BIT STOP CONDITION

CLK -- (C-B) L0217 (CLK) BURST COUNTER ABILITY TO COUNT

CLK -- (C-C) L0217 (CLK) WBUS AND FBOX T3 TO T3 SHIFT LOOP

CLK -- (C-D) L0217 (CLK) WBUS T2 CLK TO EBE,EDP,FBA,IDP WBUS
ENABLE

CLK -- (C-E) L0217 (CLK) STOP FBOX IN PHASE 0 AND PHASE 1

Table 4-5 EBox SDB and C/S Subtests (SS)

E BOX -- (S-1) MODULES SDB SHIFT AND LOOPBACK

E BOX -- (S-2) L0215 (CSA) MODULE SDB SHIFT AND LOOPBACK

E BOX -- (S-3) E BOX MODULES SDB SELECT LINE AND ENABLE

E BOX -- (S-4) L0215 (CSA) and L0216 (CSB) SDB CONTROL CHANNEL
E BOX -- (S-5) L0209 (EDP) MODULE SDB CONTROL CHANNEL

E BOX -- (S-6) L0210 (EBC) MODULE SDB CONTROL CHANNEL

E BOX -- (S-7) L0219 (EBE) MODULE SDB CONTROL CHANNEL

E BOX -- (S-8) L0219 (EBE) MODULE ICR TIME BASE COUNTER

E BOX -- (S-9) L0210 (EBC) MODULE DIAG & EIS REG CLK3

E BOX -- (S-A) L0210 (EBC) MODULE MCF RAM CLK3

E BOX -- (S-B) L0217 (CLOCK) CLK 141 RESET

E BOX -- (S-C) L0215 (CSA) and L0216 (CSB) ECS "55" DATA TEST
E BOX -- (S-D) L0215 (CSA) and L0216 (CSB) ECS "AA"™ DATA TEST

Table 4-6 MCF+CTX+ Misc. EBox Subtests (SR)

E BOX -- (R-1) L0216 (CSB) UPC+UPC SAVE INITILIZATION

E BOX -- (R-2) L0215/L0216 (ECS) "55" 1 WORD (VSTERM) TEST
E BOX -- (R-3) L0215/L0216 (ECS) "AA"™ 1 WORD (V$TERM) TEST
E BOX -- (R-4) L0210 (EBC) MCF RAM DATA TEST

E BOX -- (R-5) L0210 (EBC) MCF RAM ADDRESS TEST

E BOX -- (R-6) L0210 (EBC) CONTEXT RAM DATA TEST

E BOX -- (R-7) L0210 (EBC) CONTEXT RAM ADDRESS TEST

E BOX -- (R-8) L0215/L0216 (ECS) RAM PARITY

E BOX -- (R-9) L0210 (EBC) MCF RAM PARITY TEST

E BOX -- (R-A) QUIESCENT STATE FOR UTRAP + STALL (DKAUBA)
E BOX -- (R-B) L0216 (CSB) BASIC UPC UPDATE TEST (DKAUAA)
E BOX -- (R-C) L0216 (CSB) EXPANDED UPC UPDATE TEST (DKAUAA)
E.BOX -- (R-D) L0216 (CSB) UJUMP REGISTER TEST (DKAUBA)

4-13

Table 4-7 EBox Ucode Subtests (SU)

-,
E BOX -- (U-1) L0216 (CSB) MICROSTACK TEST (DKAUBA))
E BOX -- (U-2) L0209 (EDP) +L210 (EBC) WBUS REQUEST AND CT (DKAUBA)
E BOX -- (U-3) L0209 (EDP) SHIFT COUNTER FUNCTION (DKAUBA)
E BOX -- (U-4) L0209 (EDP) BASIC DATA PATH FUNCTION (DKAUBA)
E BOX -- (U-5) L0216 (CSB) OR L0209 (EDP) BRANCH CONDITION (DKAUBA)
E BOX -~ (U-6) L0209 (EDP) ALU FUNCTION (DKAUBA)
E BOX -- (U-7) L0209 (EDP) SCRATCH PADS DATA (DKAUBA)
E BOX -- (U-8) L0219 (EBE) CBUS AND CSL-INT (DKAUBA)
E BOX -- (U-9) L0219 (EBE) EBCS REGISTER <31:27> (DKAUBA)
Table 4-8 IBox Subtests (SI)
I BOX -- (I-1) SDB SHIFT AND LOOPBACK
I BOX -- (I-2) SDB SELECT LINE AND ENABLE
I BOX -- (I-3) L0208 (IBD) MODULE SDB CONTROL CHANNEL
I BOX -- (I-4) L0207 (ICA) MODULE SDB CONTROL CHANNEL
I BOX -- (I-5) L0217 (CLOCK) CLK 141 RESET
I BOX -- (I-6) L0207 (ICA) ICS UPC REGISTER TEST
I BOX -- (I-7) L0207 (ICA) ICS "55" DATA TEST
I BOX -- (I-8) L0207 (ICA) ICS'"AA"™ DATA TEST
I BOX -- (I-9) L0207 (ICA) ICS ADDRESS TEST
I BOX -- (I-A) L0208 (IBD) IDRAM "55" DATA TEST
I BOX -- (I-B) L0208 (IBD) IDRAM "AA" DATA TEST
I BOX -- (I-C) L0208 (IBD) IDRAM ADDRESS TEST ”)
I BOX -- (I-D) L0207 (ICA) ICS RAM PARITY TEST
I BOX -- (I-E) QUIESCENT STATE FOR I BOX CONTROL SIGNALS
I BOX -- (I-F) L0207 (ICA) UJUMP MICRO-CODE TEST (DKAIAA)
Table 4-9 MBox Logic Subtests (SM)
M BOX -- (M=-1) SDB SHIFT AND LOOPBACK
M BOX -- (M-2) MTM SDB SHIFT AND LOOPBACK
M BOX -- (M-3) SDB SELECT LINE AND ENABLE
M BOX -- (M-4) L0217 (CLK) CLK 141 RESET
M BOX -- (M-5) L0220 (MCC) MCS "55" DATA TEST
M BOX -- (M-6) L0220 (MCC) MCS "AA"™ DATA TEST
M BOX -- (M-7) L0220 (MCC) CYCLE RAM "55" DATA TEST
M BOX -- (M-8) L0220 (MCC) CYCLE RAM "AA"™ DATA TEST
M BOX -- (M-9) L0220 (MCC) ACCESS RAM DATA TEST
M BOX -- (M-A) L0220 (MCC) CYCLE RAM ADDRESS TEST
M BOX -- (M-B) L0220 (MCC) MCS RAM ADDRESS TEST
M BOX -- (M-C) L0220 (MCC) ACCESS RAM ADDRESS TEST

et

Table 4-10

MBox Ucode Subtests (SN)

M BOX -- (N-1) L0220 (MCC) BASIC UCODE FUNCTION (DKAMAA)
M BOX -- (N-2) L0220 (MCC) BASIC STACK UCODE (DKAMBA)
M BOX -- (N-3) L0220 (MCC) STACK PUSH LEVEL (DKAMCA)
M BOX -- (N-4) L0220 (MCC) STACK POP LEVEL (DKAMDA)
Table 4-11 FBox Subtest (SF)
F BOX -- (F-1) Test F BOX Present V$TERM VALUES
F BOX -- (F-2) L0212 (FBA) SDB SHIFT AND LOOPBACK
F BOX -- (F-3) L0213 (FBM) SDB SHIFT AND LOOPBACK
F BOX -- (F-4) F BOX MODULES SDB SELECT LINE AND ENABLE
F BOX -- (F-5) L0217 (CLOCK) CLK 141 RESET
F BOX -- (F-6) L0212 (FBA) UPC REGISTER TESTS
F BOX -- (F-7) L0213 (FBM) UPC REGISTER TESTS
F BOX -- (F-8) L0212 (FBA) CONTROL STORE "55" DATA TEST
F BOX -- (F-9) L0212 (FBA) CONTROL STORE "AA" DATA TEST
F BOX == (F=A) L0213 (FBM) CONTROL STORE "55" DATA TEST
F BOX -- (F-B) L0213 (FBM) CONTROL STORE "AA" DATA TEST
F BOX -- (F-C) L0213 (FBM) CONTROL STORE ADDRESS TEST
F BOX -- (F-D) L0212 (FBA) CONTROL STORE ADDRESS TEST
F BOX -- (F-E) L0213 (FBM) DECODE RAM "55" DATA TEST
F BOX -- (F-F) L0213 (FBM) DECODE RAM "AA" DATA TEST
F BOX -- (F-10) L0213 (FBM) DECODE ADDRESS TEST
F BOX -- (F-11) L0213 (FBM) BASIC MICRO-CODE TEST (DKAFAA)
F BOX -- (F-12) L0212 (FBA) BASIC MICRO-CODE TEST (DKABAA)
F BOX -- (F-13) L0213 (FBM) EXPANDED UPC UPDATE TEST (DKAFBA)
F BOX -- (F-14) L0212 (FBA) EXPANDED UPC UPDATE TEST (DKABBA)
F BOX -- (F-15) L0212 (FBA) MICRO-CODE TEST (DKABCB)

Table 4-12

Last Box Subtest (SL)

VENUS
VENUS

(L-1) CLK and E,I,M boxes Uword MARK BIT
(L-2) VSTERM MASTER RESET VISIBILITY TEST

4.4.4 End of Pass Report

Figure 4-10 shows an example of the End of Pass report when an
error occurred. The user can display these statistics any time by
typing the REPORT command.

Note that on this run, nine EBox errors were detected. The error
messages accompanying each error most likely indicated which
module(s) to replace. If no errors were detected, the REPORT
command would have displayed the last line shown in Figure 4-10.

4.5 SUMMARY

EDKAA, a T-11 based diagnostic program, tests the logic needed to
run VAX CPU microdiagnostics. During bottom-up testing, it is run
after EDOBA and before EDKBA, the EBox microdiagnostic. EDKAA
provides fault isolation messages that identify the module(s) or
functional logic area that may be the cause of hardware problems
in the CPU. The next step in the bottom-up test procedure is to
run the VAX CPU microdiagnostics, as described in the next
chapter.

CHAPTER 5
MICRODIAGNOSTICS

5.1 OVERVIEW

This chapter describes how to use the microdiagnostics to test and
troubleshoot logic faults in the VAX 8600/8650 CPU, internal
memory system, and the SBIA interfaces to the ABus. It will cover
the following.

° The purpose and operation of microdiagnostics for the
system

o What microdiagnostics are available and how they should
be sequenced

. The procedures for loading, starting, and controlling the
execution of the microdiagnostics

° The format of the fault isolation messages displayed when
a fault is detected

. The use of software switches to modify the operation of
the microdiagnostics

° The use of console commands to retrieve supplementary
fault information to that provided by the microdiagnostics
themselves

A more detailed description of the fault isolation process is
provided in Appendix H.

5.2 MICRODIAGNOSTIC OPERATION

At this point, you should read Appendix H to get an overview of
how fault isolation and microdiagnostics were designed and
implemented for the VAX systems. This section will describe how
microdiaghostics operate in the VAX 8600/8650 systems.

5.2.1 Purpose and Basic Operation

First, microdiagnostics are nonfunctional test microprograms that
reside in the EBox control store. They are designed to provide
stimulus/response testing of individual logic circuits within the
VAX CPU. For each stimulus, the response is checked to determine
if the hardware is operating properly. When a fault is detected,
the microdiagnostic leaves the test results in predefined EBox
scratchpad locations and signals the Diagnostic Control Program
(DCP), a T-11 based program, that a fault was detected.

5-1

DCP retrieves the fault information (ERROR SYNDROME) from the EBox
scratchpad and formats and displays it on the console terminal. If
the fault is "solid," DCP invokes its fault isolation process to
analyze the error information, and to append module and componhent
call-out messages to the error display.

In short, the EBox-based microcode provides the actual testing and
fault detection, while the T-11 based console software provides
the error information retrieval, analysis, and reporting
mechanism. The T-11 based software also provides the user
interface for loading, starting, stopping, and modifying the
operation of the microdiagnostics.

5.2.2 Diagnostic Context Test Environment

To begin running microdiagnostics, you must switch to the
diagnostic context mode of operation (see Chapter 1) by typing the
DIAGNOSE command. Figure 5-1 summarizes the system environment
that exists when running the EBox microdiagnostic EDKBA.

Diagnostic context initialization is performed whenever the
DIAGNOSE command is entered, whether or not diagnostic context is
already running. This initialization creates a state where
microdiagnostics can be loaded, executed, and monitored. The steps
taken by this initialization procedure are as follows.

1. Takes control of the TXCS RDY interrupt vector.

2. Submits the DCP initialization file, DCLOAD.COM,
internally in order to perform the following steps.

° Stops the CPU clock and perform a master reset.

° Loads the Diagnostic Support Microcode (DSM) into the
EBox control store.

® Loads other control stores, as necessary, to
initialize parity logic, etc.

° Enables the console's external logic interrupt, using
the SET EXTI ON command.

. Forces the EBox to begin executing at the DSM start
address and start the CPU clocks.

3. Passes the default diagnostic switch settings to DSM (via
the CBus).

4. Displays the diagnostic context command prompt (DC>») and
await commands.

The following examples illustrate the console software's response
when the user types the DIAGNOSE command. Figure 5-2 shows the
default response with the QUIET switch on. Figure 5-3 shows the
response with the QUIET switch off to illustrate the commands
executed out of the command file DCLOAD.COM.

5-2

)

juswuolITAUY 3IS3L IX33U0) dijsoubeiq 1-G aianbtg
sesium
X3H
Y . 4 -
c c 20 I3
el £ 4 a1 1B E ALL 310W3Y
3 3 3
=2 Wy &l
Ii a @ q .300W 01D.
>
]
WONd =
40S —
w [=}
o
22020 ¥60120 %01 ® 22000 s E
vigs TI0SNOD
Ndg'NENa3 .
uuuuuuu 3806
NSQ..
IHOVD $53 HOLVHOS3 SoWed Soves
]
Nd8'3000N Nagx1d || Ndgdow
WV oW WvHal 1X3INOD 1OW WVHG4
NA8'310AD | |NdE'SS300V] L bt 2 t !
sns 4o |
Snem

310A2

S$320V

HINI

Note that DCLOAD.COM contains a DEBUG command that leaves the HEX
command set enabled when it terminates, as evidenced by the DC>>
prompt.

MH>DIAGNOSE
CONPIDENTIAL DYAGNOSTIC SOFPTWARE
PROPERTY OF
DIGITAL EQUIPMENT CORPORATION
Use Authorized Only Pursuant to a Valid Right-to-Use License
Initializing DC
DC>>

Figure 5-2 Diagnostic Context Initialization (QUIET:ON)

DC>>SET QUIET OFF
DC>>DIAGNOSE

CONFIDENTIAL DIAGNOSTIC SOFTWARE

PROPERTY OP
DIGITAL EQUIPMENT CORPORATION
Use Authorized Only Pursuant to a Valid Right~to-Use License

Initializing DC
DC>! DCLOAD.COM - Initialization file for DIAG context
DC>! Version: 001.000
DC>! Released: l4-Dec-1984

DC>1

DC>SET DEFAULT/BELL:OFF 1Suppress the bell upon fault detection

DC>SET DEFAULT/TRACE:OFF 1Suppress single test trace of udiags

DC>SET DEFAULT/FAULT:ISOLATE IIsolate when fault is solid

DC>SET DEFAULT/MODE:VERBOSE tPrint a complete fault report

DC>SET DEFAULT/LINE:OFF 1Suppress trace in isolation files

DC>SET DEFAULT/PASS:100 tEach test is executes 100 times

DC>SET DEFAULT/NUM:1,FF IFirst test = 1 , Last_test = 256

DC>DEBUG 1Enable full set of commands

DC>>SET MEMENA OFF 1Keep Array OFF

DC>>SET ABUS ON . 1ABUS INIT True**

DC>>SET ABUS OFF 1ABUS INIT False**

DC>>INIT/CLOCK 1Clock circuitry init

DC>>SET CLOCK FREQ QUFET ITEMPORARILY NEEDED TO HANDLE OLD (C04)

1CLK MODULE

DC>>RESET 1Reset CPU..Does little without any Ucode

DC>>LOAD/MCF IMCP rams must Always be loaded

DC>>DEP/ECS 0 0 1Good Parity into EBOX Reset location

DC>>LOAD/CONTEXT {Context Rams

DC>>LOAD/ICS INop Micro Word into IBOX control store

DC>>LOAD/MCS IMBOX control store to avoid fatal parity

DC>>LOAD/ACCESS 1Access control RAM

DC>>LOAD/CYCLE 1Cycle Parameter Rams

DC>>INIT/SDB 1All SDB channels to nominal state

DC>>SET MEMENA ON 1Enable Array as part of the system

DC>>RESET

DC>>LOAD/ECS DSM iDiagnostic Support Microcode

DC>>RESET

DC>>START CPU INeed CPU clock to do lnythtng useful

%))DSPOSITMUS 12 0 1Disable Fbox, preserve wbus integrity
>>

Figqure 5-3 Diagnostic Context Initialization (QUIET:OFF)

5.3 MICRODIAGNOSTIC SET

With the introduction of the VAX 8650 system, Several
microdiagnostic load filenames (i.e., .BPN files) were revised to
reflect the new system requirements. 8650-specific load files can
be identified by an E as the second character in the diagnostic's
name. For example, the MBox diagnostic (EDKDA) loads the EDKCM.BPN
file for the VAX 8600 system and loads the EEKCM.BPN file for the
VAX 8650 system. ’

In addition, all files shared by the VAX 8600 and VAX 8650 systems
will retain their original names. Only 8650-specific diagnostics
use the E character. There are three file types.

1. Shared 8600/8650 files with the D character

2. 8600-secific files with the D character

3. 8650-specific files with the E character

Note that the 8600 and 8650 command scripts have the same names.
Table 5-1 lists the set of 24 microdiagnostic programs resident on
the RL02 disk, grouped into 6 functional series.

Table 5-1 VAX 8600/8650 Microdiagnostic Sets

Description Name No. of Programs
EBox Series EDKBA 1
MBox Series EDKCA -- EDKHA 6
IBox Series EDKOA -- EDKWA 9
FBox Series EDK1A -- EDK4A,EDKZA 5
ARRAY Series EDK5A 1
SBIA Series EDK6A -- EDK7A 2

The programs were designed using a building block approach and
should normally be run in the sequence shown in Figure 5-4. Each
successive program in the series uses logic tested by the previous
programs. For example, the IBox series uses the data cache which
is tested by the preceding MBox series, while the MBox series uses
the CPU logic tested by the EBox series.

All 24 programs may be loaded and run automatically in the proper
sequence via an indirect command file named MICROS.COM. Figure 5-5
shows an example of this process.

DC>@MICROS

EBOX SERIES
EDKBA

EDKCA THRU EDKHA

IBOX SERIES
EDKOA THRU EDKWA

FBOX SERIES

EDK1A THRU EDK4A
AND EDKZA

ARRAY SERIES

SBIA SERIES

END OF PASS — EDK7A.
— START TEST #1 —
END TEST #34

MR-15396

Figure 5-4 Microdiagnostic Sequencing

Before moving on to the actual operating procedures, it is
important to understand the purpose of certain control and data
files on the RL02 that are used to support each microdiagnostic
program. In general, there are three types of files used.

1.

2.

3.

XXXXx.COM -- Command files used for setup and
initialization

XXXXX.BPN -- Specially formatted binary files that
contain the data loaded into the CPU's control RAMs

XXXXX.DCI, DCB -~ Specially formatted files that contain

the coarse and fine isolation algorithms used by DCP to
analyze fault data

5-6

DC>>SHOW MICROS.COM/ASCII

IGeneral Command file for Running ALL microddiagnostics for VAX 8600 cpu

| Version: 004.000

! Released: 17-JUN-198S

!Command File for executing thé entire string of Microdiagnostics delivered

1 at angineoting Venus release:
l'il.l' ARRRRARRARRR N AR ANAR R R NN N ARR AN ARSI RN RN RN R AR NARRANRANARA RN RO A NS

1 M5
I.....Qtttt‘..'.t't....'ﬁﬂ'.ll..".....t.'t..ttﬁ'.i'..t....'.....'.'i...ﬁ'.

! *Revised December 11, 1984
[} *Revised February 20, 1985
! *Revised March 22, 1985

1 *Revised June 12, 1985

1

1**Note: this command file does Not run the MicroHardCore, which is run from
! within the console software subsystem.

1

1Ebox Microdiagnostic: Includes Coarse Component Isolation
Run/pass:10 EDKBA

IMbox Microdiagnostic - MCF field decoding
Run/pass:100 EDKCA

IMbox Microdiagnostic

Run/pass:3 EDKDA

IMbox Microdiagnostic

Run/pass:100 EDKEA

IMbox Microdiagnostic

Run/pass:100 EDKFA

IMbox Microdiagnostic

Run/pass:100 EDKGA

IMbox Microdiagnostic

Run/pass:100 EDKHA

1Ibox Microdiagnostic

Run/pass:100 EDKOA

1Ibox Microdiagnostic

Run/pass:100 EDKPA

1Ibox Microdiagnostic

Run/pass:100 EDKQA

{Ibox Microdiagnostic

Run/pass:100 EDKRA

1Ibox Microdiagnostic

Run/pass:100 EDKSA

1Ibox Microdiagnostic

Run/pass:100 EDKTA

1Ibox Microdiagnostic

Run/pass:100 EDKUA

1Ibox Microdiagnostic

Run/pass:100 EDKVA

1Ibox Microdiagnostic

Run/pass:100 EDKWA

tIncludes component Isolation

1Fbox Microdiagnostic - Adder Module part I
Run/pass:100 EDK1A

tIncludes component Isolation

IFbox Microdiagnostic - Adder Module part II
Run/pass:100 EDK2A

tIncludes component Isolation

IFbox Microdiagnostic - Multiplier Module
Run/pass:100 EDK3A

!Includes component Isolation

IFbox Microdiagnostic - System Interaction Test - part 1
Run/pass:100 EDK4A

{Includes component Isolation

!Fbox Microdiagnostic - System Interaction Test - part 2

Figure 5-5 MICROS.COM Command File (Sheet 1 of 2)

5-7

Run/pass:100 EDKZA

!Array Microdiagnostic

Run/pass:3 EDKSA

I1SBIA Microdiagnostic - Part 1. Tests either or both SBIAs

Run/pass:50 EDK6A

1 L iR Note LR 2

ISBIA Microdiagnostic - Part 2. Tests either or both SBIAs

Run/pass:50 EDK7A

1The SBIA microdiagnostic has been changed. EDK6A is now part 1, and has
Istandard tests that it applies against either SBIA 0, SBIA 1, depending upon
ithe contents of the selection register "ESC 34". See GUIDE.MEM, or
i"show/ascii edkéa.com"

1** EDK7A is now part 2, and also has standard tests that it applies against
1| either SBIA 0 or SBIA 1, depending upon the contents of the selection
lregister “ESC 34".

1*** End Special Note ***

DC>>

Figure 5-5 MICROS.COM Command File (Sheet 2 of 2)

Use "xxxxx" to assign a unique filename for each microdiagnostic.
Appendix F summarizes the diagnostics naming conventions. Table
5-2 lists all 24 microdiagnostics, indicating which RAMs are used
and the filename of the xxxxx.BPN file loaded.

The following discussion describes the environment for running the
EBox microdiagnostic EDKBA (refer to Figure 5-1). Note that the
IBox and FBox control RAMs are not used during execution of the
EBox microdiagnostic.

. EDKBA.COM -- Top-level command file used to control
loading of all control RAMs in the VAX CPU and
initializing the CPU for running the EBox
microdiagnostic.

. EDKBE.COM -- Lower-level command file invoked from
EDKBA.COM to deposit test data and initialize the EBox's
scratchpad RAMs.

. DSM.BPN -- Diagnostic Support Microcode loaded into the
low 2 Kbyte segment of the EBox control store during
diagnostic context initialization.

) EDKBU.BPN -- EBox microcoded tests loaded into the upper
6 Kbyte segment of the EBox control store. This is the
actual microdiagnostic.

. MCF.BPN -- System microcode loaded into the EBox's MCF
RAMs.
. CTX.BPN -~ System microcode 1loaded into the EBox's

CONTEXT RAMs.

° ACCESS.BPN -~ System microcode loaded into the MBox's
Access Violation RAMs.

. CYCLE.BPN -- System microcode loaded into the MBox's
Cycle Condition Code RAMs.

. UCODE.BPN -- System microcode loaded into the MBox's
Control Store.

° EDKBA.DCI -- Coarse isolation algorithms read by DCP when
a solid fault is detected by the microdiagnostic.

. EDKBA.DCB -- Fine isolation algorithms read by DCP when a
solid fault is detected.

Table 5-2 Microdiagnostics Microcode Files

nox
X3 0
(e Ke]
nay
»wm
xTwm

I
C
S

mE> 2z
nom
ma 2
mIma» o0

code*=> (U) (¥) (I) (@ ™ (X ® @ (© (B ((F) ©

DSM DDD+ SYS¢ --. ... SYS SYs SYS SYS ... cee eoe eee
EDKBA DDD SYS SYS SYsS SYS S¥Ys ...) cee
EDKCA DDD DDDee DDD SYS DDD SYS ... cee aee ces

EDKDA DDD DDD DDD SYS 5YS SYS ... cee eee eee
EDKEA DDD DDD SYS SYS SYS S¥S ... cen cee eee
EDKFA DDD DDD ... +ss SYS SYS S¥S S¥S ... ces aes ese
EDKGA DDD DDD SYS SYS SYS SYS ... cee ees see
EDKHA DDD DDD DDD SYS SYS SYS DDDo oo
EDKOA DDD SYS DDD ... SYS SYS SYS SYS e eee oo
EDKPA DDD SYS DDD ... SYS SYS SYS SYS DDD ..o oo
EDKOA DDD SYS DDD ... SYS SYs SYS S8¥YS ... cee ses
EDKRA DDD SYS DDD DDD SyS DDD S8YS SYS DDD
EDKSA DDD SYS DDD DDD Sys SYS Sys SYys DDD ... cee
EDKTA DDD SYS DDD DDD SYS SYS SYS SyS DDD
EDKUA DDD SYs DDD DDD SYS SYs SySs SYS DbD ... cee
EDKVA DDD SYS DDD DDD SYS Sys SYS ©S5YS DDD
EDKWA DDD SYS DDD DDD SYS DDD SYS SYS DDDo
EDKIA DDD SYS ©SYS SYs Sys §Sys ... DDD DDD ...
EDK2A DDD SYS SYS Sys Sys §Sys ... DDD DDD ...
DDD
DDD
DDD

see
soe
sss
eee
see
cee
see
see

EDK3A DDD SYS ... -.- SYS Sys Sys Sys ... DDD
EDK4A DDD SYS SYS SYys Sys Sys Sys Sys ... DDD
EDKZA DDD SYS SYS SYS SYys Sys §SYs Sys ... DDD
EDKSA DDD SYS ... s SYS SYS SYS SYS ... ceo een cee
EDK6A DDD DDD +o. ... DDD SYS SYS SYS DDD .ee eee oo
EDK7A DDD DDD DDD 5SYS SYS B8YS DDD ees cee eee

eos

* The "code" indicates the last letter in the filename.

+ A "DDD" means that the diagnostic loads diagnostic microcode into that
control store. An "SYS" means that the diagnostic uses the standard system
microcode in that control store. A "..." means that the diagnostic does not
require the particular control store to be loaded with anything.

5-9

To complete our discussion of the test environment, we need to
look at the following programs resident in the T-11 RAM.

[DCN -- The root console software overlay.

. DCP -= The program overlay that provides the
communication interface between the console terminal
(local or remote) and the microdiagnostic EDKBU via DSM
and the CBus.

o HEX -- The HEX command set program overlay that may be
enabled. HEX uses the DEBUG command to extend the
commands available to the user.

With this understanding of all the pieces and how they integrate
to form the test environment, we can move on to the detailed
procedures for running microdiagnostics.

5.4 OPERATING PROCEDURES

This section describes how to actually run microdiagnostics.
Several examples will be used to show both the command string you
type in on the console terminal and the normal responses displayed
by DCP. We'll start with the EBox. To run the EBox micro-
diagnostic EDKBA, type the @ command to invoke the required
indirect command file. Refer to Figure 5-6 for a summary of the
command files invoked.

EDKBA.COM/ASCII I

1Ebox Microdiagnostic
! version: 002.000
| Released: 22-MAR-1985

SET NAME EDKBA
SET ABUS OFF

CLEAR DATA

SET DATA 0 [PAT.1]

SET DATA 1 [PAT.2]

SET DATA 2 [D.MASK]
SET DATA 4 [EXP.DATA)
SET DATA 5 [ACT.DATA]
SET DATA OE [XOR.CMP]
SET DATA 0A [FAULT.NUM]
SET DATA 15 [T5]

DEBUG 1ENABLE CPU HARDWARE CONTROL COMMANDS
RESET !CLEAR MACHINE IN, PREPARATION TO LOAD UCODE
LOAD/ECS EDKRU ILOAD EBOX DIAGNOSTIC UCODE
DEP/ECS 829 0102901881BF400210007D0 !nop test 41
RESET I1PREPARE TO RUN
START CPU ISTART CPU CLOCKS
@EDKBE IDEPOSIT EBOX DIAG SCRATCHPAD DATA EDKBE.COM I
INITIALIZE ESCRATCH
WITH REQUIRED TEST DATA
—
Figure 5-6 EBox Microdiagnostic Initialization

The first step is to type the following command.

DC>@EDKBA

This causes DCP to read the file EDKBA.COM from the RLO2 and
execute the commands it contains. When DCP is finished executing
the top-level command file, it returns the DC> prompt and waits
for the user to start the microdiagnostic by typing the following
command.

DC>>START

DCP sends the START command to DSM over the CBus, DSM starts the
microdiagnostic at test 1, and the diagnostic is "off and running"
out of the EBox control store. All tests contained in EDKBU.BPN
will be executed 100 times each (Default PASS COUNT)., If no errors
are detected, it will report END OF PASS to DCP following the last
test. At this time, DCP will display the following message and
return to the DC>> prompt. Note again that the command file
enabled the HEX command set.

END OF PASS - EDKBA - START TEST#1 - END TEST #43
DC>>

Figure 5-7 summarizes the complete run and shows how <CTRL/T> is
used to determine how the test is progressing. <CTRL/T> is useful
if the user suspects the microdiagnostic might be hung up.

DC>>@EDKBA
DC>>START

T
Running diagnostic - EDKBA
Test # = 2 & alive byte = 26

Running diagnostic - EDKBA
Test # = 4 & alive byte = 43

T
Running diagnostic - EDKBA
Test # = 7 & alive byte = 32

T
Running diagnostic - EDKBA
Test # = 12 & alive byte = 55

T

Running diagnostic - EDKBA

Test § = 30 & alive byte = 146

End of pass - EDKBA - start test #1 - end test #43
DC>>

Figure 5-7 Sample Run of EDKBA (EBox Microdiagnostic)

5-11

The same general procedure applies for all 24 microdiagnostic

programs; only the names of the diagnostics change. The following
three examples will illustrate the procedure.
1. The MBox diagnostic, EDKCA
2. The IBox diagnostic, EDKRA
3. The Array diagnostic, EDKS5A
Figure 5-8 shows the command procedure for running EDKCA, one of
the MBox microdiagnostics, while Figure 5-9 summarizes the RL02
files the procedure uses.
DC>>@EDKCA
DC>>START

End of pass - EDKCA -~ start test #1 - end test #9

DC>>

Figure 5-8 EDKCA Command Procedure

EDKCA.COM/ASCII I

IMbox Microdiagnostic - Basic Rég Test
! Version: 002.001

! Released: 3 APR-1985

SET NAME EDKCA

CLEAR DATA

SE'

T DATA OA [0A - FAULT_NUMBER]
SET DATA 4 [4 - EXPECTED_DATA]
SET DATA 5 [5 - AUTUAL_DATA
SET DATA OE [0E - XOR_COMPARE]
SET DATA 1 [1 - REGISTER ERROR SUMMARY
SET DATA 18 [18 - MREG ADDRESS UNDER TEST]
SET DATA 20 [20 - F'S ERRORS, T6
SET DATA 21 [21 - F'S ERRORS, T6]
SET DATA 22 [22 - F'S ERRORS, T6)
SET DATA 23 [23 - 0'S ERRORS, T6]
SET DATA 24 [24 - 0'S ERRORS, T6]
SET DATA 25 [25 - 0'S ERRORS, T6]
SET DATA 26 [26 - WALKING 1'S ERRORS, T6]
SET DATA 27 [27 - WALKING 1'S ERRORS, T6]
SET DATA 28 [28 - WALKING 1'S ERRORS, T6]
DEBUG
RESET
INIT/SDB

LOAD/ECS EDKCU
LOAD/MCF EDKCY
LOAD/MCS EDKCM
LOAD/CYCLE EDKCN
DEP/CHAN D AOlA
DEP/CHAN D E000
RESET

START CPU
@EDKCE EDKCE.COM I

WITH REQUIRED TEST DATA

INITIALIZE ESCRATCH I

MA-16399

Figure 5-9 MBox Microdiagnostic Initialization

)

Figure 5-10 shows the command procedure for running EDKRA, one of
the IBox microdiagnostics, while Figure 5-11 summarizes the RLO02

files the procedure uses.

DC>>@EDKRA

DC>>START

End of pass - EDKRA - start test #1 - end test D
DC>>

Figure 5-10 EDKRA Command

EDKRA.COM/ASCIT I

! EDKRA.COM Ibox Microdiagnostic

! version: 003.000

! Released: 12-JUN-1985

SET NAME EDKRA

CLEAR DATA

L ORRKRRRARKR RN RAR R AR AR AR AR AR AR AR R AR AR A S
! PATTERN is a utility that extracts pattern data
! from Escratch (and/or cache).

| RRRRARARRRARRREARARRRARARRARRA AR AR AR AR RR AR AR AR
SET DATA 11 [PATTERN Base Address]

SET DATA 0AO [PATTERN Counter

SET DATA 14 [Last Pattern from PATTERN]

SET DATA 16 [IBOX DISPATCH ADDRESS]

BARRAR AR AR RARRARRR AR KRR RA AR AR R AR AR RARA SRR AR R RNRR
Actual, Expected Data results, and VA of Istream data
may not be applicable in all tests. Check actual test
code to be sure. T8 and T5 expected data results are
used- in Test #8 and #E only.

SEE EBOX CODE LISTING FOR KEY TO FAULT NUMBERS.
RARRARRRRRRRNRRRRRRRRRRERA AR RA AR AR R R RN KRR RRRRARRN
SET DATA 13 [ACTUAL DATA- R[ACT.DAT]]

SET DATA 17 [EXPECT DATA- R[EXP.DAT]]

SET DATA 18 [EXPECTED DATA]

SET DATA 15 [EXPECTED DATA]

SET DATA 04 [VA of Istream Data- R4]

SET DATA OA [FAULT NUMBER]

Procedure

ESCINI.COM

CLEAR ESCRATCH

RESET ICLEAR MACHINE

START CPU

@ESCINI VINITIALIZE ESCRATCH

DEBUG 1ENABLE CPU HARDWARE CONTROL COMMANDS
RESET ICTI.EAR MACHTNE TN PREPARATTON TO [OAD UCODE
LOAD/ICS EDKRI 1LOAD IBOX DIAGNOSTIC UCODE

LOAD/IDRAM IDRAM
LOAD/CONT ICNTXT

ILOAD SPECIFIC DIAGNOSTIC DRAM
1LOAD EBOX CONTEXT RAM FOR THE ICONTEXT TEST

LOAD/ECS EDKRU !LOAD EBOX DIAGNOSTIC UCODE

DEP/ECS 801 0102901881BF400210007D0 !nop test 1. Not available yet.
LOAD/MCS {LOAD SYSTEM MBOX UCODE

RESET IPREPARE TO RUN

DEP/CHAN D A0QA
DEP/CHAN D E000

1SET UP EBC SDB CHANNEL
ICLEAR EBC SDB CHANNEL

START CPU 1START CPU CLOCKS

@EDKRE IDEPOSIT EBOX DIAG SCRATCHPAD DATA
@EDKRC {LOAD CACHE

DEP/WBUS 12 0 IDISABLE FBOX

Figure 5-11

EDKRE ., COM I

INITIALIZE ESCRATCH
WITH REQUIRED TEST DATA

EDKRC.COM l

TNTTTALTZE CACHE
WITH REQUIRED TEST DATA

MR 18400

IBox Microdiagnostic Initialization

Figure 5-12 shows the command procedure for running EDK5A, the
array microdiagnostic, while Figure 5-13 summarizes the RL02 files)
used by the procedure.

DC>>@EDKSA

DC>>START/PASSES:1

End of pass - EDKSA - start test #1 - end test §5
DC>>

Figure 5-12 EDK5A Command Procedure

EDK5A.COM/ASCIT I

| EDK5A.COM Array Microdiagnostic
! Version: V003.001

| Released: 18-JUN-1985

SET NAME EDKS5A

CLEAR DATA

SET DATA 11 [11 - ARRAY SELECT MASK]

SET DATA 12 [12 - STARTING ADDRESS]

SET DATA 13 [13 - HIGH ADDRESS]

SET DATA 14 [14 - CURRENT ADDRESS]

SET DATA 15 [- ERROR COUNT]

SET DATA 25 [25~- MBOX 18/14/10/C]

SET DATA 26 (26~ MBOX 4]

SET DATA 0A [A = FAULT.NUM]

SET DATA 20 [20 - MBOX 2C/28/24/20 MSTAT1]

SET DATA 21 [21 - MBOX 54/5C/58 MSTAT2]

SET DATA 22 [22- MBOX 70/60/50 MDRCC]

SET DATA 24 [24- MBOX 7C MEAR]

SET DATA 27 [27- EBCS]

SET DATA 01 {01~ R1]

DEBUG »
RESET

INIT/SDB

LOAD/ECS EDKSU

LOAD/MCS

LOAD/CYCLE

LOAD/MCF

START CPU

dep/cache 0 0 !Init mbox

@EDKSE EDKSA.COM I

DEP/ESC A0 FFFFFFFF

DEP/ESC Al FFFFFFFF INITIALIZE ESCRATCH
DEP/ESC A2 FFFPFFFF WITH REQUIRED TEST DATA
DEP/ESC A3 FFFFFFFE

DEP/ESC A4 FFFFFFFF

DEP/ESC A5 FFFFFFFF

DEP/ESC A6 FFFFFFFF

DEP/ESC A7 TFFFFFFF

DEP/ESC A8 FFFFFFFF

DEP/ESC A9 FFFFFFFF

DEP/ESC AA FFFFFFFF

DEP/ESC AB 55555555

DEP/ESC AC FFFFFFFF

DEP/ESC AD FFFFFFFF

DEP/ESC AE FFFFFFFF

DEP/ESC AF AAAAAAAA

DEP/ESC 11 FEFF ! SELECT ALL ARRAYS, AUTOCONFIG ALL BUT SLOT 0
DEP/ESC 25 10000400 !CONTROL REGISTER SETUP
DEP/ESC 26 3 1ENABLE BOTH CACHES

.

MR- 15401

Figure 5-13 Array Microdiagnostic Initialization

There is one command file on the RL02 named MICROS.COM, that
permits the user to automatically sequence all available
microdiagnostics in the proper order. The user can do this with .
the following single command.)

DC>@MICROS

This command file both loads and starts each microdiagnostic in
each of the six microdiagnostics series, and sets the PASS counter
to provide a quick verify mode of the CPU hardware. The commands
in this file are shown in Figure 5-5. Figure 5-14 shows the normal
response to the @MICROS command.

DC>>@MICROS

Running diag EDKBA

End of pass - EDKBA - start test #1 - end test #43

Running diag EDKCA

End of pass - EDKCA - start test #1 - end test #9

Running diag EDKDA

End of pass - EDKDA - start test #1 - end test $2D

Running diag EDKEA

End of pass + EDKEA - start test #1 - end test #45

Running diag EDKFA

End of pass - EDKFA - start test #1 - end test #1E

Running diag EDKGA

End of pass - EDKGA - start test #1 - end test #1

Running diag EDKHA

End of pass - EDKHA - start test }] - end test §D

Running diag EDKOA

End of pass - EDKOA - start test #1 - end test #1

Running diag EDKPA

End of pass - EDKPA - start test #1 - end test #6

Running diag EDKQA

End of pass - EDKQA - start test §l1 - end test $4

Running diag EDKRA

End of pass - EDKRA - start test §l1 - end test #D

Running diag EDKSA

End of pass - EDKSA - start test #1 - end test #6

Running diag EDKTA

End of pass - EDKTA - start test #1 - end test #6

Running diag EDKUA

End of pass - EDKUA - start test #l1 - end test #9

Running diag EDKVA

End of pass - EDKVA - start test #1 - end test #9

Running diag EDKWA

End of pass - EDKWA - start test #l1 - end test #4

Running diag EDK1A

End of pass - EDK1A - start test #1 - end test #17

Running diag EDK2A

End of pass - EDK2A - start test #1 - end test #B

Running diag EDK3A

End of pass - EDK3A - start test #1 - end test #D

MBOX=0000 EBOX=04EC FBOXA=000F FBOXM=0004 IBOX=002D

Running diag EDK4A

End of pass - EDK4A - start test #l1 - end test #6

Running diag EDKZA

End of pass - EDKZA - start test #1 - end test §3

Running diag EDKSA

End of pass - EDKSA - start test #1 - end test #5

Running diag EDK6A

End of pass - EDK6A - start test #1 - end test $70

Running diag EDK7A

ggd of pass - EDK7A - start test §l - end test $#3C
>>

Figure 5-14 Console Display When Running MICROS.COM

Note that the command file, MICROS.COM, does not include running
the microhardcore diagnostics before running all the available
microdiagnostics in the proper sequence. For a complete bottom-up
test of the VAX CPU, there is another command file that runs MHC
first, and then invokes MICROS.COM to run the microdiagnostics.
This command file is invoked by typing @TSTCPU and causes the
console to read and execute commands from the file TSTCPU.COM.
Figure 5-15 demonstrates this.

DC>>SHOW TSTCPU.COM/ASCII

{General Command file for running MHC and all Micros for VAX 8600 cpu

1 Version: 001.000

! Released: 30-jan-1985

{Command File for executing the entire string of Microdiagnostics delivered
| at Engineering Venus release M 5.0 "***DRELIMINARY***#

! * Revised Aug 21, 1984

] * Revised October 3, 1984
1 * Revised Dec 5, 1984

!

MHC Enter MH context

!

Start ! Run all MH tests
!
!

-DIAG Enter DIAG context, which will run MICROS.COM automatically
@MICROS Run diagnostic script file
DC>>

Figure 5-15 TSTCPU.COM Command File

Other miscellaneous command files are available on the RL02 that
permit running fixed diagnostic sequences required for testing
specific CPU modules. Tables 5-3 through 5-5 list all of the
currently available module test command files. Figure 5-16 lists
the commands contained in QVL205.COM that test the MBox's MAP
module.

The following topics have been covered up to this point.
1. What types of microdiagnostics are provided
2. How to run them in the proper sequence

3. How to use the special command files to automate the
process

The next step is to discuss the error messages that DCP displays
when the microdiagnostic detects a fault.

)

Table 5-3 Microdiagnostic Module Test Command Files

\

)

/

Filename Module

QVL202.COM L0202 (SBS)
QVL203.COM L0203 (SBA)
QVL204.COM L0204 (MCD)
QVL205.COM L0205 (MAP)
QVL206.COM L0206 (IDP)
QVL207.COM L0207 (ICA)
QVL208.COM L0208 (IBD)
QVL209.COM L0209 (EDP)
QVL210.COM L0210 (EBC)
QVL211.COM L0211 (EBD)
QVL212.COM L0212 (FBA)
QVL213.COM L0213 (FBM)
QVL214.COM L0214 (ICB)
QVL215.COM L0215 (CSA)
QVL216.COM L0216 (CSB)
QVL217.COM L0217 (CLK)
QVL218.COM L0218 (FJM)
QVL219.COM L0219 (EBE)
QVL220.COM L0220 (MCC)
QVL222.COM L0222 (MTM)

Table 5-4 MHC/Micro Module Test Command Files

Filename Module

QVX202.COM L0202 (SBS)
QVX203.COM L0203 (SBA)
QVX204.COM L0204 (MCD)
QVX205.COM L0205 (MAP)
QVX206.COM L0206 (IDP)
QVX207.COM L0207 (ICA)
QVX208.COM L0208 (IBD)
QVX209.COM L0209 (EDP)
QVX210.COM L0210 (EBC)
QVX211.COM L0211 (EBD)
QVX212.COM L0212 (FBA)
QVX213.COM L0213 (FBM)
QVX214.COM L0214 (ICB)
QVX215.COM L0215 (CSA)
QVX216.COM L0216 (CSB)
QVX217.COM L0217 (CLK)
QVX218.COM L0218 (FJM)
QVX219.COM L0219 (EBE)
QVX220.COM L0220 (MCC)
QVX222.COM L0220 (MTM)
QVX223.COM L0223 (FTM)

5-17

Table 5-5 MHC Module Test Command Files

Filename Module

MHC209.COM L0209 (EDP)
MHC222.COM L0222 (MTM)
MHC223.COM L0223 (FTM)

DC>>SHOW QVL205.COM/ASCII

1QVL205.COM - Mfg STAGEl script file to Run Micros

{ Version: 002.000

| Released: 12-JUN-1985

| Command Pile for QV testing of the L0205 module. (MAP)

1. Microdiagnostics delivered at Engineering Venus release M 5
[} * Revised December 11, 1984

3 * Revised June 12, 1985

!

1**Note: this command file does Not run the MicroHardCore, which is run from
| within the console software subsystem.

1

IMbox Microdiagnostic
Run/pass:100 EDKCA

IMbox Microdiagnostic
Run/pass:3 EDKDA

IMbox Microdiagnostic
Run/pass:100 EDKEA

IMbox Microdiagnostic
Run/pass:100 EDKFA

IMbox Microdiagnostic
Run/pass:100 EDKGA

IMbox Microdiagnostic
Run/pass:100 EDKHA

1Ibox Microdiagnostic
Run/pass:100 EDKRA

1Ibox Microdiagnostic
Run/pass:100 EDKTA
IArray Microdiagnostic - 4Meg Version
IDefault is to test Array Module in slot 0 only
Run/pass:3 EDKSA

I1SBIA Microdiagnostic
Run/pass:50 EDK6A

ISBIA Microdiagnostic
Run/pass:50 EDK7A

DC>>

Figure 5-16 L0205 Module Test Command File

5.5 FAULT ISOLATION MESSAGES

This section will use three examples to illustrate the format of
the error messages that DCP displays when the microdiagnostics
detect a fault. The first example includes a detailed description
of each component of the message displayed.

Figure 5-17 shows a sample /PRINT MODE:VERBOSE form of printout
from a microdiagnostic. The numbers in the left column do not
appear in the actual output, but are used as a way to refer to the
components in the detailed description which follows.

5-18

1. DC>>START/NU:l

2. //
3. Diagnostic test name: EDK3A

4. BPM version: EDK3A V0002. 000 83/22/1985

5. Syndrome §:

6. Start test #: 1

7. End test #: 11

8. Loop goal: 100

9. Pass count: 1

10. Ebox scratchpad data:

11. [PAT.1] = 00000000

12. [PAT.2] = 00000000

13. [ACT.DAT] = 00000000

14. [ACT.DAT2] = 00000000

15. [FAULT.NUM] = 00000001

16. [TST.LABEL] = 00000002

17. [XOR.CMP] = 00000000

18. (P.REG) = 00000000

19. Fault detected in test #2 ~ EDK3A
20. 1Isolation data:
21. The Fbox FBM Module made an incorrect branch on exponent zero,
22. data ready, or was unable to return from a call subroutine.
23. SECTION SLOT COMPONENT MODULE

24. CPU 7 E-42 L0213/L0218

25, CPU 7 E-37 L0213/L0218

26. CPU 8 E-3 L0213/L02

27. //

NOTE: The numbers in the first column do not appear
in the actual display.

Figure 5-17 Isolation Message —-- Sample 1

The following list describes each component part of the isolation
message display shown in Figure 5-17.

1. DC>>START/NU:1 11 -- The user typed command to run tests
1l through 11.

2. ////)ceeiieeces/////// -- Indicates start of message.

3. Diagnostic test name: EDK3A -- Official name of this
diagnostic. All problem reports and questions should
include this name. This name is also the key to finding
listings for this test. Every diagnostic test, no matter
what box it is testing, is controlled by special EBox
microcode. Furthermore, the descriptions and
documentation for any test will be found in the EBox
microcode listing for that diagnostic. The name of the
listing for the EBox microcode in the diagnostic is
determined by dropping the last letter of the official
diagnostic name (this last letter shall always be an
"A"), and putting the letter "U" in its place. Therefore,
the EBox microcode listing for diagnostic EDK3A is found
in the EDK3U.MCR file. All microcode listing files have a
.MCR extension.

10.

11.

12.

13.
14.

BPN version: EDK3A V0002.000 03/22/1985 -- This is the
version number of this diagnostic, as read out of Ucode
location 800, along with the date of that version's
release. This number will match the contents of location
800 as found in the EDK3U.MCR file.

Syndrome 1 -- The 1 means that this is the first error
syndrome encountered by this diagnostic. The error
syndrome is all of the scratchpad data and the values in
those scratchpads. If even a single bit in any of the
printed scratchpads should change from one fault report
to another, DCP will treat it as an entirely new error
syndrome. If a second syndrome were encountered, it would
be number 2, and so on, up to a maximum of 10 syndromes.
Additional syndromes after 10 are not printed. If more
than one syndrome i{s encountered by the microdiagnostics,
there will be no attempt to isolate the fault. Multiple
syndromes mean either that the fault is not solid, or
that the diagnostic is suffering from an initialization
problem. In both —cases, the isolation could be
misleading.

Start test: 1 -- The number of the starting test
specified in the START command.

End test: 11 -- The number of the ending test number
specified in the START command.

Loop goal: 100 -- Ignore for current release.

Pass count: 1 -- Ignore for current release.

EBox scratchpad data: -- The registers that are printed

following this header are specific to each diagnostic and
may change from diagnostic to diagnostic. Also, depending
on what is happening in each specific test of a
diagnostic, some of these registers may have no meaning.
The listing for each test should show which registers are
used during any particular test. Some tests are checking
branch conditions in the micro sequencers, or perhaps
expecting microtraps, and do not really have any expected
data, or actual data.

[PAT.1] = 00000000 -- Usually a stimulus pattern used to
set up a test condition.

[PAT.2] = 00000000 -~ Some tests require more than one
stimulus condition. PAT.2 would be the second pattern
used to set up the test condition.

[ACT.DAT] = 00000000 -~ Actual data received.

[ACT.DAT2] = 00000000 -- Actual data received.

)

15.

16.

17.

18.

19.

20.

23.

24.

25.
26.

27.

[FAULT.NUM] = 00000001 -- This is a key register and
should be valid for each and every microdiagnostic test.
The FAULT.NUM is just like a subtest number and should
point you into the listing to the particular error call
to DSM, or the particular test setup that detected the
fault. FAULT.NUM is the second thing you should look at
after the failing test number, in order to find the spot
in the microcode listing that detected the fault.

[TST.LABEL] = 00000002 -- If implemented, the number in
this register should match the failing test number.

[XOR.CMP] = 00000000 -— If the test had any
expected/actual data, this register should contain the
XOR of that data.

[F.REG] = 00000000 -- This particular register is only
found in the FBox microdiagnostics and contains the
contents of one of the FBox control status registers.

Fault detected in test 2 -- EDK3A -- Indicates the
number of the test that detected this failure.

Isolation data: -- Header that marks the beginning of
this test's component isolation printout. A brief
description of the failure is in 21 and 22.

SECTION SLOT COMPONENT MODULE -- Chip/module callout
header.

CPU 7 E-42 L0213/L0218 -- Component callout. Includes the
backplane section and backplane slot number of the module
that may contain the failure. This is the module that
should be replaced. Also contains the list of potentially
faulty components. These are the components that should
be replaced.

CPU 7 E-=37 L0213/L0218 -- Chip/module callout message.
CPU 8 E-3 L0213/L0218 -- Chip/module callout message.
J/// /1] eeneeeeed/ll//////// —- Indicates end of isolation

message.

The isolation data in lines 20 through 26 is only displayed for
solid faults where the test fails every pass with the same error
syndrome. For non-solid faults, no isolation data is displayed,
and only error messages for up to 10 different error syndromes are
displayed. These messages will include the information contained
in lines 2 through 19, and replace lines 20 through 26 with the
following two lines.

1. Test Failure Rate: "n" failure(s) from "p" passes
2. There were "x" syndrome(s) encountered

Here "n" indicates the number of failures detected, "p" indicates
the current pass count setting, and "x" indicates the number of
different error syndromes detected.

Two more sample message displays are shown in Figures 5-18 and
5-19.

DC>>START/PASS:1 EDKGA
///
DIAGNOSTIC TEST WAME:

START TIST NO: 1
END TEST NO: FF
LOOP GOAL: 1

EBOX SCRATCHPAD DATA:
RO] = 00000000
TO0) = 00000000
T1] = 00000000
T10] = 00000000
T13] = 00000000
T15] = 00000001
A = FAULT.NUM] = 00000001
D - ACT.DATA] = 00000026
E = XOR.CMP] = 00000030
- D.MASK] = 00000000
= EXP.DATA]) = 00000016
34 - TRAP.MASK] = 00000000
- TRAP.OCCURRED] = 00000000
- VMQ] = 00000000
- VMQ.SAV] = 00000000
38 - DATA.SAV] = 00000000
FAULT DETECTED IN TEST #1 = EDKGA.
ISOLATION DATA:
VERIFY ERROR ON 'WRITE ARRAY 0 WITH BIT 0 BAD' TEST

SECTION SLOT COMPONENT MODULE
CPU 16 E-0 L0204
L1777 77777777770777077717777777777777777

Figure 5-18 1Isolation Message —-- Sample 2

3

DC>>START EDKBA
J71711777777/7777770177771777777777777777
DIAGNOSTIC TEST NAME: EDKBA.

START TEST NO: 1

END TEST NO: FF

LOOP GOAL: 100

PASS COUNT: 1

EBOX SCRATCHPAD DATA:

[PAT.1] = 00000000

[PAT.2] = 00000000

{D.MASK] = FFFFIFFE

[EXP.DATA] = 00000000

[ACT.DATA] = 00000002

[XOR.CMP] = 00000002

[FAULT.NUM] = 00000002

FAULT DETECTED IN TEST #28 - EDKBA.
ISOLATION DATA:

SECTION SLOT COMPONENT MODULE

CPU 6 E-42 L0211
CPU 6 E-41 L0211
CPU 6 E-18 L0211
CPU 6 E-15 L0211
CPU 6 E-136 L0211
CcPU 6 E-69 L0211
CPU 6 E-66 L0211
CPU 6 E-19 L0211
CPU 6 E-4 L0211
CPU 6 E-55 L0211
CPU 6 E-7 Lo211
CPU 6 E-53 L0211
CPU 6 E-156 L0211
CPU 6 E-68 L0211
CPU 9 E-143 L0219
CPU 9 E-6 L0219

CPU 9 E-5 L0219
LI111121710070700707000077700777777777777

Figure 5-19 Isolation Message -- Sample 3

5.6 UNUSUAL ERROR MESSAGES

There will be times when DCP will respond with a nonstandard error
message to indicate something has gone awry; the microdiagnostic
is either hung or has sensed some unexpected response that it is
unable to handle. These messages are generally caused by the
nature of the fault, a bug in the microdiagnostic, or a simple
operator error. Operator errors can generally be cleared up by
simply reloading and restarting the microdiagnostic that caused
the problem. The other two will require software design changes to
correct the problem.

This section describes the three most common types of responses.
It also outlines procedures to capture the state of the
microdiagnostic at the time of the fault so that diagnostic
engineering can analyze the problem and design modifications to
correct it.

5.6.1 DSM/DCP Communication Failures

When DCP, running in the T-11 microprocessor, is unable to
communicate with DSM, running in the EBox control store, the
following message is displayed and DCP returns to the DC prompt.

"2DCP-E-NOANSD, DSM-DC communication failure"
This could be caused by programming or hardware faults and can
occur any time DCP is running in the diagnostic context. Whatever
the cause, the state of the machine must be captured for analysis
by diagnostic engineering. This information can then be analyzed
to either fix the bug or write an additional microtest to detect
and properly report the hardware fault earlier in the diagnostic
testing sequence. Here's the "snapshot" procedure.

1. Enable hardcopy by pressing <CTRL/PRINT>, if a hardcopy
terminal is available.

2. Type DEBUG to enable the HEX command set.
3. Type STOP CPU to stop the clocks.

4. Type MIC to snapshot the contents of the EBox, IBox,
MBox, and FBox micro-PC.

5. Press the space bar 10 times to snapshot the next 10 sets
of micro-PCs.

6. Press <RETURN> to exit the space-bar mode.

7. Type RESET to reinitialize the CPU.

8. Type START CPU to restart the CPU clocks.

9. Type EXAMINE/ESC 70 to snapshot the status of DSM.

10. ;y?e EXAMINE/ESC 73 to snapshot the test number that
ailed.

11. Type SHOW DATA to snapshot the fault syndrome.

12. Type @EDxxA.COM to reload the microdiagnostic that
failed.

13. Type START to restart the microdiagnostic to determine if
the fault symptoms are consistent.

14. If the fault occurs again, repeat the previous steps to
capture a second snapshot.

15. Finally, save all this data and include it with a
Software Problem Report (SPR) to Diagnostic Engineering
in Marlboro, Mass.

5.6.2 Unexpected EBox Microtraps
After starting any microdiagnostic, the following message may
occur.

"?DCP-E-UMICTP, unexpected microtrap at vector xx"

This indicates that a hardware fault caused an EBox microtrap that
the current microdiagnostic test neither forced nor was prepared
to handle. The "xx" indicates the actual trap vector address. Two
things could have caused this error. Either the microdiagnostic
has an initialization problem or the logic fault that caused the
trap should have been detected by an earlier microdiagnostic. Both
require program changes by Diagnostic Engineering. To make the
required changes, the designer needs to analyze the state of the
machine at the time the trap occurred. To provide this feedback,
you need to perform the following procedure.

1. Press <CTRL/PRINT> to enable hardcopy.
2. Type DEBUG to enable the HEX command set.

3. Type SHOW SWITCHES to snapshot the state of the DCP
program control switches.

4. Type SHOW DATA to snapshot the contents of the currently
defined data tables for the microdiagnostic that failed.

5. Type EXAMINE/WBUS 6 to snapshot the WBus registers.
6. Type EXAMINE/WBUS 7.

7. Type EXAMINE/WBUS 9.

8. Type EXAMINE/WBUS 11.

9. Type EXAMINE/WBUS 12.

10. Type EXAMINE/WBUS 13.

Now type START to restart the tests. If the problem reoccurs,
repeat the procedure to take another snapshot of the machine
state. Finally, save all this data and include it with a Software
Problem Report (SPR) to Diagnostic Engineering in Marlboro, Mass.

5.6.3 Keep-Alive Failures

While a microdiagnostic is running, DCP polls a location in the
DC022 register file called DSM$ALIVE to determine if the
microdiagnostic is still running. DSM increments this location
each time it is <called to ©perform some service to the
microdiagnostic, which signals DCP that the diagnostic is still
running. DCP uses a 5-second timer to check the DSMS$ALIVE
location, and if it expires before a test completes, an error
message is displayed and the current command is aborted.

5-25

When a microdiagnostic gets hung in some infinite loop, due to
either a programming error or the nature of the hardware fault,
DCP senses that the test failed to finish during the 5-second
interval and displays the following error message.
“?DCP-E-ALIVEE. invalid dsm keepalive byte"

Again, you must save key information about the state of the
machine so that Diagnostic Engineering can analyze the fault and
make the required changes to correct it. Use the following
procedure to capture this information.

1. Enable hardcopy by pressing <CTRL/PRINT> if a hardcopy
terminal is available.

2. Type DEBUG to enable the HEX command set.
3. Type STOP CPU to stop the clocks.

4. Type MIC to snapshot the contents of the EBox, IBox,
MBox, and FBox micro-PC.

5. Press the space bar 10 times to snapshot the next 10 sets
of micro-PCs.

6. Press <RETURN> to exit space-bar mode.

7. Type RESET to reinitialize the CPU.

8. Type START CPU to restart the CPU clocks.

9. Type EXAMINE/ESC 70 to snapshot the status of DSM.

10. Type EXAMINE/ESC 73 to snapshot the test number that
failed.

11. Type SHOW DATA to snapshot the fault syndrome.

12. Type @EDxxA.COM to reload the microdiagnostic that
failed.

13. Type START to restart the microdiagnostic to determine if
the fault symptoms are consistent.

14. If the fault occurs again, repeat the previous steps to
capture a second snapshot.

15. Finally, save all this data and include it with a
Software Problem Report (SPR) to Diagnostic Engineering
in Marlboro, Mass.

5.7 MICRODIAGNOSTIC CONTROL

This section describes the interaction between DCP and DSM to
control running the tests in a microdiagnostic. Figure 5-20
summarizes the functional flow and Appendix C describes the
detailed operation of DSM. You should take a few minutes to read
Appendix C before proceeding.

The user can control the flow either by setting switches, or
typing commands or special control characters. First, we'll
examine the use of the three allowable control characters and
then, using a few examples, describe some typical control
operations using commands and switches.

DCP handles three control characters while a microdiagnostic is
running.

1. <CTRL/P> -- Interrupts the currently running micro-
diagnostic and returns control to the user. This places
the microdiagnostic in the "pause" state, allowing the
user to examine or modify the state of the diagnostic
test environment, and then resume execution of the
microdiagnostic.

2. <CTRL/C> -- Aborts the current command, which may include
the need to abort a currently running microdiagnostic,
and returns control to the user.

3. <CTRL/T> -- Commands DCP to display information about the
state of the currently running microdiagnostic without
disturbing its execution. Figure 5-21 shows an example of
the information displayed.

Using the flow chart in Figure 5-20, the following discussion will
use a few examples to describe the operation of microdiagnostics
running under DCP's control. Each example assumes that the user
typed the @EDKBA command to load and initialize the CPU for
running the EBox microdiagnostic.

Example 1
START/NUMBER: 1 5 (No error)
This command instructs DCP to run tests 1 through 5 in the

currently loaded microdiagnostic (EDKBA). Each test will be run as
follows.

TEST 1 100 times
TEST 2 100 times
TEST 3 100 times
TEST 4 100 times
TEST 5 100 times
5-27

TEST _ NUM —+1

INITIALIZE
TEST

CONTROL-C

!

CONTROL-P

FOR SOLID FAULTS ONLY ONE
MESSAGE IS DISPLAYED

2. FOR NON-SOLID FAULTS UP TO

TEN DIFFERENT MESSAGES
NO ARE DISPLAYED
YES

ROUTINES
DISPLAY

ISOLATION
MESSAGES

STEP ORfONTINUE
I
Figure 5-20 DCP Control Flow Summary

DC>>@EDK6SA
DC>>START

T
Running diagnostic - EDK6A
Test # = 2 & alive byte = 34

Running diagnostic = EDK6A
Test # = 4 & alive byte = 32

T

Running diagnostic - EDK6A

Test # = 1B & alive byte = 116

End of pass - EDK6A - start test #1 - end test #70
DC>>

DCP will

Figure 5-21 <CTRL/T> Status Display

then display the following message and terminate.

END OF PASS - EDKBA -~ START TEST#1 - END TEST #5

DC>>

Here's the sequence of events.

1.

2.

DCP selects the test number, performs the required:-
initialization, and calls DSM.

DSM transfers control to the microdiagnostic to execute
the selected test 100 times.

DSM signals DCP that the test is done.

DCP increments the test number and repeats the sequence
until tests 1--5 have been run.

Finally, after test 5, DCP displays the END OF PASS
message and returns to the DC>> prompt to await another
command .

Example 2

START/NUMBER: 1 5 (Solid error in Text 1)

On the first test, the microdiagnostic detects a fault and signals
DSM to send a FAULT DETECTED response packet to DCP. This causes
DCP to respond as follows.

1.
2.

Increments ERRCNT to count the errors.

Retrieves, formats, and displays the error syndrome data
from the EBox scratchpad RAM. For a solid error, this
data will be the same for all 100 passes of the failing
test, so it is only displayed once.

5-29

3. DCP calls DSM again to repeat the sequence until all 100
passes have been completed.

4. When DCP sees the PASCNT=0, it calls its isolation
routines to analyze the error syndrome data as directed
by the isolation algorithms contained in EDKBA.DCI (DCB).
This results in DCP appending fault isolation messages to
the error display.

5. After displaying the fault isolation information, DCP
enters the "pause"” state to wait for user commands.

6. The user can now type either STEP or CONTINUE to resume
testing with the next test.

Example 3
START/NUMBER: 1 5 (Non-solid error in Test 2)

On the second test, the microdiagnostic detects a fault and
signals DSM to send a FAULT DETECTED response packet to DCP. This
causes DCP to respond as follows.

1. Increments ERRCNT to count the errors.

2. Retrieves, formats, and displays the error syndrome data
from the EBox scratchpad RAM. For a non-solid error, the
error data will be displayed for each different syndrome
up to a maximum of 10 messages.

3. DCP calls DSM again to repeat the sequence until all 100
passes have been completed.

4. When DCP sees the PASCNT=0, it exits to the next test
without calling its isolation routines because the fault
was not solid.

Example 4
START/SINGLE_STEP:ON (Single stepping mode)
Figure 5-22 illustrates DCP's response to this command.

This example assumes EDKBA runs error-free. The DCP/DSM sequence
is as follows.

1. DCP selects the test number, performs the required
initialization, and calls DSM.

2. DSM transfers control to the microdiagnostic to execute
the selected test 100 times.

3. DSM signals DCP that the test is done.

DC>>@EDKBA
DC>>START/SINGLE_STEP
DC>>?DCP-I-PAUSI, pausing...
PAUSING AT END OF TEST #1
DC>>STEP

DC>>?DCP-I-PAUSI, pausing...
PAUSING AT END OF TEST #2
DC>>STEP

DC>>?DCP-I-PAUSI, pausing...
PAUSING AT END OF TEST #3
DC>>STEP

DC>>?DCP-I-PAUSI, pausing...
PAUSING AT END OF TEST #4
DC>>CONTINUE

DIAGS CONTINUING

END OF PASS - edkba - start test#l - end test #43
DC>>

Figure 5-22 Single Step Mode Display

4. DCP, finding the SINGLE_STEP switch set, displays a
message and enters the pause state.

5. The user types STEP which signals DCP to increment the
test number and repeat the above sequence.

6. When DCP pauses after test 4, the user types CONTINUE
which causes DCP to resume executing the remaining tests
until all have been run 100 times. CONTINUE resets the
SINGLE_STEP switch.

7. Finally, after the last test, DCP displays the END OF
PASS message and returns to wait for another command.

Note how the user examined the contents of the EBox scratchpad
location 22 after DCP entered the pause state. This illustrates
the primary use of the pause state. It allows the user to use any
available console command to retrieve additional information. about
the state of the machine. It is also possible to use the HEX
command set while in the pause state to single-clock the
microseguencer, and to examine key SDB signals after each clock
state to obtain additional detail about the nature of the fault.
Chapter 7 will describe more detailed examples of these
procedures.

5.8 CONSOLE COMMANDS
While operating in the diagnostic context, the user has access to
a set of 13 commands in addition to those provided by the general

command set. Typing the HELP DIAG command will list the commands,
as shown in Figure 5-23.

DC>>HELP DIAG
DIAG help available:

CLEAR_DATA CONPIGURE CONTINUE
peposIT DESELECT EXAMINE
GENERATE RUN SELECT
START STEP SET_DATA
SET_DEFAULT SET_ISOLATION SET_NAME
SET_SWITCH SHOW_CONFIGURATION SHOW_DATA

SHOW_SWITCHES

Select "xxxxxx"

Figure 5-23 Diagnostic Context Commands

Typing the name of any command listed in response to the Select
prompt (xxxxxx) will list additional descriptions for each of the
19 commands. This section will briefly describe how each command
is used. Many of the commands are intended for inclusion in the
top-level command file (used to load and initialize the machine
for running microdiagnostics) and are not generally used by the
service engineer during system maintenance.

NOTE
The following commands reflect Version
6.0 of the RL02 diagnostic pack. Earlier
versions will have a slightly different
set of commands.

5.8.1 CLEAR DATA

Syntax: CLEAR DATA

Description:

" This command clears the table of pointers defined by the SET DATA

command and should be used prior to redefining a new set of EBox
scratchpad locations for error reporting purposes.

5-32

)

5.8.2 CONFIGURE (Arrays, SBIAs, FBox)
Syntax: CONFIGURE
Description:

This command causes the diagnostic operating system to determine
which arrays and SBIAs are physically present and tests for the
presence of an FBox. The command establishes internal
configuration tables that identify:

o Which units are physically present
o Sizes and slots for arrays

In addition, this command sets software status bits for each of
the available units, which makes them automatically
selected_for_test when the appropriate microdiagnostics are run.

Current configuration and selected_for_test status can be
displayed by the SHOW CONFIGURATION command. Selected_for_test
status can be altered with the SELECT and DESELECT commands.

5.8.3 CONTINUE (a microdiagnostic)
Syntax: CONTINUE
Description:
This command allows the currently loaded microdiagnostic to resume
test execution after being paused by either a switch setting
(/FAULT:PAUSE, /FAULT:ISOLATE) or <CTRL/P>. The microdiagnostic
resumes at the test following the one that was being executed when
the pause occurred. If /SINGLE STEP is in effect and CONTINUE
command is issued, single stepping is stopped and the remaining
tests are run. A CONTINUE command, issued prior to giving either a
RUN or START command, will result in an error message.
5.8.4 DEPOSIT (Cache, Escratch, WBus)
Syntax: DEPOSIT { /switch } hex_addr hex_data
"/switch™ can be any one of the following items.

/CACHE /ESCRATCH /WBUS

Description:

This command allows the user to modify the EBox scratchpad RAM,
the system cache, or the WBus RAM. The 32-bit hexdata is deposited
into the hexaddr location of the specified RAM. The CPU clock must
be running.

5.8.:5 DESELECT (Arrays, SBIAs, FBox)

Syntax: DESELECT ARRAY/SLOT:n (n = 1 thru 8, default = 1)
DESELECT SBIAO
DESELECT SBIAl
DESELECT FBOX

Description:

This command allows you to alter DCP configuration tables so as to
exclude specific units for testing when the appropriate
microdiagnostics for the options are run. The scheme supports the
following.

ARRAYS in slots 1 thru 8
SBIAO0 SBIA zero

SBIA1 SBIA one

FBOX System FBox

The command DESELECT FBOX is unrelated to the DCON command SET
FBOX:{on,off}.

5.8.6 EXAMINE (Cache, Escratch, WBus)
Syntax: EXAMINE { /switch } hex_addr
"/switch" can be any one of the following items.

/CACHE /ESCRATCH /WBUS
Description:
This command allows the user to examine the contents of specific
EBox scratchpad locations, cache locations, or WBus locations. The
CPU clock must be running.
5.8.7 GENERATE
Syntax: GENERATE { filename }
Description:
The GENERATE command is used to invoke the DCP generate/verify
process for validation and generation of some of the isolation
data. This command is not for field use. It is used to support the
in-house development of 1isolation algorithms. There are no
switches associated with this command. The only option is the name

of the command file responsible for loading the microdiagnostic to
be generated.

3

5.8.8 RUN
Syntax: RUN [/switch] filename

"/switch” can be any combination of the following switches,
provided that the command line does not exceed 80 characters.
Switches appended to the RUN command remain in effect until the
command completes. If a RUN command is given without switches,
their default values are used. :

/BELL:{ ON, OFF }

/FAULT:{ ISOLATE, NOABORT, LOOP, PAUSE, CONTINUE, IGNORE}
/LINES:{ ON, OFF }

/NUMBER:FIRST TEST [{<space>,<comma)} LAST_TEST]
/PASSES :dec_num

/PRINT MODE:{ BRIEF, VERBOSE }

/SINGLE_STEP

Description:

This command initiates the execution of a command file whose
purpose is to load and start a microdiagnostic program. Execution
begins with the first number specified in the /NUMBER switch and
ends with either the last test in the group of microdiagnostic
tests or with the last test specified in the /NUMBER switch. Note
that the CPU clock must be running for the RUN command to work.

Refer to the description of the SET SWITCH command for information
on switches not described here.

/NUMBER:FIRST_TEST [{<space>,<comma>}LAST_TEST] default = 01,FF

This switch is used to specify the starting and ending
test numbers in hex. If the switch is omitted, default
values are used.

/PASSES: 'dec-num' default = 100

The argument "dec_num" is the number of test passes to
execute before continuing to the next test or attempting
isolation. If the /PASSES switch is omitted, the default
value will be used.

A special case of /PASSES:0 modifies the sequencing of
the tests so that a particular group of tests can be run
indefinitely. If the user specifies a 0 pass count, DCP
will run each of the tests indefinitely (from FIRST to
LAST), until <CTRL/C> or <CTRL/P> interrupts or until a
fault is detected. When a fault is detected, the action
wi%l ﬁe governed by the current setting of the /FAULT
switch.

/SINGLE_STEP

This switch enables the single step feature. When
specified, diagnostic execution is interrupted after
completing the proper number of passes of an individual
test. A message, along with the test number Jjust
completed, is displayed and the operator is prompted for
input. The STEP command can be used to run the next test
and is followed by another pause at completion. The
CONTINUE command can be used to clear this mode and
resume full speed test execution.

5.8.9 SELECT (Arrays, SBIAs, FBox)

Syntax: SELECT ARRAY/SLOT:n/TYPE:m (n = 1 thru 8, default = 1)
SELECT SBIAO (m = 4 or 16, default = 4)
SELECT SBIAl
SELECT FBOX

Description:

This command allows you alter DCP configuration tables so as to
include specific units for testing when the appropriate
microdiagnostics for the options are run. The units are in
addition to currently selected devices. The scheme supports the
following. ’

ARRAYS (4 and 16 meg) in slots 1 thru 8
SBIAO0 SBIA zero

SBIA1 SBIA one

FBOX System FBox

It is legal to select a unit for test, even if the hardware does
not appear (via SHOW CONFIGURATION) to be physically present.

The command SELECT FBOX is unrelated to the DCON command SET
FBOX:{on,off}.

5.8.10 SET DATA

Syntax: SET DATA escratch_address data_name

Where:
° "escratch_address" is a hexadecimal address within the
EBox scratchpad RAM (0 to FF)
L) "data name" is a 1-30 character string to be associated

with the specified Escratch data

5-36

)

Description:

This command allows a symbolic name to be assigned to a location
in the EBox scratchpad RAM. When a microdiagnostic test detects a
fault and DCP is in verbose printing mode, the "data name" and
data taken from the associated "escratch_address" are included in
the error report.

SET DATA commands are normally used in command files responsible
for 1loading microdiagnostics and setting diagnostic control
switches. A maximum of 16 SET DATA commands can be used at one
time. The CLEAR DATA command should be used to initialize the SET
DATA memory prior to defining set data information. The SHOW DATA
command can be used to display the current settings of SET DATA,
along with the current state of the Escratch variables.

5.8.11 SET ISOLATION
Syntax: SET ISOLATION [/switch]

/PASSES: 'dec_num'
/ERROR_DUMPS:'dec_num’

Description:

This command provides a way to modify default parameters
associated with isolation. Once the defaults are modified, they
remain in effect until DCP is reloaded (i.e., DIAG command).

/PASSES: 'dec_num' default = 100

The argument "dec_num" indicates the number of times each
test will be executed before continuing to the next test
or attempting isolation. It is not recommended that this
number be altered in the field, as it affects the
confidence level of any isolation data that may follow.
Factory settings are preferred. This number should always
be greater than zero (0).

/ERROR_DUMPS:'dec_num' default = 10

The argument "dec_num" indicates the maximum number of
error printouts that will occur as faults with different
syndromes are detected within a given test. Lowering this
number has the effect of reducing the amount of error
printouts at the expense of throwing away what may be
useful data for tracking down an intermittent. This
number has a maximum value of 10.

5.8.12 SET NAME
Syntax: SET NAME microdiagnostic_filename
Description:

This command specifies the name of the microdiagnostic currently
being loaded. This information is included in the fault report and
is used to locate other associated files with the same name
(different extensions).

5.8.13 SET SWITCH
Syntax: SET SWITCH [/switch]

"/switch" can be any combination of the following switches,
provided that the line does not exceed 80 characters. Switches
altered with this command retain the new setting until changed
again with the SET SWITCH command, or until DCP is reloaded.

/BELL:{ ON, OFF }

/FAULT:{ ISOLATE, NOABORT, LOOP, PAUSE, CONTINUE, IGNORE }
/LINES:{ ON, OFF }

/PRINT_MODE: { BRIEF, VERBOSE }

Description:

This command redefines the default switch settings that govern the
behavior of DCP and DSM in the «control and running of
microdiagnostics. A description of each switch is provided below,
including the default setting of the switch when DIAGNOSTIC
context is entered.

/BELL:{ ON, OFF } default = OFF

When "ON," this switch causes the terminal bell to ring
each time a new fault is detected and reported.

/FAULT:{ ISOLATE, NOABORT, LOOP, PAUSE, CONTINUE, IGNORE }
default = ISOLATE

This switch controls the action DCP takes after a
microdiagnostic test detects a fault. Only one of the
above arguments may be specified; they are mutually
exclusive.

/FAULT: ISOLATE

This setting, which is also the default, directs DCP to
attempt isolation on all solid faults encountered. After
the isolation attempt is completed, DCP returns to its
command prompt. The CONTINUE or STEP commands can be used
to resume test execution.

5-38

/FAULT:NOQABORT

This setting directs DCP to attempt isolation on all
solid faults encountered. After the isolation attempt is
completed, DCP will continue onto the next test, thus
providing a way to continue with the diagnostic execution
after isolating.

/FAULT: LOOP

Tests within a diagnostic are targeted to run /PASSES
times. When an error is detected, the standard error
report is displayed and then DSM is instructed to 1loop
forever on the failing test. Only <CTRL/C> or <CTRL/P>
can terminate the loop.

/FAULT: PAUSE

This setting causes DCP to return to its command prompt
after reporting a test failure. The CONTINUE or STEP
command can be used to resume test execution.

/FAULT:CONTINUE

With this switch in effect, DCP will perform all of its
normal error reporting. After each error report, DCP will
continue its normal test sequencing as if no error had
occurred. Isolation will not take place.

/FAULT: IGNORE

This is a special switch intended only for microcoder
use. It has no useful application in the field. It
directs DSM never to signal DCP that an error has
occurred. No hardware errors can ever be detected or
reported.

/LINES:{ ON, OFF } default = OFF

This switch is used by microcoders to debug isolation
code. If the switch has been set to ON and DCP is
processing isolation statements, a source line number
will be displayed as the statement is processed. This
line number matches the line number of the isolation
source statement that is currently being processed.

/PRINT MODE:{ BRIEF, VERBOSE } default = VERBOSE

This switch controls the level of detail included in an
error report.

5.8.14 SHOW CONFIGURATION (Arrays, SBIAs, FBox)
Syntax: SHOW CONFIGURATION
Description:

This command will display, in tabular form, information regarding
the hardware configuration and selected for_test status for
arrays, SBIAs, and the FBox. The table will indicate:

. Which slots currently contain arrays, and their sizes and
current status (selected or excluded from testing)

. Which SBIAs are physically present and their current
status (selected or excluded from testing)

. If an FBox is present and its current status (selected or
excluded from testing)

The physical presence of these devices is determined with the
CONFIGURE command. The choice of whether a particular option is
selected or excluded from testing is made via the SELECT and
DESELECT commands.

5.8.15 SHOW DATA

Syntax: SHOW DATA

Description:

This command displays all symbolic names and associated data
currently defined by the SET DATA command. The range of diagnostic
test numbers, with the number of passes, is also displayed under
this command for the user's information.

5.8.16 SHOW SWITCHES

Syntax: SHOW SWITCHES

Description:

This command displays the current switch settings and the default
switch settings. The default settings are either those settings
that were in place when DCP was loaded or those that have been
modified via the SET SWITCH command.

The current switch settings are normally the same as the default

settings since local settings (i.e., appending switches to RUN or
START) return to defaults when the command completes.

5-40

The current switches will differ from the defaults when they are
examined from within another command. This could occur by
examining the switches from the paused state of a RUN or START
command which uses the /SINGLE_STEP switch. When proceeding from
that point with the CONTINUE or STEP command, the current switch
settings will remain in effect until the initial RUN or START
command completes.

5.8.17 START
Syntax: START [/switch]

"/switch" can be any combination of the following switches,
provided that the command line does not exceed 80 characters.
Switches appended to the START command remain in effect until the
command completes. If a START command is given without switches,
their default values are used.

/BELL: { ON, OFF }

/FAULT: { ISOLATE, NOABORT, LOOP, PAUSE, CONTINUE, IGNORE }
/LINES: { ON, OFF }

/NUMBER:FIRST_TEST [{<space>,<comma>} LAST TEST]

/PASSES :dec_num -

/PRINT MODE:{ BRIEF, VERBOSE }

/SINGLE_STEP

Description:

This command initiates the execution of a test or group of tests
within an already loaded microdiagnostic program. Execution begins
with the first number specified in the /NUMBER switch. It ends
with either the last test in the group of microdiagnostic tests or
with the last test specified in the /NUMBER switch. Note that the
CPU clock must be running for the START command to work.

Refer to the description of the SET SWITCH command for information
on the switches not described here.

/NUMBER:FIRST_?EST,[{<space>,<comma>}LAST_TEST] default = 01,FF
This switch is used. to specify the starting and ending

test numbers in hex. If the switch is omitted, the
default values are used.

/PASSES: 'dec_num' default = 100

The argument "dec_num" indicates the number of test
passes to execute before continuing to the next test or
attempting isolation. If the /PASSES switch is not
specified, the default value will be used. A special case
of /PASSES:0 modifies the sequencing of the tests so that
a particular group of tests can be run indefinitely. If
the user specifies a 0 pass count, DCP will run each of
the tests indefinitely (from FIRST to LAST) until
<CTRL/C> or <CTRL/P> interrupts or a fault is detected.
When a fault is detected, the action will be governed by
the current setting of the /FAULT switch.

/SINGLE_STEP

This switch enables the single step feature. When
specified, diagnostic execution 1is interrupted after
completing the proper number of passes of an individual
test. A message, along with the test number Jjust
completed, is displayed and the operator is prompted for
input. The STEP command can be used to run the next test
and is followed by another pause when it completes. The
CONTINUE command can be used to clear this mode and
resume full speed test execution.

5.8.18 STEP
Syntax: STEP
Description:

This command causes the next test in the currently loaded
microdiagnostic to be executed. The STEP command is invalid unless
the microdiagnostics have been started. Once they have been
started and there is a pause in the diagnostic execution
(/FAULT:PAUSE, /FAULT:ISOLATE, or <CTRL/P>), the STEP command may
be used. .A STEP command issued prior to giving either a RUN or
START command will result in an error message.

)

CHAPTER 6
MACRODIAGNOSTICS

6.1 OVERVIEW

Macrodiagnostics are functional macroprograms based in the
system's internal memory subsystem. They may be loaded from either
the RL0O2 via the console front-end or from the system disk via the
ABus. A limited set of macrodiagnostic programs resides on the
RLO2 and is used to test the load paths required for loading
macroprograms from the system disk and magnetic tape devices. Part
of the system installation procedure requires building the system
disk from magnetic tape; the RL02 macrodiagnostics permit testing
and verifying the operation of the hardware used during the disk
building process.

Macrodiagnostics differ from microdiagnostics in several ways.

Table 6-1 outlines the differences between the two types of test
strategies.

Table 6-1 Micro/Macro Diagnostic Differences

Microdiagnostics Macrodiagnostics

Nonfunctional tests Functional tests

Reports failing modules Reports failing function only

and components

Resides in the EBox CS Resides in VAX internal memory

Operates in CIO mode Operates in PIO Mode

Accesses SDB visibility channel No access to SDB visibility
channel

No access to I/0 devices Accesses and tests I/0 devices

Only runs standalone Can be run on-line

Runs under control of the Runs under control of EDSAA, the

Diagnostic Control Program VAX diagnostic supervisor

(DCP)

6.2 MACRO CONTEXT TEST ENVIRONMENT

To run macrodiagnostics, the user must switch to the MACRO context
by typing the MACRO command. This is the default context during
normal power-up initialization, as indicated by the >>> prompt on
the console terminal. Figure 6-1 shows the state of the system
when operating in the macro context. Note that system microcode
must be loaded into all the CPU control store RAMs and that the
actual macrodiagnostics reside in internal memory.

6.2.1 Macro Context Initialization

Macro context initialization may be aborted at any time by the
<CTRL/C> or <CTRL/P> characters. Aborting macro context
initialization is useful if the user wants to switch immediately
to diagnostic or microhardcore context, where context-specific
initialization 1is done automatically. The console software
executes the following sequence of events.

1. Prints "Initializing CPU" message to indicate the start
of this section.

2. Submits for execution the command file LOAD.COM, which
performs a complete initialization of the CPU for use as
a macrocode processor. The steps taken by the LOAD.COM
file are described in "CPU 1Initialization" (Paragraph
6.2.2).

3. If this is the first initialization after a system
power-up and the battery backup unit was inactive on
entry, or if this is a context switch coming from
diagnostic or microhardcore context, then automatic UNJAM
and CLEAR MEMORY commands are performed.

4, If the Terminal Control Switch is in the LOCAL DISABLE
position, or if the Restart Control Switch is in the
RESTART BOOT or RESTART HALT position, then attempt a
warm-start. Otherwise, go to the next step. The steps
involved in a warm-start attempt follow.

[Prints "Attempting System Restart®” message.

° Tests that the BBU was valid at the time power was
restored (flag saved during console program
initialization). If not, the warm-start attempt has
failed (go to the next step).

° Tests if the WARM flag is set. If set, the warm-start
attempt has failed (go to the next step).

. Commands CSM to search for a valid Restart Parameter
Block. If not found, the warm-start attempt has
failed (go to the next step).

JUSWUOITAUY 3ISIL IXS3IU0D QUIVW 1-9 2inb1g

»OvS LU

an]
I 3 C w1 [e
SoILSONDVIa wws |2 2 ™ Noa 2 w3cow ALLZ10W3Y
OIVIN XVA 3 H - E
a3SVE XVA
(> -
2 q 300N Old..
3 o
, IaAVIA ~ou 2
X3 ¥vsa3 FED
L —
v [=3
Qo '
22000 V60130 H01 ® 22020 > g‘
vies WIn ™ F10SNOD

(o (e (== ©

avang l\# NA8'SONIA
Svana Ndg'X08I o Nd8INW | | Ndg'aavs
IHOVD So1 553 FERTES) Sows-3 Soves
— ol les]
dvIn Nd8'3000N0 Nd8'SINIA NdE'XLD Nd8'1OW NJg'aav4
Wvd SoW Wvaal IX3INGD oW WvHad

NdE'31040 | |Nd8'SS300V| ﬁ L tt 3 1 A 4

sSN8m
31042 SS320V

VAL

VA3

HiNI

6.2.2

° Loads VAX processor GPRs with applicable data, as per
Digital Standard 032, and sets the WARM flag.

. Starts the VAX processdr running at its restart
address (located in the RPB).

. Enters PIO mode.

If the restart attempt failed and the Terminal Control
Switch is in the LOCAL DISABLE position, or if the
Restart Control Switch is in the RESTART BOOT or BOOT
position, then attempt a cold-start. Otherwise, go to the
next step.

. Prints "Attempting System Bootstrap" message.

. Tests if the COLD flag is set. If set, the cold-start
attempt has failed (go to the next step).

) Loads VAX processor GPRs with applicable data, as per
Digital Standard 032, and set the COLD flag.

. Submits the BOOT command, which in turn submits the
file DEFB0OO.COM for execution. A sample of the BOOT
command file is shown in Figure 6-12.

If the boot attempt failed or if the Restart Control

Switch is in the HALT position, then enter the CIO null
loop, macro context, and prompt for operator commands.

CPU Initialization

CPU initialization is performed by the console as part of the
macro context initialization or whenever the command file LOAD.COM
is invoked. The steps the LOAD.COM file performs are described

next.

1.

2.

The RESET command is entered to perform a master reset of
the machine.

The INIT/POWER command is used to initialize and/or
ensure that the power system is fully operational.

The INIT/SDB command is used to force all SDB control
channels to a known state to allow microcode loading.

The INIT/MICRO command is used to load all control stores
with the default system microcode. INIT/MICRO submits the
file ULOAD.COM for execution.

The INIT/SDB command is again used to force all SDB
control channels to a NOP or RUN state.

6. The INIT/CPU command is used to initialize CSM and many
of the CPU's registers and IPRs.

7. Lastly, the PAMM is initialized using the INIT/PAMM
command.

At this point, the CPU can execute VAX macrocode.

Figure 6-2 shows the typical console response to the MACRO
command. The example was executed with the QUIET flag off so that
the user sees the commands invoked from within the LOAD.COM and
ULOAD.COM files.

6.3 MACRODIAGNOSTIC SEQUENCING

Most all of the VAX macrodiagnostics are designed to run under
control of the VAX diagnostic supervisor (EDSAA), which can run
either standalone or on-line under VMS. This section will only
discuss standalone testing. The recommended sequence is as
follows.

1. Load and run EVKAA, the VAX family macrohardcore
diagnostic, to verify the macro instructions used by the
diagnostic supervisor.

2. Load and run EDSAA to allow loading and running of the
rest of the diagnostics.

3. Load and run EVSBA, the VAX generic autosizer, to size
the system and set up the system configuration tables
that EDSAA requires.

4. Load and run the CPU cluster diagnostics.
5. Load and run the I/O adapter diagnostics.

6. Load and run the system-specific I/O device diagnostics
in order to test the load path to the system disk.

6.3.1 EVKAA -- Macrohardcore Diagnostic

Figure 6-3 shows the typical procedure for running EVKAA. It uses
the LOAD EVKAA command to load the program into VAX internal
memory from the RLO2, followed by the START 200 command to start
the program at location 200(X). It will run one quick pass,
display an END OF PASS message, and then continue to run complete
passes until halted with a <CTRL/P>. Note that it will signal that
it's still alive every A0 (X) passes.

EVKAA may be loaded at some address other than location 0 by
typing "LOAD/START:xxxxxXxxXx EVKAA." Remember that if this is done,
the program must start at location "xxxxxxxx+200." This feature is
useful if the user suspects memory module 0 is causing a problem.

DC>>SET QUIET OFF

DC>>MACRO

>>>! CLOCK.COM - init clock and define clock parameters

>>>1 Version: 001.000

>>>! Released: 21-May-1985

;;:;sr CLOCK X1 40 | Assign mnemonics for rev E01/F01 clock modules
>>>SET CLOCK X2 S0/NORMAL

>>>SET CLOCK X3 53/HIGH

>>>SET CLOCK XS5 56

>>>SET CLOCK FREQ NORMAL | Porce normal clock operation
>>>SET CLOCK PULL | Full speed

>>>SET CLOCK DEFAULT l...and make it stick

>>>INIT/CLOCK ! Initialize clock logic and do 141 reset

Initializing CPU

>>>! LOAD.COM - Full machine init file for macro context
>>>1 Version: 001.002

>>>] Released: 14-Mar-198%

51

>>>RESET | Stop the CPU clock.

>>>INIT/POWER 1| Check for solid power system.

>>>INIT/SDB ! Init control channels before microcode load.
>>>INIT/MICRO 1 Load all control stores.

>>>! ULOAD,COM - Called by INIT/MICRO command to load control stores
>>>1 Version: 002.000
>>>! Released: 30-May-198S

21

>>>SET EXTI OFF | Turn off CPU-To-Console interrupts
>>>LOAD/ECS | Load KA86AA.BPN

>>>LOAD/MCF 1| Load MCF.BPN

>>>LOAD/CONTEXT ! Load CTX.BPN

>>>LOAD/ICS | Load IBOX.BPN

>>>LOAD/ IDRAM ! Load KA86AA.BPN

>>>LOAD/MCS 1 Load UCODE.BPN
>>>LOAD/ACCESS ! Load ACCESS.BPN
>>>LOAD/CYCLE ! Load CYCLE.BPN

>>>LOAD/FBA | Load FADD.BPN

>>>LOAD/FBM ! Load FMUL.BPN

>>>LOAD/FDRAM | Load FADD.BPN

>>>INIT/SDB ! Init control channels again..
>>>INIT/CPU : Init CPU/CSM/Escratch.

>>>INIT/PAMM nit PAMM.
Total memory available is 24. Megabytes

Array Slot 1 contains 4 Megabytes
Array Slot 2 contains 4 Megabytes
Array Slot 3 contains 4 Megabytes
Array Slot 4 contains 4 Megabytes
Array Slot 5 contains 4 Megabytes
Array Slot 6 contains 4 Megabytes

IOAO is an SBIA (Rev level = 0)
IOAl not present
I0A2 not present
10A3 not present

>

Figure 6-2 Macro Context" Initialization

>>>LOAD EVKAA
>
>>>START 200
VAX DIAGNOSTIC SOFTWARE
PROPERTY OF
DIGITAL EQUIPMENT CORPORATION
#*SCONFIDENTIAL AND PROPRIETARY***

Use Authorized Only Pursuant to a Valid Right-to-Use License
EVKAA V8.0 Hardcore Instruction Test
Hit any key to continue
EVKAA V8.0 pass # 1(X) done!
EVKAA V8.0 pass # AO(X) donel
?MCP-1-CPSRUN, CPU is still riunning

>>>HALT
CPU stopped, INVOKED BY CONSOLE (CSM code 11)
PC 0000B7CD

>>>

Figure 6-3 EVKAA Display

If any errors are detected, the failing test number and good/bad
data will be displayed. Two examples are shown below.

Example 1

2?22 ERROR Test #nn, Subtest #nn (instr) failed
brief description of failing function

Expected data - XXXXXXXX

Received data - XXXXXXXX

Example 2

??? ERROR Test #nn, Subtest #nn, Subsubtest #nn (instr) failed
brief description of failing function

Expected data - XXXXXXXX
Received data - XXXXXXXX

Where:
"nn" is the failing test, subtest,
and subsubtest numbers
instr "ADDL (R), R" for example
XXXXXXXX Hex data (good/bad)

description "not incrementing properly," for example

After displaying the error, EVKAA will halt. At this point,
consult the listing to locate the failing test from which you can
determine the address of the HALT instruction. Each HALT
instruction is followed by an unconditional branch back to the
start of the failing test. Simply deposit a NOP (01) in place of
the HALT (00) and type START 200 to restart the program. Now,
after the failure is detected again, the program enters a tight
loop to permit manual analysis. Refer to Chapter 7 for detailed
procedures on single stepping and single clocking a failing macro
routine. Obviously, this requires knowing the EBox microsequencer
in detail, and knowing how to read the microcode listings. Such
information is beyond the scope of this manual.

If any errors are detected by EVKAA, the fault should be corrected
before attempting to continue. Trying to load and run EDSAA may
result in errors that could be misleading, since EDSAA assumes
that EVKAA ran error-free.

6.3.2 EDSAA -- VAX 8600/8650 Diagnostic Supervisor

Once EVKAA has run successfully, the next step is to load and
start the supervisor. Typing the command @EDSAA will read the
command file from the RL02, which will load and start EDSAA.
Figure 6-4 shows the typical console response to this command. To
see the commands within EDSAA.COM, simply set the QUIET flag off
before typing the command. Once started, EDSAA displays the
standard disclaimer, program title, and revision information. It
then returns the DS> prompt to indicate it is ready to accept a
command. Figure 6-5 shows the commands contained within EDSAA.COM.

At this point, the console is operating in PIO mode and any input
typed will be passed to EDSAA for processing. By the same token,
any output from EDSAA will be passed on to the user's terminal by
the console software in the T-11.

This manual assumes the reader knows what to do from here. In
fact, most of the operation from this point on is generic and
works just like any other VAX system. Refer to the VAX Diagnostic
Supervisor User's Guide (EK-VXDSU-UG) for additional information
about operating the diagnostic supervisor. There is an extensive
on-line HELP facility in the diagnostic supervisor. Simply type
HELP at the DS> prompt and follow the directions. The HELP DEV
command is very useful for obtaining information about the VAX
macrodiagnostics available. Figures 6-6 through 6-8 show three
examples of how to use this command. Note how the information
displayed describes how to attach the device for testing.

Now let's continue with the job of actually running
macrodiagnostics.

)

>>>QEDSAA

VAX DIAGNOSTIC SOFPTWARE
PROPERTY OF

DIGITAL EQUIPMENT CORPORATION

##*CONPIDENTIAL AND PROPRIETARY***
Use Authorized Only Pursuant to a Valid Right-to-Use License
Copyright, Digital Equipment Corporation, 1985. All Rights Reserved.
DIAGNOSTIC SUPERVISOR. ZZ-EDSAA-Y8.2-214 20-AUG-1985 11:00:40
DS>

Figure 6-4 EDSAA Start-Up Display

>>>SHCOW EDSAA.COM/ASCII
1

! Version: 001.000
1 Load and start the diagnostic supervisor for Venus

INIT | Do basic initialization
SET SNAP OFF 1 Don't take snapshots
DEP CSWP 8 ! Turn off cache

CLEAR MEMORY 1 Clear blue sky
LOAD/START:0FEO0 EDSAA ! Load supervisor

DEP CSWP B 1 Turn on the cache

UNJAM ! Unjam all existant sbia's
INIT/CPU 1| Init the CPU

START 10000 1 Start supervisor

>>>

Figure 6-5 EDSAA.COM Command File

DS> HELP DEV KA86
Devices
KA86
Description: KA86 8600 central processor
link: HUB
Generic name: KAn
Additional information:
G-floating instructions? [Yes/No]
H-floating instructions? [Yes/No]
WCS last address? [(hex O0-FFFP]
Accelerator type? [decimal 0-255]
Tested by: EVKAA, EVKAB, EVKAC, EVKAD, EVKAE,
EVXBB

DS>

Fifgure 6-6 HELP DEV Command -- Display 1

DS> HELP DEV
Devices

As well as the “device-independent® p s required by the
ATTACE command for any device, most devices require device-
dependent information. Type "HELP DEVICE device-designator” for
information on a specific device, or "HELP DEVICE..." for a list
of all devices' requirements. If the device is not listed here,
it is known only within the diagnostic program(s) that use it;
type "HELP program DEVICE® for information on it (e.g., “HELP
EVRAA DEVICE").

Device parameters include the legal range of wvalues in square
brackets (e.g., "([decimal 4-7]" for BR lavel), and device
standard values in angle brackets (e.g., "<776750>" for the AAll

CSR) .
Additional information available:
AAllK AD11K CI750 Cc1780 CI_NODE
CR11 DHU11 DISK DMC11 DMF32A
DMF32P DMF328 DMP11 DMR11 DMz32
DN11 DR11E DR11C DR11K DR11W
DR750 DR780 DUP11 DW730 DW750
DW780 Dzll D232 IEULllA KA730
KA750 KA780 KA86 KMC11 KMS11
KMSYG KW1lK LA34 LA36 LA38
LA120 LA180 LNO1 LPO4 LPOS
LPO6 LP11 LP14 LP25S LPAllK
MA780 MBE ML11 MS8750 M8780
PCL11 R80 RA60 RASO RAS1
RB730 LESI RC2S RCF25 RH750
RH780 RKO6 RKO7 RK611 RLO1
RLO2 RL11l RMO3 RMOS RMBO
RPO4 RPOS RPO6 RPO7 RUXS0
RX02 RX180 RX31 RX32 RXS0
RX211 SBIA TE16 TMO3 TM78
TS11 TU4S TUSS TU77 TU78
TU8O TU81 UBE UDAS0 UNAll
VT50 VTS52 V55 vT100 vT101
VvT102 VT125 vT220 VT240

Figure 6-7 HELP DEV Command -- Display 2

DS> HELP DEV SBIA
Devices
SBIA
pescription: SBIA Synchronous Backplane Interconnect Adapter
links HUB
Generic name: SIn
Additional information:
The VAX 8600 supports a dual-sbi configuration. Each
SBI that exists must be attached to HUB as follows:

for SBIAO "ATTACH SBIA HUB SIO"
for SBIAl "ATTACH SBIA HUB SI1"

Next, any adapter such as DW780, DR780, RH780, or CI780,
is attached to either SIO, or SIl.

Special cases: DW780s should be attached to an 8600 as follows:

to SI0: DwWo, 1, 2, or 3
to SIl: DW4, S, 6, or 7.

WARNING: DWO and DW4 should not be attached to the same SBIA since
they translate to the same Unibus address space. Likewise for
DW1 and 5, DW2 and 6, and DW3 and 7.

Tested by: EDCLA

Figure 6-8 HELP DEV Command -- Display 3

6.3.3 Macrodiagnostics

Before EDSAA can load and run any VAX macrodiagnostics, it needs
to know something about the specific configuration. At this point,
all we have is a very smart control program, EDSAA, running in the
VAX CPU, but it knows nothing about the system configuration. To
illustrate this, try typing the SHOW DEVICE command. Probably
nothing much was displayed.

It's the job of EVSBA, a special VAX macroprogram running under
the diagnostic supervisor, to "size" the system. EVSBA finds out
what's there and sets up a configuration table within EDSAA that
establishes device-specific information (names, addresses, TRs,
etc.) that are required to run macrodiagnostics.

Figure 6-9 shows a typical response to the command that loads and
runs EVSBA. Setting the QUICK flag prior to invocation shortens
run time by skipping code that sizes all terminal lines. After
completion, EVSBA returns to the DS> prompt, and the SEL ALL and
SHOW SEL commands will instruct the supervisor to display a list
of the devices found. Only devices shown in this list can be
tested by the appropriate diagnostics. Let's look at a few
examples.

DS> RUN EVSBA
.. Program: EVSBA - AUTOSIZER LEVEL 3, revision 2.1, 3 tests,

at 11:13:09.74.
.. End of run, 0 errors detected, pass count is 1,

time is 20-AUG-1985 11:13:23.38
DS>

Figure 6-9 EVSBA Autosizer Display

Figure 6-10 shows the normal response to a command to run two
passes of the basic instruction exerciser macrodiagnostic, EVKAB.
Note how it was first run with the FBox OFF and then with the FBox
ON.

DS> SELECT ALL

DS> RUN/PASS:1 EVKAB)

«« Program: ZZ-EVKAB, VAX Basic Inst's Exrczr, revision 3.4, 161 tests,
at 11:15:00.68.

Testing: _KAO

Accelerator type 1 is disabled.

Accelerator type 1 is enabled.

«« End of run, 0 errors detected, pass count is 1,
time is 20-AUG-1985 11:16:43.46

DS>

Figure 6-10 EVKAB Display

Figure 6-11 shows the normal response to the command to run the
DW780 repair diagnostic (EVCBA).

DS> RUN/PASS:1 EVCBA
.. Program: 22 - EVCBA - DW 780 REPAIR DIAGNOSTIC, r .
Program: 13,74 , revision 1.1, 54 tests,
Testing: _DWO _DW2
UBA UNIT UNDER TEST IS DWO
NOTE - "“UBE"™ IS NOT IN THE SYSTEM HENCE NOT TESTING IT
UBA UNIT UNDER TEST IS DW2
NOTE - "UBE"™ IS NOT IN THE SYSTEM HENCE NOT TESTING IT
«. End of run, 0 errors detected, pass count is 1,
time is 20-AUG-1985 11:19:10.24
DS>

Figure 6-11 EVCBA Display

6-12

6.3.4 RL02 Resident Macrodiagnostics

There is a minimum set of VAX macrodiagnostics resident on the
RL02 disk pack for testing the VAX 8600 and VAX 8650 CPU and
system load paths. Table 6-2 lists these macrodiagnostics.

These macrodiagnostics, along with the rest of the VAX system
macrodiagnostics, will be installed in the [SYSMAINT] account on
the system disk to permit running on-line macrodiagnostics. Part
of the system installation involves creating this account and
copying the programs from magnetic tape to the system disk.

Table 6-2 RL0O2 Resident VAX Macrodiagnostics

Name Description

EDCLA.EXE DW780, CI780, DR780, RH780 SBI Exerciser
EDSAA.EXE VAX 8600 Diagnostic Supervisor

EDKAB. EXE) VAX Basic Instruction Exerciser
EVCAA.EXE RH780 Diagnostic

EVCBA.EXE DW780 Repair Diagnostic

EVCGA.EXE CI780 Repair Level Diagnostic Part 1
EVCGB.EXE CI780 Repair Level Diagnostic Part 2
EVCGC.EXE CI780 Repair Level Diagnostic Part 3
EVCGD.EXE CI780 Repair Level Diagnostic Part 4
EVGAA,.EXE CI780 Functional Diagnostic Part 1
EVGAB.EXE CI780 Functional Diagnostic Part 2
EVKAA.EXE VAX Hardcore Instruction Test

EVKAB. EXE VAX Basic Instruction Exerciser
EVKAC.EXE VAX Floating-Point Exerciser

EVKAD. EXE VAX Compatibility Mode Instructions Exerciser
EVKAE.EXE VAX Privileged Architecture Exerciser
EVMAA.EXE VAX Generic Tape Exerciser

EVMAB.EXE TM03-TE16/TU45/TU77 Function Timing Tests
EVMAC.EXE TM03-TE16/TU45/TU77 Control Logic Tests
EVMAE.EXE VAX TM78/TU78 Control Logic Diagnostic
EVMBB.EXE TU81 Front End/Host Functional Diagnostic
EVMBD.EXE VAX TU80 Functional Diagnostic Part 1
EVMBE.EXE VAX TU80 Functional Diagnostic Part 2
EVQTF.EXE TM78 Loadable Driver

EVQTM.EXE TMO03 TE16/TU77 Loadable Driver

EVQTS.EXE VAX TS1ll Standalone Driver

EVQUE.EXE VAX UBE Driver/UBE QIO Driver

EVRLA.EXE VAX UDA and RA Drive Diagnostic
EVRLB.EXE VAX RA60/RA80/RA81 Formatter

EVSBA.EXE Autosizer Level 3

EDKAX. EXE VAX 8600 CPU Cluster Exerciser

6.3.5 Booting the Operating System

Assuming that all the macrodiagnostics ran error-free, it should
be possible to bring up the operating system. The BOOT command
executes the commands found in the file DEFB0OO.COM on the RLO02.
Refer to the example in Figure 6-12.

The command file is system-specific and performs the following VMS
loading sequence.

1. Deposit information into the VAX CPU's GPRs to specify
the system load device.

2. Find the first 64 Kbytes of good memory.

3. Load VMB.EXE from the RL02 into VAX internal memory using
the address of the good memory.

4. sStart VMB, which will find, load, and start SYSBOOT.EXE
from the system disk.

5. Once started, SYSBOOT will load and start the VMS kernel.

6. VMS then executes its start-up command procedures and
eventually returns the Username: prompt to signal it's
"on the air" and ready to accept logins.

Figure 6-13 shows a typical example of booting VMS and logging in
to the field service account, [SYSMAINT]. After logging in, the
diagnostic supervisor may be run on-line to load and run on-line
diagnostics. Figure 6-14 shows an example of running
macrodiagnostics on-line.

6.4 SHUTTING DOWN VMS

The results from running on-line diagnostics may indicate a need
to bring the system down and run standalone diagnostics. To
ensure an orderly shutdown of the system, the system-specific
procedure should be run as shown in Figure 6-15. After the
procedure terminates, the user presses <CTRL/P> to return to CIO
mode, where the console responds with the macro context prompt,
>>>. The user must type the HALT command to halt the CPU.

Once back at the >>> prompt, the user can either run standalone
macrodiagnostics, or switch to diagnostic or microhardcore context
to run either microdiagnostics (Chapter 5) or microhardcore
(Chapter 4).

6.5 SUMMARY

VAX macrodiagnostics provide functional testing of the VAX CPU,
and I/0 controllers and devices. They may be run standalone or
on-line, generally under the control of EDSAA, the VAX 8600
diagnostic supervisor. Running the macrodiagnostics is the final
step in the bottom-up test procedure. Chapter 7 will conclude with
a discussion of how to use the console command sets to perform
manual testing of the CPU.

)

351 CI PORT BOOT COMMAND FILE = CIBOO.COM

1

1 This CI port boot command file is set up to boot from a CI
>3>1 device; for example, a HSC based disk.

>>>1

>>1 It assumes the CI780 is on SBIA #0, the TR level of the CI780
1 is set to 14, the HSC node number is set to 15 and the disk's
>>>1 unit number is 0.

>0

1 If any of these assumptions are not true for your configuration,

>»»>1 you may still use this command file by entering the BOOT/NOSTART

>>>1 console command and then altering the appropriate register values

351 wheén the console command prompt reappears. Use the console
>>>1 command SHOW BOOT.HLP/ASCII to get more information on how to
>>1 use the BOOT/NOSTART command and R5 boot options.

1

>

>>>! Operating System Disk: CI DEVICE

>l

>>>1

>>>SET SNAP ON
>>>SET FBOX OFF

-

Enable ERROR_HALT snapshots
VMS will turn on Fbox

>>>INIT | SRM processor init

>>>UNJAM | UNJAM SBIAs, Enable Master SBI interrupts
>>>DEPOSIT CSWP 8 | Turn off the cache (VMS turns the cache on)
1

>>>DEPOSIT RO 20 | Device Type is CI780

>>>DEPOSIT Rl E
>>>DEPOSIT R2 P
>>>DEPOSIT R3 0
>>>DEPOSIT R4 0

>>>

>>>FIND/MEMORY
>>>EXAMINE SP
>>>LOAD/START:@ VMB
>>>START @

SBIA #0; TR number of the CI780 is 14

HSC port number 15

Unit number to boot from (in HEX)

Logical block number to boot from if RS bit 3 is set
Use RS for optional boot control flags

Locate a 64KB chunk of good memory

Display load address

Load VMB 200 bytes above the start of the good block
Start VMB at the load address

- o o b o b

Figure 6-12 Sample DEFBOO.COM Command File

>>>B0OOT

G 0B 00000200 ~
VAX/VMS Version X4.1 27-NOV-1984 22:29

PLEASE ENTER DATE AND TIME (DD-MMM-YYYY HH:MM) 29-AUG-1985
Username: FIELD
Password:

Welcome to VAX/VMS version X4.1 on node SLIMY

Last interactive login on Tuesday, 27-AUG-1985 13:32
Last non-interactive login on Wednesday, S5-JUN-1985 16:34

Figure 6-13 VMS Bootstrap Display

$ RUN EDSAA
VAX DIAGNOSTIC SOFTWARE
PROPERTY OF
DIGITAL EQUIPMENT CORPORATION
#CONFIDENTIAL AND PROPRIETARY*

Use Authorized Only Pursuant to a Valid Right-to-Use License
DIAGNOSTIC SUPERVISOR. 22-EDSAA- 8.0-203 29-AUG-1985 09:59:00
DS> @CONFIG
DS> SEL KAO
DS> RUN/PASS:2 EVKAB
.. Program: 2Z-EVKAB, VAX Basic Inst's Exrczr, revision 3.3, 161 tests,

at 10:00:11,16.
Testing: _KAOQ
.. First pass done, 0 errors detected, time is 29-AUG-1985 10:01:21.68
.+ End of run, 0 errors detected, pass count is 2,

time is 29-AUG-1985 10:02:31.80
DS>~C
$

Figure 6-14 On-Line Diagnostics Display

$ SHOW USERS
VAX/VMS Interactive Users
29-AUG-1985 10:06:57.04
Total number of interactive users = 1
Username Process Name PID Terminal
FIELD FIELD 0000010D OPAl:

$
$ @SYS$SYSTEM:SHUTDOWN
SHUTDOWN -- Perform an Orderly System Shutdown
How many minutes until final shutdown [0]:
Reason for shutdown (Standalone]:
Do you want to spin down the disk volumes (NO]?
Do you want to invoke the site-specific shutdown procedure [YES]?
Should an automatic system reboot be performed ([NO]?
When will the system be rebooted [later]:
Shutdown options (enter as a comma-separated list):
REBOOT_CHECK Check existence of basic system files
Shutdown options [NONE]):

.

System shutdown messages

SYSTEM SHUTDOWN COMPLETE - USE CONSOLE TO HALT SYSTEM

“P

?MCP-I-CPSRUN, CPU is still running

>>>HALT
CPU Stopped, INVOKED BY CONSOLE (CSM code 11)
PC 80008D7E

>>>

Figure 6-15 VMS Shutdown Display

CHAPTER 7
CONSOLE COMMAND SETS

7.1 INTRODUCTION

This chapter discusses the creative use of the console commands
during corrective maintenance. Certainly, there are going to be
situations where the user must go beyond the level of running
diagnostics as described in the last five chapters. The user must
know how to select and sequence specific sets of commands to
modify the test environment, and retrieve additional isolation
information not provided by the diagnostics.

There are over 100 commands divided into seven different groups,
shown below.

1. The PROM Commands

2. The EDOBA Commands

3. The General Command Set

4. The Microhardcore Command Set

5. The Macro Command Set

6. The Diagnostic Context Command Set
7. The HEX Debugger Command Set

How does the user pick and choose the commands needed to perform a
particular function? The following sections demonstrate typical
examples of how to select the right command set for the
maintenance function required. This material is organized in the
same sequence as the preceding five chapters, beginning with the
PROM commands and working up to the macrodiagnostics.

7.2 PROM COMMAND SET

Once at the ROM> prompt, the user has access to a limited command
set that permits some manual testing of the console module. The
following commands may prove useful in gathering additional
troubleshooting information related to solid console hardware
problems.

1. D -- deposit data into T-1l1 address space

2. E -- examine data in T-11 address space

3. Q -- deposit data into the Q-Bus registers for the RLO2
4. R -- examine data in the Q-Bus RL02 registers

5. S -- start a T-11 routine deposited into T-11 RAM

Figure 7-1 shows several examples of how to use deposit/examine
sequences to test the console. Note that locations 000 through 156
in T-11 RAM cannot be altered by the DEPOSIT command. These
locations contain system vectors that are protected by the PROM
code. It is important to remember that depositing short T-11 test
routines in the RAM and starting them with the S5 command is of
limited value, since the user has no control of the routine after
it starts running. The only way to get out is to power down the
system and power back up again to get back to the PROM command
interpreter.

In most cases, replacing the console module will resolve console
hardware problems. If this does not work, the user may need to use
the console commands to perform further isolation.

>>>PROM
PROM restart -- confirm (Y/N) Y

?T11 HLT)

?REGS 140210 000102 000211 040346 045126 045706 000740 000162 000000
ROM>E 150

000150 /172010

ROM>D 150 0

ROM>E 150
000150 /172010

ROM>E 300
000300 /012345

ROM>D 300 0

ROM>E 300
003000 /000000

ROM>R 174400
174400 /000205

ROM>E 174402
174402 /040764

ROM>Q 174402 2

ROM>E 174402
174402 /000002

ROM>

Figure 7-1 PROM Command Examples

7.3 EDOBA DIAGNOSTIC

EDOBA provides a set of program switches that permit the user to
modify the execution of the program during troubleshooting. These
switches, along with the control keys <CTRL/G>, <CTRL/P>,
<CTRL/C>, <CTRL/S>, and <CTRL/Q>, can be used to perform the
following diagnostic functions.

b

1. Exit to the ROM> prompt

2. Restart EDOBA at location 200(8)

3. Stop and start the output display

4. Exit subtest error loops

5. Loop on a failing subtest

6. Inhibit error output

7. Trace program flow by displaying test headers

8. Inhibit test iterations to speed up execution

9. Loop on any selected test number

10. Exit to the switch register prompt at the end of the
current test

Figure 7-2 illustrates how to use the TRACE option and Figure 7-3
shows how to loop on a selected test.

ROM>T

EDOBA V35S (25-Jun-1985)
CONFIDENTIAL DIAGNOSTIC SOFTWARE
PROPERTY OF
DIGITAL EQUIPMENT CORPORATION

Use Authorized Only Pursuant to a Valid Right-to-Use License

0 ERRORS DETECTED; 0 TOTAL ERRORS AFTER PASS # 1
0 ERRORS DETECTED; 0 TOTAL ERRORS AFTER PASS § 2
ROM>S 200

EDOBA V35 (25-Jun-1985)
SWR = 000000 NEW = 100000

BEGIN TEST #000001
BEGIN TEST #000002
BEGIN TEST #000003
BEGIN TEST #000004
BEGIN TEST #000005
BEGIN TEST #000006
BEGIN TEST #000007
IGNORE TEST #000010
IGNORE TEST #000011

.

IGNORE TEST #000036
IGNORE TEST #000037
BEGIN TEST #000040
BEGIN TEST #000041
IGNORE TEST #00042
BEGIN TEST $000043°G

SWR = 010000 NEW = P
ROM>

Figure 7-2 EDOBA Trace Switch Option

7-3

ROM>S 200

EDOBA V35 (25-Jun-1985)
SWR = 000000 NEW = 11043

BEGIN TEST #000001
BEGIN TEST $#000002
BEGIN TEST $#000003
BEGIN TEST #000004
BEGIN TEST $000005
BEGIN TEST #000006
BEGIN TEST $#000007
IGNORE TEST #000010
IGNORE TEST #000011

IGNORE TEST #000036
IGNORE TEST #000037
BEGIN TEST #000040
BEGIN TEST $#000041
IGNORE TEST #00042
BEGIN TEST #000043

Figure 7-3 EDOBA Test Select Switch Option

7.4 MICROHARDCORE CONTEXT

EDKAA provides a set of program switches that allow the user to
modify execution during troubleshooting. These switches provide
the following options.

1. Modify the action of the program when a fault is detected
2. Control the volume of output when a fault is detected

3. Select a specific range of tests to be run

4. Control the number of passes made by the diagnostic

Figure 7-4 shows how to use the /MODE:QUIET switch to inhibit all
output except ERROR and END OF PASS messages. Figure 7-5 shows how
to use a combination of the /MODE:QUIET, /NUMBER:, and /PASS:
switches.

MH>STARTC/PRINT_MODE:QUIET

PASS COUNTER = 00001, # OF ERRORS = 00000, TOTAL # OF ERRORS = 00000
MH>STARTC/PASS: 3/PRINT_MODE:QUIET

PASS COUNTER = 00001, ¥ OF ERRORS = 00000, TOTAL # OF ERRORS = 00000
PASS COUNTER = 00002, # OF ERRORS = 00000, TOTAL # OF ERRORS = 00000
PASS COUNTER = 00003, # OF ERRORS = 00000, TOTAL # OF ERRORS = 00000
MH>

Figure 7-4 MHC Quiet Mode Switch Option

MH>STARTC/PASS:2/NUMBER: 2 3
PASS COUNTER = 00001, § OF ERRORS = 00000, TOTAL § OF ERRORS = 00000
PASS COUNTER = 00002, § OF ERRORS = 00000, TOTAL # OF ERRORS = 00000
MH>

MH>STARTC/PRINT, HOD!:V!RBOSB/PASSxJ/NUHBBl 25

CLK - (C-2) L0217 (CLK) SDB shift chain LOAD function [OK])

CLK - (C=3) L0217 (CLK) Vis Mux Selects [OK]

CLK - (C-4) L0217 (CLK) Vis data and LD_FUNC_REG_B {OK]

CLK - (C-5) L0217 (CLK) Load Prequency Reg [OK)

PASS COUNTER = 00001, # OF ERRORS = 00000, TOTAL # OF ERRORS = 00000
CLK - (C-2) L0217 (CLK) SDB shift chain LOAD function [OK]

CLK - (C-3) L0217 (CLK) Vis Mux Selects [OK]

CLK = (C-4) L0217 (CLK) Vis data and LD_FUNC_REG_B (OK]

CLK - (C-5) L0217 (CLK) Load Frequency Reg [OK]

PASS COUNTER = 00002, # OF ERRORS = 00000, TOTAL # OF ERRORS = 00000
CLK - (C-2) L0217 (CLK) SDB shift chain LOAD function [OK]

CLK - (C-3) L0217 (CLK) Vis Mux Selects [OK]

CLK - (C-4) L0217 (CLK) Vis data and LD_FUNC_REG_B [OK]

CLK = (C=5) L0217 (CLK) Load Frequency Reg [OK]

PASS COUNTER = 00003, # OF ERRORS = 00000, TOTAL # OF ERRORS = 00000
MH>

Figure 7-5 MHC Test Number Selection Switch Option

7.5 DIAGNOSTIC CONTEXT

This section discusses several ways to use the console command
sets to modify operation of the microdiagnostics. There will be
occasions when the nature of the fault causes the microdiagnostic
to misbehave or fail to adequately identify the source of the
problem. What does the user do then? The following paragraphs
describe how to use the console command sets' power to retrieve
additional troubleshooting information that will aid in fault
isolation.

7.5.1 Defining and Adding Trace Items

Before discussing how to actually single step a failing microtest,
the user needs to learn how to define additional SDB registers and
how to add these registers and other SDB signals to the trace list
used to retrieve data when the user microsteps the CPU.

The following examples show how to use the TRACE commands. Figure
7-6 illustrates how to use the SHOW DEFINE command to determine
how an existing register is defined. Note that the display
provides the following information.

1. A one-liner that gives the register ID (8035), the name
(PSL) , and the number of bits

2. One or more 1lines of wvisibility ID numbers (E117,
Cll13,.¢00., XXXX,...9167) where the E117 is the MSB and
the E9167 is the LSB

NOTE
The "xxxx" signifies an wunused bit
position.

DC>>SHOW DEFINE

DC>>SHOW DEFINE PSL
8035 PSL 21.
E117 C113 E112 E152 Al44 Al162 XXXX XXXX D125 D127 D126 D131
D130 XXXX XXXX C109 XXXX 9171 9172 9168 9167

DC>>

Figure 7-6 SHOW DEFINE Command Display

To use the visibility ID numbers in other commands, the characters
"V$" must precede them (i.e., V$E11l7 for the MSB). When we want to
define a register, the reverse procedure is used (remove the "V§"
and use only the number).

Figure 7-7 shows another example (using the EXAM/SDB command) to
examine a signal using the visibility ID. Note how the "V$" was
added, as previously explained. Note, also, how the user must stop
the CPU clock before examining the SDB. If the user forgets, the
console software will display a polite reminder.

DC>>SHOW NAME VSE117 .
1CA1 VSE11l7 EBB PSL CM TO CSB H
DC>>

Figure 7-7 SHOW NAME Command Display

Figure 7-8 shows the REPORT command's typical response which
displays the items in the currently defined trace list. The
example happens to show the default list, but that can be amended,
as the next paragraph will show.

DC>>REPORT

Registers: .
OPMCP_:000000000001 OPCODE:000000000011 OPBUS_:0000FFFFFF82
EVABUS:000000000000 EDPPE_3:00008000002P eBPLSH100000000001C
WBUS__:0000C10258B1 REGBUS :000000000000 PAMM__ :000000000005
PAMD 2000000841000 MEMREQ:000000108100 ARBUS_:000000000000
ARADR_:00000147E200 ABUS__:000F00000000 STALL_:000000FF0000
NATRAM:000000000592 MDBUSN:00000621F000 MDBUST:00000621F000
IOPSEL:000000000000 INCR__ 3000000000010 IBUF__300000000F000
IBDBUF:0000016EFF06 1vABU5:000000000003 DBUS__:00007FFFD797
FABUS_:0000FFFFFFFF

Hi sigs:
V$C216 -MCC MD RESP A H V$6208 ICA LID ISTALL H

Lo sigs:
V$C169 MCC DEST CODE 0 H

DC>>

Figure 7-8 REPORT Command Display

Figure 7-9 shows how to add additional registers to the trace list
with the TRACE ADD command and how to use the REPORT command to
verify that it took place. By the way, there are many more
predefined registers in the console software (PSL IUPC, EUPC,
etc.) which can be added when needed. For a list of these
predefined registers, simply use the SHOW REGISTER command.
Appendix E contains a complete description of all the predefined
SDB registers.

DC>>TRACE ADD PSL IUPC EUPC

DC>>REPORT
Registers:
OPMCF_:000000000001 OPCODE:000000000011 OPBUS_:0000FFFFFF82
EVABUS:000000000000 EDPPE_:00008000002F EBPLSH:00000000001C
* WBUS__:000060125A23 REGBUS': 000000000000 PAMM___:000000000005
PAMD___:000000841000° MEMREQ:00000010B100 ARBOS_:000000000000
ARADK_:00000147E200 ABUS__ :000£00000000 STALL_ :000000FF0000
NATRAN:000000000592 MDBUSH:00000621F000 MDBUST:00000621F000
IOPSEL:000000000000 INCR__:000000000010 IBUF___:00000000F000
IBDBUF:0000016EFFO06 1VABUS:000000000003 DBUS_:00007FFFD797
PABUS_:0000FFFFFFFF PSL___ :000000080024 IUPC__:00000000002D
* EUPC__:000000000432
Hi sigs:
V$C216 -MCC MD RESP A H V$6208 ICA LID ISTALL H
Lo sigs:

V$C169 MCC DEST CODE 0 H
DC>>

Figure 7-9 TRACE ADD Command Display

Figure 7-10 shows the quickest way to restore the trace list to
its default values using the TRACE RESTORE command. Note how the
REPORT command shows how PSL, EUPC, and IUPC are taken out.

DC>>TRACE RESTORE

DC>>REPORT
No previous trace data available
Registers:
* OPMCF_:000000000001 * OPCODE:1000000000011 * OPBUS_:0000FFFFFF82
EVABUS:000000000000 * EDPPE_:000080000028B * EBFLSH:00000000001C
* WBUS__:0000915099A3 REGBUS:000000000000 * PAMM__:000000000005
* PAMD__ :000000841000 * MEMREQ:00000010B100 ARBUS_:000000000000
* ARADR_:00000147E200 * ABUS__ :000F00000000 * STALL_:000000FF0000
* NATRAM:000000000592 * MDBUSM:00000621F000 * MDBUST:00000621F000
IOPSEL31000000000000 * INCR__:000000000010 * IBUF__:00000000F000
* IBDBUF:0000016EFF06 * IVABUS:000000000003 * DBUS__:00007FFFD797
* FABUS_:0000FFFFFFFF -
Hi sigs:
* V$C216 -MCC MD RESP A H * V$6208 ICA LID ISTALL H
Lo sigs:

V$C169 MCC DEST CODE 0 H

Figure 7-10 TRACE RESTORE Command Display

Now, suppose the user needs to define a specific set of SDB
signals to watch while tracing a failing microdiagnostic. How is
it done? First, the user jots down the names of the signals to be
retrieved, probably from the logic drawings. The next step could
be to use the EXAMINE/SDB command with signal name argument, which
will display the state of the signal along with its visibility ID.
Another alternative could be to use the files on the RL02. Figure
7-11 shows the procedure. The SHOW file command is first used to
get the names of the signal files in CONFIG.DAT. It's used again
to display the signal file(s) for the module(s) that contain the
signals to be retrieved. The next example will use the circled
signals shown in Figure 7-12 as an example for defining registers
and adding them to the trace list.

DC>>SHOW CONFIG.DAT/ASCII
1 SDB Cad information files for M5 machines.
! Version: 003.000
! Released: December 21, 1985
C5

CLKC03.CDF ICLK
CSAB02.CDF ICSA B2
CSBB02.CDF 1CSB B2
EBCCO0S.CDF 1EBC CS
EBDD02.CDF {EBD D2
EBEB02.CDF |EBE B2
EDPC02.CDF 1EDP C2
FBABO1.CDF IFBA E7
FBMCO1.CDF IFBM C5
IBDF05.CDF {IBD FS
ICAHO02.CDF 1ICA H4
ICBFO1.CDF {ICB FS
IDPF02.CDF {IDP F4
MAPD02.CDF IMAP D2
MCCKO1.CDF IMCC K1
MCDDO4.CDP IMCD D4
MTMBO1.CDF IMTM Bl
1VBAAOL1.CDF IVBA Al (SBI VISIBILITY MODULE #1)
{VBBAO1.CDF IVBB Al (SBI VISIBILITY MODULE #2)
DC>>
Figure 7-11 Displaying the CONFIG.COM File

DC>>SHOW MAPD02.CDF/ASCII

;CHASER Version 1(31)-1, 21 January 1984. Sources in LSCAD:<SDB>
/CADIF-VERSION/ 3(5)

/SuUDS-SDB/ 1(2)

$SUDS-CHANNEL-TO-SIGNAL

13000 v$B197 ABUS DATA ADDRS 26 H
13001 V$B198 ABUS DATA ADDRS 25 H
13002 V$B199 ABUS DATA ADDRS 27 H
13003 V$B200 ABUS DATA ADDRS 23 H
13004 V$SB201 EDP EVA A25 H

13005 V$B202 1IVA BUS 29 H

13006 V$B203 ABUS DATA ADDRS 30 H
13007 V§B204 ABUS DATA ADDRS 21 H

13010 V$B233 -MCCB M ABUS LAT LD H
13011 V$B151 -MCC6 PHYS REF H
13012 (¥$B227) -MCC7 PA LAT LD H
13013 V$B142 -MCC7 WRITE LRU H
13014 V$B156 -MCC7 WRITE CACHE EN A H
13015 (V3BI54) MCCB M PA MUX SEL 1 H
13016 (V§B155) MCCB M PA MUX SEL 0 H
13017 V$B234 -MCCA RFL LAT LD H
13020 V$B146 EDP EVA Al3 H

13021 V$B143 EDP EVA Al4 H

13022 V$SB144 EDP EVA All H

13023 v$B145 EDP EVA Al2 H

13024 V$B1l47 1IVA BUS 14 H

13025 V$B162 EDP EVA A0O A R

13026 V$B148 1IVA BUS 12 H

13027 V$B149 1IVA BUS 13 H

13040 VSB122 EDP EVA Al7 H

13041 VSB123 EDP EVA A20 H

13042 V$B124 1IVA BUS 17 H

13043 V$B138 ABUS DATA ADDRS 17 H
13044 V$SB126 EDP EVA Al9 H

13045 V$B136 ABUS DATA ADDRS 16 H
13046 V$B127 ABUS DATA ADDRS 11 H
13047 V$B128 ABUS DATA ADDRS 28 H
13050 V$B100 MCDM ECC CORR ERROR H
13051 V$B232 MCCE U CLR CSH WV H
13052 V$Bl12 EDP EVA A30 H

13053 V$B223 1IVA BUS 30 H

13054 V$B105 MCCS5 VAL 2 REQ H
13055 V$B104 MCCS VAL 1 REQ H
13056 V$B107 MCCS VAL 3 REQ H
13057 V$Bl06 MCC5 VAL 0 REQ H
13060 V$B160 1IVA BUS 31 H

13061 V$B226 MCCM HLD ERR ADR REG H
13062 V$SB109 MCC6 VIRT REF H

13063 V$B222 EDP EVA A31 H

13064 V$B229 -MCC6 EBOX 1ST CYC H
13065 V$B230 MCCS5 CP CYC H

13066 MCCB M PA MUX SEL 2 H
13067 V$B231 MAPC PA 04 BUF C H
13100 VSB239 MCCA M ABUS DR EN H
13101 V$SB240 ~MAPN LD CLK3 TIC B H
13102 V$B110 -MAPN CLK6 PHASE T1D H
13103 Vv$Bl111l MCCJ CYC TYP MAP 1 H
13104 V$B102 MCCJ CYC TYP MAP 0 H
13105 V$B101 MCCJ CYC TYP MAP 2 H
13106 VSB224 MCC8 HLD START LAT B
13107 V$B113 MAPN LD CLK3 TIA C H
~c

?DCN-I-CCABRT, “C abort

DC>>

-

Figure 7-12 Displaying an SDB Signal Name File

7-9

Figure 7-13 shows how to define a new register called "PAMUX"
using the TRACE DEFINE command and how to verify it with the SHOW
DEFINE command.

DC>>TRACE DEFINE PAMUX
Enter V§ terms separated with <sp> or <,>
B157- B154 B155

B9A8 PAMUX 3.
DC>>SHOW DEFINE PAMUX

B9A8 PAMUX 3.

B157 B154 B1S5S
DC>>

Figure 7-13 Defining a New SDB Register

Figure 7-14 shows the use of REPORT to verify that PAMUX was
automatically added to the current trace 'list, while Figure 7-15
shows how to remove PAMUX when done. Remember, though, it's still
defined and can be added back later.

DC>>REPORT
Registers:
OPMCF_:000000000001 OPCODE :000000000011 OPBUS_:0000FFFFFF82
EVABUS1000000000000 * EDPPE_:00008000002F EBFLSH:00000000001C
* WBUS__:00008218E082 REGBUS':000000000000 PAMM__:000000000005
PAMD__:000000841000 MEMREQ: 000000108100 ARBUS_:000000000000
ARADR_:00000147E200 ABUS__:000F00000000 STALL_:000000FF0000
NATRAM:000000000592 MDBUSM:00000621F000 MDBUST:00000621F000
IOPSEL:000000000000 INCR__:000000000010 IBUF__:00000000F000
IBDBUF:0000016EFF06 1vABUS:000000000003 DBUS__:00007FFFD797
FABUS_:0000FFFFFFFF PAMUX_:000000000004
Hi sigs: -
V$C216 -MCC MD RESP A H V$6208 ICA LID ISTALL H
Lo sigs:
V$C169 MCC DEST CODE 0 H
DC>>
Figure 7-14 REPORT Display to Show Defined Register

DC>>

Lo sig

DC>>TRACE REMOVE PAMUX

FABUS_:0000FFFFFFFF

Hi sigs:
V$C216 -MCC MD RESP A H

V$C169 MCC DEST CODE 0 H

DC>>REPORT
Registers: .
OPMCF_:000000000001 OPCODE:000000000011 OPBUS_:0000FFFFFF82
EVABUS:000000000000 EDPPE_:00008000002F EBFLSH:00000000001C
* WBUS__:00009D619966 REGBUS:000000000000 PAMM__ ;000000000005
PAMD__:000000841000 MEMREQ: 000000108100 ARBUS_:000000000000
ARADR_:00000147E200 ABUS__:000F00000000 STALL” :000000FF0000
NATRAM:000000000592 MDBUSHM:00000621F000 MDBUST:00000621F000
IOPSEL:000000000000 INCR__:000000000010 IBUF__:00000000F000
IBDBUF:0000016EFF06 1vaBUS:000000000003 DBUS__:00007FFFD797

V$6208 ICA LID ISTALL H

Figure 7-15

TRACE REMOVE Command Display

7-10

)

The following examples show how to add SDB signals to the trace
list. Figure 7-16 shows adding PAMUX back. Figure 7-17 shows how
to add the SDB signal known by the SDB visibility ID as V$B227
(-MCC7 PA LAT LD H). How is this done? Look back at Figure 7-12.
Note how the REPORT command in Figure 7-17 shows that both PAMUX

and -MCC7 PA LAT LD H have been added.

DC>>TRACE ADD PAMUX

V$C169 MCC DEST CODE 0 H
DC>>

DC>>REPORT

Registers:
OPMCP_:000000000001 OPCODE : 000000000011 * OPBUS_:0000PFPFFFF82
EVABUS:000000000000 EDPPE_:00008000002F EBFLSH:00000000001C

* WBUS__:00000C6123D4 REGBUS:000000000000 PAMM__ :000000000005

PAMD__:000000841000 MEMREQ:000000108100 ARBUg::OOOOOOOOOOOD
ARADR_:00000147E200 ABUS___:000F00000000 STALL_:000000FF0000
NATRAM:000000000592 MDBUSM:00000621F000 MDBUSI:00000621F000
IOPSEL:000000000000 INCR__:000000000010 IBUF__:00000000F000
IBDBUF:0000016EFF06 IVABUS:000000000003 DBUS___:00007FFFD797
FABUS_:0000FFFFFFFF PAMUX_:000000000004

Hi sigs:
V$C216 -MCC MD RESP A H V$6208 ICA LID ISTALL H

Lo sigs:

Figure 7-16 Adding a Defined SDB Register

DC>>TRACE ADD V$B227

DC>>REPORT

Registers:
OPMCF_:000000000001 OPCODE:000000000011 OPBUS_:0000FFFFFF82
EVABUS:000000000000 EDPPE_:00008000002F EBFLSH:00000000001C

* WBUS__:000043849E3A REGBUS:000000000000 PAMM__ :000000000005

PAMD__ :000000841000 MEMREQ:000000108100 ARBUS_:000000000000
ARADK::OOOOOI‘?BZOO ABUS___:000F00000000 STALL_:000000FF0000
NATRAM: 000000000592 MDBUSM:00000621F000 MDBUSI:00000621F000
IOPSEL:000000000000 INCR__ :000000000010 IBUF__:00000000F000
IBDBUF:0000016EFF06 1vABTS:000000000003 DBUS___:00007FFFD797
FABUS_:0000FFFFFFFFP PAHUX_!000000000004

Hi sigs:
V$C216 -MCC MD RESP A H V$6208 ICA LID ISTALL H

Lo sigs:
V$C169 MCC DEST CODE 0 H V$B227 ~-MCC7 PA LAT LD H

DC>>

Figure 7-17

Adding an SDB Signal Name

7.5.2 Microstepping a Microdiagnostic

Microdiagnostics have the general structure shown in Figure 7-18.
They consist of a set of microtests that run out of the EBox
control store. Each test consists of a set of microinstructions in
which each microinstruction is executed in four time states. The
console software allows the user to control the sequence at each
level with commands that do the following.

1. Single step a diagnostic one test at a time
2. Single microstep a test one microinstruction at a time

3. Single clock a microinstruction one time state at a time
TEST 1 m
TEST 2 u2
T0
TEST 3 M3
T
TEST4 A
T2
J;) b S 3
o P ,, \
TEST n—1 wn—1)
TEST n un
MICRODIAGNOSTIC PROGRAM MICRODIAGNOSTIC TEST ONE MICROINSTRUCTION
CONSISTING OF “n” TESTS CONSISTING OF “n" CONSISTING OF FOUR
MICROINSTRUCTIONS TIME STATES

SECONDS MICROSECS NANOSECS

MR-15417

Figure 7-18 Microdiagnostic Program Structure
The first step in microstepping a failing microdiagnostic test to
trace the operation of each microinstruction is to stop the CPU at

the beginning of the microtest. This section explains the

procedure, using the FBox microdiagnostic EDK1A (test 1) as an
example.

To stop on an EBox micromark, type the following three commands.
1. Use SET SOMM ON to enable stopping.

2. Use DEP/MARK/ECS adr ON to deposit the mark bit in the
EBox control store.

3. Use START to start the microdiagnostic.

Figure 7-1Y9 shows how to use @EDKIA to load the microdiagnostic
and SHOW FLAGS to verify that SOMM is ON. It also shows how to
deposit the mark bit in location 801 to stop at the start of test
1. Location 801 in the EBox control store contains a GO TO
microinstruction that transfers control to the start of test 1.
Refer to Appendix C for a description of the microdiagnostic
dispatch table. Location 8nn contains the dispatch address for
test nn. After setting the breakpoint, the START command gets
things rolling until the micromark is sensed and the CPU stops, as
shown at the end of Figure 7-19. Note that if the SHOW FLAGS
command indicated that the SOMM flag was OFF, the user needs to
use the SET SOMM ON command to set the flag.

DC>>@EDK1A

DC>>SHOW FLAGS
ABOrt on
ABUS off
Base off
cold off
Exti orf
Fbox of £
Iosafe of
Local of
Memena on
Quiet on
SOmm off.
SNap on
STxalt off
Warm off

DC>>STOP CPU
DC>>DEP/MARK/ECS 801 ON
DC>>START CPU P
DC>>SET SOMM ON:~
DC>>SHOW FLAGS “

ABOrt on
ABUs off
Base off
cold off
Exti on
Fbox off

Iosafe off
Local off
Memena on

Quiet on
SOmm on Ecs
SNap on
STxalt off
Warm off
DC>>START
7DCP-E-BADMWD, stop on umark bit
DC>>
Figure 7-19 Setting a Micromark Breakpoint

NOTE

At full clock speed, the microsequencer
stops two microinstructions beyond the
mark. If it's necessary to stop on the
spot of the mark, use the SET CLOCK
ONE-FIFTH command to slow things down.
This is a design 1limitation of the
machine hardware.

Figure 7-20 shows how to use the MIC command and space-bar mode to
step the microdiagnostics through two microsteps. Note how the
micromark break stopped the clock with the EBox micro-PC at
location 081B, not 0801. After executing one microinstruction, DCP
enters space-bar mode with the DC>> prompt at the end of the line.
Successive microinstructions may be executed from here by pressing
the space bar. To exit space-bar mode, simply press <RETURN> to
get to the normal DC>> prompt. Note that the only information
displayed by the MIC command is the micro-PCs in all the boxes.

DC>>MIC

MBOX=0018 EBOX=081B FBOXA=00SF FBOXM=001D IBOX=002D DC>>
MBOX=0018 EBOX=081C FBOXA=00SF FBOXM=001D IBOX=002D DC>>
DC>>

Figure 7-20 MIC Command Display

Figures 7-21 and 7-22 illustrate use of the TMIC command and
space-bar mode to microstep the program and display a trace list
at the end of each step. Like the MIC command, simply press the
space bar to proceed to the next microinstruction. TMIC is
essentially the same as a MIC command followed by a REPORT
command. It provides much more information than the current
micro-PCs, including most of the key SDB registers and three SDB
signals. Note that the "*" in the display indicates either a
change in signal state or the value of an SDB register.

DC>>TMIC
Tracing from counts 0 (0.)

Micro-cycle count: 1 (1.) Phases T3
Micro PC's:
E:081E M:0018 1:002D FA:005F FM:001D

Registers:
OPMCF_3000000000001 OPCODE: 000000000011 OPBUS_:0000FFFFFF82
EVABUS:000000000000 EDPPE_:00018000002P EBPLSH:00000000001C
WBUS___:000000000000 REGBUS 1000000000000 PAMM__ :000000000005
PAMD 3000000841000 MEMREQ:000000108100 ARBUS_:000000000000
ARADR 300000147E200 ABUS__ :000F00000000 STALL_:000000FF0000
NATRAM: 000000000592 MDBUSH:00000621F000 MDBUST:00000621F000
IOPSEL:000000000000 INCR :000000000010 IBUF__:00000000F000
IBDBUF : 000001 6EFFO6 IVABUS:000000000003 DBUS__:00007FFFD797
FABUS_:0000FFFFFFEF PAMUX_3:000000000004

Hi sigs:
V$C216 -MCC MD RESP A H Vv$6208 ICA LID ISTALL H

Lo sigs:

Vv§C169 MCC DEST CODE 0 H
SBSMDC>>
Tracing from count: 1 (1.)

V$B227 -MCC7 PA LAT LD H

Micro-cycle count: 2 (2.) Phase: T3
Micro PC's:
E:083A M:0018 I:0020 FA:005P FM:001D
Registers:
OPMCF_:000000000001 OPCODE 000000000011 OPBUS_:0000FFFFFF82
EVABUS:000000000000 EDPPE_:00018000002F EBFLSH:00000000001C
WBUS__:000000000000 REGBUS:000000000000 PAMM__ :000000000005
PAMD_ 2000000841000 MEMREQ:000000108100 ARBUE::DOOOOOOOOOOO
ARADR_:00000147E200 ABUS__:000F00000000 STALL_:000000FF0000
NATRAN3:000000000592 MDBUSH: 00000621F000 MDBUST :00000621F000
IOPSEL:000000000000 INCR___:000000000010 1BUF__:00000000F000
IBDBUF:0000016EFF06 1VABUS:000000000003 DBUS___:00007FFFD797
FABUS_:0000FFFFFFFF PAMUX_:000000000004
Hi sigs:
V$C216 -MCC MD RESP A H V$6208 ICA LID ISTALL H
Lo sigs:
V$C169 MCC DEST CODE 0 H V$B227 -MCC7 PA LAT LD H
SBSMDC>>
Figure 7-21 TMIC Command -- Display 1

Tracing from count: 2 (2.)
Micro-cycle count: 3 (3.) Phase: T3

Micro PC's:
E:083B M:0018 1:002D FA:005F FM:001D

Registers:
OPMCFP_:000000000001 OPCODE:000000000011 OPBUS_:0000FFFFFF82
EVABUE:000000000000 EDPPE_:00018000002F EBFLSH:00000000001C
WBUS___:000000000000 REGBUS:000000000000 PAMM__:000000000005
PAMD _:000000841000 MEMREQ:00000010B100 ARBUS_:000000000000
ARADR_:00000147E200 ABUS__:000F00000000 STALL_:000000FF0000
NATRAM:000000000592 MDBUSM:00000621F000 MDBUST:00000621F000
IOPSEL:000000000000 INCR__:000000000010 IBUF___:00000000F000
IBDBUF:0000016EFF06 1vABU5:000000000003 DBUS__:00007FFFD797
PABUS_:0000FFFFFFFF PAMUX_:000000000004 -

Hi sigs:
V$C216 ~MCC MD RESP A H V$6208 ICA LID ISTALL H

Lo sigs:
V$C169 MCC DEST CODE 0 H V$B227 -MCC7 PA LAT LD

SBSMDC>>

DC>>LUPC/ECS 0

DC>>START CPU

DC>>SET SOMM OFF

DC>>START

“T

Running diagnostic - EDK1A

Test §# = 7 & alive byte = 27

ggg of pass - EDK1A - start test §1 - end test #17
>

Figure 7-22 TMIC Command -- Display 2

Figure 7-23 summarizes the entire operation from the time the user
types DIAG to enter diagnostic context, until using TMIC with the
first microinstruction after the stop on micromark. Let's assume
that the next thing the user wants to do is to single clock time
states for the microinstruction in location 081C, which is the
next microinstruction. How is this done? Look at the E:081C in the
trace display in Figqure 7-23.

Finally, Figures 7-24 through 7-27 show how to use TSTATE in
space-bar mode to trace the next four time states. Figure 7-28
shows how to use MIC to display four more microinstructions and
exit space-bar mode. Figure 7-28 also shows the procedure for
restarting DSM and the CPU clock after a microstepping sequence.
It then shows how to turn off the SOMM feature.

It is important to remember the following sequence of commands if
the wuser wishes to exit space-bar mode and continue a
microdiagnostic. Jot them down.

1. LUPC/ECS 0 -- restarts DSM

2. START CPU -- turns on the CPU CLOCK

3. SET SOMM OFF -- disables Stop On Micromark (SOMM)
4. START -- restarts the diagnostic

MHE>DIAG
CONPIDENTIAL DIAGNOSTIC SOFTWARE
PROPERTY OF
DIGITAL EQUIPMENT CORPORATION
Use Authorized Only Pursuant to a Valid Right-to-Use License
Initializing DC
DC>>@EDK1A
DC>>SET SOMM ON
DC>>STOP CPU
DC>>DEP/MARK/ECS 801
?DCN-W-PARSER, invalid command
DC>>DEP/MARK/ECS 801 ON
DC>>START CPU
DC>>START
2DCP-E-BADMWD, stop on umark bit
DC>>MIC
MBOX=0018 EBOX=081B FBOXA=005F FBOXM=001D IBOX=002D DC>>
DC>>TMIC
Tracing from count: 0 (0.)
Micro-cycle count: 1 (1.) Phase: T3

Micro PC’'s:
E:081C M3:0018 I:002D PA:00SPF FM:001D

Registers:
OPMCF_:000000000001 OPCODE : 000000000011 OPBUS_:0000FFFFFF82
EVABUT:000000000000 EDPPE_:00018000002F EBFLSH:00000000001C
WBUS__:000000000000 REGBUS:000000000000 PAMM__ 3000000000005
PAMD__ 3000000841000 MEMREQ:000000108100 ARBUS_:000000000000
ARADR_:00000147E200 ABUS___:000F00000000 STALL_:000000FF0000
NATRAM:000000000592 MDBUSM:00000621F000 MDBUST:00000621F000
I0PSEL:000000000000 INCR___:000000000010 IBUF__:00000000F000
1BDBUF:0000016EFF06 1VABUS:000000000003 DBUS__:00007FFFD797

* FABUS_:0000FFFFF7FF PAMUX_ 3000000000004

Hi sigs:
V$C216 -MCC MD RESP A H V$6208 ICA LID ISTALL H

Lo sigs:
Vv$C169 MCC DEST CODE 0 H V$B227 -MCC7 PA LAT LD H

SBSMDC>>

DC>>LUPC/ECS 0

DC>>START CPU

DC>>SET SOMM OFF

DC>>START

gzd of pass - EDK1A - start test #1 - end test #17
>>

Figure 7-23 Microstepping Summary

One final note on MIC and TMIC. Both of these commands accept a
numeric argument that permits executing "n" microinstructions or
time states before stopping. This is useful for skipping over
several microinstructions to get to the point of interest. For
example, the command MIC 10 would execute 10 microinstructions
before stopping.

7-17

7.6 MACRO CONTEXT

Error reports from macrodiagnostics may not provide enough data to E
isolate the fault. The user may need to modify the program and use)
the failing test, along with the descriptions in the listing, to
perform further analysis. The procedure is generally as follows
(refer to Figure 7-24).

MILLISEC MICROSEC NANOSEC

MACRO MACRO

PROGRAM ROUTINE
MR1 ~ M1
~
MR2 -~ M2
MICRO
MR3 M3 ROUTINE
SN - 1
MR4 ~ M4 _— ®
~N
MRE ~ M5 u2 TIME STATES
—
N » — T0
™ N m m
N
~ T2
123 ~ -
~ T3
SOFTWARE FIRMWARE HARDWARE
> > INCREASING LEVEL OF oETAu—————D :)
MR-15421
Figure 7-24 Macrodiagnostic Program Structure

1. Use the macrodiagnostic to identify the failing sequence
of macroinstructions (MR3).

2. Single step each macroinstruction in the loop to verify
that the proper sequence of PCs is being generated.

3. Check the results of each instruction, one at a time, to
find the failing instruction (M4).

4. Single step the microsequencers to verify that the proper
sequence of microinstructions is being generated.

5. Check the data within the VAX CPU after each
microinstruction to determine which one is failing (u4).

6. Perhaps, step the VAX CPU, one time state at a time, to
determine the actual point of failure (TO--T3) .

7. Retrieve and analyze SDB signal information to isolate
the fault to a module or component.

The next three sections will describe this procedure using a ‘)
simple macro routine deposited into VAX internal memory.

7-18

7.6.

1

Single Stepping Macroinstructions

Figure 7-25 shows a simple routine that will be used to illustrate
the process. It contains CLRL, MOVL, INCL, ADDL, and JMP commands
that operate as shown below.

1. Start at location 1000
2. Clear R3
3. Move a longword (O00OFFFF) from location 2000 into R2
4, Increment the contents of R3
5. Add the longword in R2 (0000FFFF) to the longword. in R2
(00000001) and write the result (00010000) back into R3
6. Jump back to location 1000 and repeat the sequence
1000: CLRL R3
MOVL @42000, R2
INCL R3
ADDL R2, R3
JMP @41000

9P 53 1000 O OP CODE
00 | 00 | 20 | o0 1004

53 52 1008

or [(@7)] 53 | 52 100¢

00 10 | oo 1010

00 [00 | 00 | oo 1014

00 | 00 | FP | FF 2000 (BEFORE)

00 | o1 | 0o | o0 (R3) (AFTER)

Figure 7-25 Macro Test Routine Overview

7-19

Figure 7-26 shows how to deposit the information into memory
starting at location 1000, and includes how to deposit the FFFF
into location 2000. Figure 7-27 shows how to use the EXAMINE
command with the /NEXT switch to verify that it was deposited
correctly. Figure 7-28 shows how to to single instruct the routine
using the NEXT (N) command in space-bar mode. Note how the PCs
match the "circled" addresses in Figure 7-25.

Figure 7-29 shows how to enable cache, start the routine looping,
and halt with <CTRL/P> followed by a HALT command. After the
machine halts, the instructions and data should be in cache for
the following procedures so the routine won't have to go to the
array bus for refills. Finally, Figure 7-30 shows how to single
instruct using the NEXT command and check the results of each
instruction using the EXAMINE command.

>>>D 1000 9PDO53D4
>>>D + 2000

>>>D + C053D652
>>>D + 9F175352
>>>D + 1000

>>»D + 0

>>>

>>>D 2000 FFFF

>>>

Figure 7-26 Depositing a Macro Test Routine

>>>E/N:5 1000
P 00001000 9FDO53D4
P 00001004 00002000
P 00001008 C053D652
P 0000100C 9F175352
P 00001010 00001000
P 00001014 00000000

>>>E 2000

P 00002000 000OFFFF

>>>

Figure 7-27 Examining a Macro Test Routine

N

>>>DEP PC 1000

>>>N
PC
PC
PC
PC
PC
PC
PC
PC
PC
PC

33>

00001002>>>
00001009>>>
0000100B>>>
0000100E>>>
00001000>>>
00001002>>>
00001009>>>
0000100B>>>
0000100E>>>
00001000>>>

Figure

7-28 Single Instructing a Macro Test Routine

>>>E CSWP

I 42 00000000

>>>D CSWP B

>>>E CSWP

I 42 00000003
>>>START 1000
?MCP-I-CPSRUN, CPU is still running

>>>HALT
CPU stopped, INVOKED BY CONSOLE (CSM code 11)
PC 00001000
>
Figure 7-29 Enabling Cache and Starting the Routine

>>>DEP PC 1000

>N
PC
>>>E R3

00001002>>>

G 03 00000000

>>>N
PC
>>>E R2

00001009>>>

G 02 0000FFFF

>>>N
PC
>>>E R3

0000100B>>>

G 03 00000001

>»>N
PC
>>>E R3

0000100E>>>

G 03 00010000

>>>N

PC 00001000>>>

>>>

Figure 7-30

Single Instructing and Checking Results

7.6.2 Single Clocking Microinstructions

After identifying the failing macroinstruction, the next step is
to microstep that instruction to determine the failing
microinstruction. Refer to Figure 7-31 for the following
discussion. The START/STEP 1000 command prepares the routine for
microstepping. The DEBUG command enables the HEX command set and
the MIC command begins the microstepping in space-bar mode. Each
time the user presses the space bar, the EBox executes a single
microinstruction and displays the five "box" micro-PCs (MBOX,
EBOX, FBOXA, FBOXM, and IBOX). Obviously, the user will need the
microcode 1listings to verify the correct sequence before
determining any sequencing faults. That's beyond the scope of this
manual. Note the EBox micro-PC sequence in Figure 7-31. Notice
that the sequence begins to repeat after EBox=0200. That's the
start of a second pass through the 1loop. The first nine
microinstructions are executing the CSM overlay for the START
command and do not repeat again. At the end, press <RETURN> and
exit space-bar mode to execute additional commands.

It is important to remember that when exiting space-bar mode, the
EBox micro-PC is left so that it has lost communication with CSM
and the clock is OFF. To restart the clock and CSM, the user must
execute an UNHANG command. Depending upon the state of the
machine, this might not always work. It may be necessary to
execute an INIT/CPU command to reload and restart CSM. If this
fails, type MACRO to reinitialize macro context.

7.6.3 Microinstruction Tracing

After the previous procedure, the user may or may not have
identified one or more failing microinstructions. In any case,
more data may be needed to isolate the fault. That's the purpose
of the trace. Figure 7-31 shows the use of START/STEP and MIC to
get the EBox microsequencer to where tracing is to begin
(EBOX=1B00 [AFORK]). At this time, use TMIC in space-bar mode to
begin the trace. Figures 7-32 through 7-36 show the trace display
at the end of each microstep. In each of these figures, note the
following important information and relate it to the actual
macroroutine in Figure 7-25.

1. IVABUS -- the virtual address sent to the MBox

2. MDBUSI,M -- the cache data coming back
3. IBUF -- the contents of the instruction buffer
4. OPCODE -- the current OP code being executed

Do things look correct? They must be because the routine is known
to be working. After analyzing all the data in the trace at each
microstep, the user should be able to identify the point of
failure and how it is failing. If more information is needed, use
the STATESTEP command to step the failing microinstruction as
described in the next section.

>>>START/STEP 1000

>>>DEBUG

>>>>MIC

MBOX=0018 EBOX=1081 FBOXA=0004 FBOXM=0006 IBOX=00CA >>>>
MBOX=0018 EBOX=1082 FBOXA=0004 FBOXM=0006 IBOX=00CA >>>>
MBOX=0018 EBOX=1083 FBOXA=0004 FBOXM=0006 IBOX=00CA >>>>
MBOX=0018 EBOX=1085 FBOXA=0004 FBOXM=0006 IBOX=00CA >>>>
MBOX=0018 EBOX=1086 FBOXA=0004 FBOXM=0006 IBOX=000A >>>>
MBOX=0018 EBOX=1088 FBOXA=0007 FBOXM=0007 IBOX=002A >>>>
MBOX=0019 EBOX=1B00 FBOXA=0004 FBOXM=0006 IBOX=00CC >>>>

Figure 7-31 TMIC Setup Display

>>>>TMIC
Tracing from count: 0 (0.)
Micro-cycle count: 1 (1.) Phase: T3

Micro PC’'s:
E:1B00 M:0019 I:00CA FA:0004 FM:0006
Registers:
OPMCF_:000000000001 * OPCODE:0000000000D4 * OPBUS_:000000001004
EVABUF:000000000000 * EDPPE_:000B8020012C EBFLSH:00000000001C
* WBUS__:000000002000 REGBUS :000000000000 * PAMM__ :000000000000
* PAMD 1000000941040 * MEMREQ:00000090C100 ARBUS_:000000000000
* ARADR_:000000001000 ABUS___:000F00000000 * STALL :000018FF0020
* NATRAM:000000043826 * MDBUSNM:000000002000 * MDBUST:000000002000
IOPSEL:000000000000 * INCR__:000000000026 * IBUP__:000000009FDO
* IBDBUF:022509EA33CS * 1vABUS:000000001008 * DBUS__:0000AC2B602F
* PABUS_:0000FFFFFFFE PAMUX_:000000000004
Hi sigs:
* V$B227 -MCC7 PA LAT LD H
Lo sigs:
* y$C216 -MCC MD RESP A H * V$6208 ICA LID ISTALL H
V$C169 MCC DEST CODE 0 H
SBSM>>>>

Figure 7-32 TMIC Display -- Step 1

Tracing from counts 1 (1.)
Micro-cycle count: 2 (2.) Phase: T3

Micro PC’'s:
E:1B00 M:0019 I:00D6 FA:0004 FM:0006
Registers:
OPMCF_:000000000001 OPCODE:0000000000D4 OPBUS_:000000001004
EVABUS:000000000000 * EDPPE_:00080000012D EBPLSH:00000000001C
* WBUS__:000000010000 REGBUS:000000000000 PAMM__ 3000000000000
* PAMD__ :000000801000 * MEMREQ:000000100100 ARBUQ:xOOOOOOOOOOOO
* ARADR_:000000001008 * ABUS__:000100000000 * STALL_:00000A020000
* NATRAM:000000044901 * MDBUSM:0000C053D652 * MDBUST:0000C053D652
IOPSEL:000000000000 * INCR__:000000000075 * IBUF__:0000000052D0
* IBDBUP:02100DSEFF06 * 1VABUS:00000000100C * DBUS___:0000FFFFDFFF
FABUS_:0000FFFFFFFE PAMUX_:000000000004 -
Hi sigs:
V$B227 -MCC7 PA LAT LD H
Lo sigs:
V$C216 -MCC MD RESP A H V$6208 ICA LID ISTALL H
V$C169 MCC DEST CODE O H
SBSM>>>>

Figure 7-33 TMIC Display -- Step 2

7-23

Tracing from counts 2 (2.)

Micro-cycle count: 3 (3.)

Micro PC's:
B:1BCS M310018
Registers:
* OPMCF_:00000000000A .
EVABUS:000000000000 *
* WBUS__:000000002000
* PAMD _:00000090A080
ARADR_:000000001008
* NATRAM:000000046981
IOPSEL:000000000000
* IBDBUF:022508E922Cl
FABUS_:0000FFFFFFFE
Hi sigs:
* y$C216 -MCC MD RESP A H
Lo sigs:
v$6208 ICA LID ISTALL H
* y$B227 -MCC7 PA LAT LD H
SBSM>>>>

L

Phase: T3
I:00CA

OPCODE: 000000000000
EDPPE_:000B0040012A
REGBUS:000000000000
MEMREQ:000001106A00
ABUS__:000100000000
MDBUSM: 000000000000
INCR__:000000000023
IVABUS:000000002000
PAMUX_: 000000000004

PA:0004

-

» %% W

FM:0006

OPBUS_3:000000010000
EBFLSH:00000000001C
PAMM__ 3000000000000
ARBUS_ 3000000000000
STALL_:0000080200C0
MDBUST:000000000000
IBUF__:0000000053D6
DBUS__:0000AD3FAC29

V$C169 MCC DEST CODE 0 H

Figure 7-34

TMIC Display -- Step 3

Tracing from counts: 3 (3.)

Micro-cycle count: 4 (4.)

Micro PC's:
E:1B06 M:0019
Registers:

* OPMCF_:000000000001
EVABUS:000000000000
WBUS__ 2000000000000
PAMD__:000000901040
ARADR_:000000002000
NATRAM:000000043030
IOPSEL:000000000030
IBDBUF:0235095A33C1
FABUS_:0000FFFFFFFE
Hi sigs:

* V$C169 MCC DEST CODE 0 H
Lo sigs:

* V$C216 -MCC MD RESP A H
SBSM>>>>

EIE I A
LR 2 2N O J

Phase: T3
I:00CA

OPCODE 000000000000
EDPPE_:00080020012D
REGBUS:000000000000
MEMREQ: 000000904100
ABUS__:000F00000000
MDBUSM:00000000FFFF
INCR__:000000000021
1vABUS:00000000100C
PAMUX_:000000000004

FA:0004

LR 2R 2N 2

FM: 0006

OPBUS_:00000000FFFF
EBFLSH:00000000001C
PAMM__ :000000000000
ARBUS_:000000000000
STALL_:00000C020020
MDBUST:00000000FFFF
IBUF__:00000000FFCO
DBUS__:0000FFFFFF 3F

* V$B227 -MCC7 PA LAT LD H

V$6208 ICA LID ISTALL H

Figure 7-35 TMIC Display -- Step 4
Tracing from count: 4 (4.)
Micro-cycle count: 5 (5.) Phase: T3
Micro PC's:
E30EC1 M:0019 1:00D0 FA:0004 FM:0006
Registers:
OPMCF_:000000000001 * OPCODE:0000000000D6 OPBUS_:00000000FFFF
* EVABUS:00000000FFFF * EDPPE_:00080020012¢F EBFLSH:00000000001C
* WBUS__:00000000FPFFF REGBUS:000000000000 PAMM__ :000000000000
PAMD __: 000000901040 * MEMREQ: 000000905100 AISUEZ:OOOOOOOOOOOO
* ARADR_:000000002008 * ABUS__ :000100000000 * STALL_:000009020020
NATRANM:000000043030 * MDBUSM:00009P175352 * MpBUST:00009F175352
* IOPSEL:000000000000 * INCR_ :000000000075 * IBUF__:0000000052C0
* IBDBUF:021001EEFF82 * 1vaBUS:000000001010 * DBUS__:0000FFFFFFFP
FABUS_:0000FFFFFFFE PAMUX_:000000000004 -
Hi sigs:
V$B227 -MCC7 PA LAT LD H
Lo sigs:

Vv$C216 -MCC MD RESP A H
* V$C169 MCC DEST CODE 0 H
SBSM>>>>

V$6208 ICA LID ISTALL 8

Figure 7-36

TMIC Display -- Step 5

7-24

7.6.4 STATESTEP Trace

The final step in the process is to single step the CPU clock one
tick at a time and trace the machine state after each tick (20
ns). To arrive at the display shown in Figures 7-37 through 7-40,
execute the following procedure.

1. Use START/STEP to prepare for single stepping.
2. Use MIC to step to the failing microinstruction.
3. Use TSTATE to single step the clock in space-bar mode.

An exercise for the reader will be to use the STATESTEP display in
Figures 7-37 through 7-40 to determine the actual microinstruction
being displayed.

>>>>TSTATE
Tracing from count: 0 (0.)
State-step count: 1 (1.) Phase: TO

Registers:
OPMCF_:000000000001 OPCODE:0000000000D6 OPBUS_:00000000FFFF
EVABUS:00000000FFFP EDPPE_:000B0020012E EBFLSH:00000000001C
WBUS___:00000000FFFF REGBUZ:000000000000 PAMM__ :000000000000
PAMD__: 000000901040 MEMREQ:000000905100 ARBUE::OOOOOOOOOOOO

* ARADR_:000000001010 ABUS___:000100000000 STALL__:000009020020

NATRAM:000000043030 MDBUSM:00009F175352 MDBUST:00009F175352
IOPSEL:000000000000 INCR__:00000000001S IBUF__:0000000052C0
IBDBUF:021001EEFF82 IVABUS:000000001010 * DR __:0000!?!!0000
FABUS_:0000FFFFFFFE PAMUX_:000000000004

Hi sigs:
V$B227 -MCC7 PA LAT LD H

Lo sigs:
V$C216 -MCC MD RESP A H Vv$6208 ICA LID ISTALL H
V§C169 MCC DEST CODE O H

SBSM>>>>

Figure 7-37 STATESTEP Display -- Phase 0

Tracing from count: 1 (1l.)
State-step count: 2 (2.) Phase: T1
Registers:

OPMCF_:000000000001

OPCODE: 000000000006

OPBUS_:00000000FFFF

EVABUS:00000000FFFP EDPPE_:000B8020012E EBFLSH:00000000001C
WBUS___:00000000FFFF REGBUS:000000000000 PAMM__ :000000000000
* pPAMD__:000000941040 MEMREQ:00000090D100 ARBUZ_:000000000000
ARADR_:000000001010 ABUS__:000100000000 * STALL_:000019FF0020
NATRAM:000000043030 MDBUSM:00009F175352 MDBUST:00009F175352
IOPSEL:000000000000 INCR__:000000000035 18UP__:0000000052C0
* IBDBUF:021001DEFF82 IVABUS:000000001010 DBUS___:0000FFEF0000
FABUS_:0000FFFFFFFE PAMUX_:000000000004
Hi sigs:
* V$6208 ICA LID ISTALL H V$B227 -MCC7 PA LAT LD H
Lo sigs:
V$C216 -MCC MD RESP A H V$C169 MCC DEST CODE 0 H
SBSM>>>>

Figure 7-38 STATESTEP Display -- Phase 1

7-25

Tracing from count: 2 (2.)

State-step count: 3 (3.)

Registers:

* OPMCF_:00000000000A
EVABUS:00000000FFFPF
WBUS___:000000000000
PAMD__:00000084A040
ARADR”:000000001010
NATRAM:000000043030
IOPSEL:00000000000C
IBDBUF:021001DEFF82
PABUS_:QOOO!!P!FP!S

Hi sigs:

»»

»

V$6208 ICA LID ISTALL H

Lo sigs:

V$C216 -MCC MD RESP A H

SBSM>>>>

Phase: T2

OPCODE:0000000000D6
EDPPE_:00088020012E
REGBUS:000000000000
* MEMREQ:000000908A00
ABUS__:000100000000
* MDBUSM:000000001000
INCR__:000000000035
* 1vanUS:000000001014
PAMUX_:000000000004

L 3

OPBUS_:00000000FFFF
EBFLSH:00000000001C
PAMM__ :000000000000
ARBUS_:000000000000
STALL_ :000019FF0020
MDBUST:000000001000
IBUF___:0000000052C0

DBUS_:0000FFFF0000

V$B227 -MCC7 PA LAT LD H

V$C169 MCC DEST CODE O H

Figure 7-39

STATESTEP Display --

Phase 2

rraétnq from count: 3 (3.)

State-step count: 4 (4.)

Registers:
OPMCF_3:00000000000A
EVABUS:00000000FFFF

* WBUS__:00000000FFFP
* PAMD__:00000084A000
ARADR_:000000001010
* NATRAM:00000000083F
IOPSEL:00000000000C
* IBDBUF:021009523290
FABUS_:0000FFFFFFFE
Hi sigs:

V$6208 ICA LID ISTALL H

Lo sigs:

V$C216 -MCC MD RESP A H

SBSM>>>>
>>>>UNHANG
>>>>START 1000

Phase: T3

OPCODE: 000000000006
* EDPPE_:000B8100012E
REGBUS:000000000000
* MEMREQ:000000108A00
ABUS__ :000100000000
MDBUSM:000000001000
* INCR__:000000000036
1VABUZ:000000001014
PAMUX_:000000000004

»

OPBUS_:000000000000
EBFLSH:00000000001¢
PAMM___:000000000000
ARBUS_:000000000000
STALL”:000018FF0200
MDBUST:000000001000
IBUF___:000000009F17

DBUS__:0000AD60ESAC

V$B227 -MCC7 PA LAT LD H

V$C169 MCC DEST CODE 0 H

?MCP-I-CPSRUN, CPU is still running

>>>>HALT

CPU stopped, INVOKED BY CONSOLE (CSM code 11)

PC 00001002

>>>>N
PC 00001009>>>>
PC 0000100B>>>>
PC 0000100E>>>>
PC 00001000>>>>
333>

Figure 7-40

STATESTEP Display -- Phase 3

Figure 7-41 summarizes the microstepping process using the same
test routine. It uses the START/STEP command followed by the MIC
command to step the routine through one complete iteration. Note
how the EBox micro-PC sequence begins to repeat at location 1BCS5.
After exiting space-bar mode, the UNHANG command is used to
reinitialize the EBox micro-PC before executing the START command
to restart the entire test routine.

>>>>START/STEP 1000

>>>>MIC
MBOX=0018 EBOX=1081 FBOXA=0004 FBOXM=0006 IBOX=00CA >>>>
MBOX=0018 EBOX=1082 FBOXA=0004 FBOXM=0006 IBOX=00CA >>>>
MBOX=0018 EBOX=1083 PBOXA=0004 FBOXM=0006 IBOX=00CA >>>>
MBOX=0018 EBOX=1085 FBOXA=0004 FBOXM=0006 IBOX=00CA >>>>
MBOX=0018 EBOX=1086 FBOXA=0004 FBOXM=0006 IBOX=000A >>>>
MBOX=0018 EBOX=1088 FBOXA=0007 FBOXM=0007 IBOX=002A >>>>
MBOX=0019 EBOX=1B00 FBOXA=0004 FBOXM=0006 IBOX=00CC >>>>
MBOX=0019 EBOX=1B00 FBOXA=0004 FBOXM=0006 IBOX=00CA >>>>
MBOX=0019 EBOX=1B00 FBOXA=0004 FBOXM=0006 IBOX=00D6 >>>>
MBOX=0018 EBOX=1BC5 FBOXA=0004 FBOXM=0006 IBOX=00CA >>>>
MBOX=0019 EBOX=1B06 FBOXA=0004 FBOXM=0006 IBOX=00CA >>>>
MBOX=0019 EBOX=0EC1 FBOXA=0004 PBOXM=0006 IBOX=00DO0 >>>>
MBOX=0019 EBOX=0FCO FBOXA=0004 FBOXM=0006 IBOX=00CA >>>>
MBOX=0018 EBOX=1BCl FBOXA=0004 FBOXM=0006 IBOX=00CA >>>>
MBOX=0019 EBOX=1B00 FBOXA=0004 FBOXM=0006 IBOX=00D6 >>>>
MBOX=0019 EBOX=1B90 FBOXA=0004 FBOXM=0006 IBOX=00CC >>>>
MBOX=0018 EBOX=1BFE FBOXA=0004 FBOXM=0006 IBOX=00CC >>>>
MBOX=0018 EBOX=1A71 PBOXA=0004 FBOXM=0006 IBOX=00CC >>>>
MBOX=0019 EBOX=15F6 FBOXA=0004 FBOXM=0006 IBOX=000A >>>>
MBOX=0018 EBOX=0200 FBOXA=0007 FBOXM=0007 IBOX=002A >>>>
MBOX=0019 EBOX=1B00 FBOXA=0004 FBOXM=0006 IBOX=00C8 >>>>
MBOX=0019 EBOX=1B00 FBOXA=0004 FBOXM=0006 IBOX=00CA >>>>
MBOX=0019 EBOX=1B00 FBOXA=0004 FBOXM=0006 IBOX=00D6 >>>>
MBOX=0018 EBOX=1BC5 FBOXA=0004 FBOXM=0006 IBOX=00CA >>>>
MBOX=0019 EBOX=1B06 FBOXA=0004 FBOXM=0006 IBOX=00CA >>>>
>>>>UNHANG
>>>>START 1000
?MCP-I-CPSRUN, CPU is still running
>>>>HALT

CPU stopped, INVOKED BY CONSOLE (CSM code 11)

PC 00001002
>>>O>N

PC 00001009>>>>

PC 0000100B>>>>

PC 0000100E>>>>

PC 00001000>>>>
>>>>EXIT
>>>

Figure 7-41 MACRO Routine Microstepping Summary

7.6.5 Breakpoints

The HEX command set has three commands that permit additional
control of the sequences when microstepping in trace mode. These
commands enable stopping the machine when the following conditions
occur.

1. An SDB register contains a specific value or changes
value

2. An SDB signal assumes a certain value (1 or 0) or changes
state

There are two types of breakpoints, OR breaks and AND breaks
(OBREAK/ABREAK) , supported by two separate tables within the HEX
debugger software. Up to four breakpoints may be set in each
table. The following three commands are used to maintain these
tables.

1. SET BREAK
2. CLEAR BREAK
3. SHOW BREAK

Use the HELP command to display detailed descriptions for each of
the above commands. For example, typing HELP HEX SET BREAK will
display the instructions for using the SET BREAK command.

When tracing with breakpoints set, the TMICRO and TSTATE commandS
will stop and report the current machine state only when a break
condition is met. This occurs when all breakpoints in the AND
table are true or when any condition in the OR table is true.

The following discussion assumes that the user is microstepping
the same macro routine discussed in the previous sections. Figure
7-42 illustrates how to use the SET BREAK command to stop the
machine whenever a microword is encountered (where the MDBUSI
register contains a 2000). Note how the SHOW TRACE command
indicates the presence of an entry in the OR break table.

>>>>SET OBREAK MDBUSI VALUE:2000
>>>>SHOW BREAK
A_breaks set: none
O breaks set:

8029 MDBUSI Value:2000
23>

Figure 7-42 Setting an SDB Register Value BRreakpoint

)

After setting the breakpoint, the routine is started at location
1000 and the TMIC command is used to initiate the trace, as shown

in Figure 7-43. Note how the machine only stops and displays the
trace data when MDBUSI=2000.

>>>>START/STEP 1000
>>>>TMIC

Tracing from count: 0 (0.)

Micro-cycle count: 8 (8.) Phase: T3
Micro PC's:
E:1B00 M:0019 1:00CA FA:0004 FM:0006
Registers:
* OPMCF_:00000000000A OPCODE:0000000000C0 * OPBUS_:000000001004
EVABUS:000000000000 * EDPPE_:000B88020012C EBFLSH:00000000001C
* WBUS__:00000000FFFB REGBUS:000000000000 PAMM__ :000000000000
* pAMD__:00000094A040 * MEMREQ:00000090CA00 ARBU3_ 3000000000000
* ARADR_:000000001000 * ABUS__:000FP00000000 * STALL_:00001CFF0020
* NATRAM:000000043826 * MpBUSM:000000002000 * MpBYUST:000000002000
IOPSEL:000000000000 * INCR__:000000000026 * IBUF__:000000009FDO
* IBDBUF:022509EA33C5 * IVABUS:000000001008 * DBUS__:0000AC2B602F

FABUS_:0000FFFFFFFE
Hi sigs:
Lo sigs:
* y$C216 -MCC MD RESP A H
V$C169 MCC DEST CODE 0 H
SBSM>>>>

* V$6208 ICA LID ISTALL H

Tracing from count: 8 (8.)

Micro-cycle count: 16 (22.) Phase: T3
Micro PC’'s:
E:1B00 M:0019 1:00CA PA:0004 FM:0006
Registers:
* OPMCF_:000000000000 * OPCODE:000000000017 OPBUS_:000000001004
* EVABUS:000000001000 EDPPE_:00088020012C EBFLSH:00000000001C
* WBUS__:0000FFFFFFFF REGBUT:000000000000 PAMM__ $000000000000
* PAMD___:000000940040 * MEMREQ:00000090C000 ARBUS_:000000000000
ARADR_3000000001000 ABUS___:000F00000000 * STALL_3:000018FF0020
NATRAM:000000043826 MDBUSM: 000000002000 MpBUST 2000000002000
IOPSEL:000000000000 INCR__:000000000026 IBUF___:000000009FDO
IBDBUF:022509EA33C5 1vABUS:000000001008 DBUS___:0000AC2B602F
FABUS_:0000FFFFFFFE
Hi sigs:
Lo sigs:

V$C216 -MCC MD RESP A H
V$C169 MCC DEST CODE 0 H
SBSM>>>>
b2 224

V$6208 ICA LID ISTALL H

Figure 7-43

Stop On Register Value Breakpoint Display

The next example shows how to set an ABREAK entry using an SDB
signal name. The display shown in Figure 7-44 shows how to set an
ABREAK so that the machine will stop each time the signal -MCC7 PA
LAT LD H changes state. Note also that this display shows two
OBREAKS are to be included in the trace, namely MDBUSI=2000 and
MDBUSM=9F175352.

>>>>SET ABREAK V$B227
>>>>SHOW BREAK
A_breaks set:
160A V$B227 -MCC7 PA LAT LD H Change
O_breaks set:
8029 MDBUSI Value:2000
>>>>

Figure 7-44 Setting an SDB Signal Change Breakpoint

Figure 7-45 shows the display that results when tracing the
routine with the ABREAK to stop whenever -MCC7 PA LAT LD H changes
state (refer to the asterisk adjacent to the signal name). Note,
however, that in the third microstep the machine stopped because
ig gound MDBUSI=2000 rather than a change in state of -MCC PA LAT

Finally, Figure 7-46 shows an example of how to use the CLEAR
BREAK command to clear breakpoints. Note the use of the ALL
argument to clear all the breakpoints with a single command.

In summary, the breakpoint facilities provide a powerful tool for
more detailed microsequencer tracing during troubleshooting. They
permit the user to trace through lengthy microsequences, stopping
only when the specific conditions occur.

>>>>START/STEP 1000
>>>>TMIC
Tracing from count: 16
Micro-cycle counts: 17
Micro PC's:

E:1081
Registers:

* OPMCF_:000000000001
EVABUS:000000000000
WBUS__:0000041F0000
PAMD 2000000841000
ARADE :000000000010
NATRAM:00000000083F
IOPSEL:000000000000
IBDBUF 3021009023290
FABUS_:0000FFFFFFFE
Hi sigs:

* y$C216 -MCC MD RESP A H
Lo sigs:

V$C169 MCC DEST CODE 0 H
SBSM>>>>

M:0018

. »

LR O 2
LR 2 2 R)

Tracing from count: 17 (

Micro-cycle count: 1D
Micro PC's:
E:1B00 M:0019
Registers:

* OPMCF_:00000000000F
EVABUS:000000000000
WBUS___:000000001004
PAMD__ :00000080F080
ARADR_:000000001000
NATRAN:000000044985
IOPSEL:000000000000
IBDBUF:0000016EFFFE
FABUS_:0000FFFFFFFE
Hi sigs:

* V$C169 MCC DEST CODE 0 H
Lo sigs:

* V$C216 -MCC MD RESP A H
SBSM>>>>

Tracing from count: 1D
Micro-cycle count: 1E

Micro PC'sa:
E:1B00 M:0019

LR 2N J
L2 2N 2 2% 2 -

Registers:
* OPMCF_:000000000000
EVABUS:000000000000
* WBUS__:0000FFFFFFFP
* PAMD __:000000940040
ARADR_:000000001000
* NATRAM:000000043826
IOPSEL:000000000000
* IBDBUF:022509EA33CS
FABUS_:0000FFFFFFFE
Hi sigs:
Lo sigs:
V$C216 -MCC MD RESP A H
* V$C169 MCC DEST CODE 0 H
SBSM>>>>
>3>>

-

»w

(22.)
(23.) Phase: T3
I:00CA

OPCODE:0000000000C0
EDPPE_:000B80000128
REGBUS:000000000000
MEMREQ:000000108100
ABUS__ : 000800000000
MDBUSM: 000070000004
INCR__:000000000052
1vaBUS:000000001013

FA:0004

*

T e

FM:0006

OPBUS_:00000000100F
EBFLSH:00000000001C
PAMM__ 3000000000000
ARBUZ_:000000000000
STALL_ :00000CFF0000
MDBUST:000070000004
IBUF__:000000009F17
DBUS__:0000AD60ESAC

* V$6208 ICA LID ISTALL H

23.)
(29.) Phase: T3
I:00C8

OPCODE:0000000000C0
EDPPE_:000B0040012D
REGBUS:000000000000
MEMREQ:000001300F00
ABUS :000F00000000
MDBUSH:00009FD0S3D4
INCR___:000000000094
IVABUS:000000001004

FA:0004

LR 2R N

OPBUS_:000000001000
EBFLSH:00000000001C
PAMM__:000000000000
ARBUS_:000000000000
STALL”:00000A0200C0
MDBUST:00009FD0OS3D4
IBUF__:0000000053D4
DBUS__:00008FFFFFFB

* V$6208 ICA LID ISTALL H

(29.)
(30.) Phase: T3
I:00CA

OPCODE :0000000000C0
EDPPE_:000B8020012C
REGBUS:000000000000
MEMREQ:00000090C000
ABUS__:000F00000000
MDBUSM:000000002000
INCR__:000000000026
1vABUS:000000001008

FA:0004

*

» % * N

FM:0006

OPBUS_:000000001004
EBFLSH:00000000001C
PAMM__:000000000000
ARBUS_:000000000000
STALL”:000018FF0020
MDBUST:000000002000
IBUF__:000000009FDO
DBUS__:0000AC2B602F

V$6208 ICA LID ISTALL H

Figure 7-45

7-31

Stop on SDB Signal Change Breakpoint Display

>>>>SHOW BREAK
A_breaks set:
160A V$B227 -MCC7 PA LAT LD H Change
O_breaks set:
8029 MDBUSI Value:2000
>>>>CLEAR OBREAK MDBUSI
>>>>SHOW BREAK
A_breaks set:
160A V$B227 -MCC7 PA LAT LD H Change
O_breaks set: none
>35>
233>
>>>>CLEAR ABREAK ALL
>>>>SHOW BREAK
A_breaks set: none
O_breaks set: none
335>

Figure 7-46 Clearing Breakpoints

7-32

APPENDIX A
CONSOLE COMMAND SETS

A.l OVERVIEW

This appendix provides an overview of all the commands available
to the service engineer when using the console to test and
troubleshoot VAX 8600 and VAX 8650 systems. It organizes the
commands into functional sets according to the level and type of
testing being performed.

A.1.1 Command Summary

Figure A-1 summarizes each of the seven, distinct command sets
available for testing the systems. This chart also shows how to
switch from one command set to another. Depending upon the current
context of the console software, you may have access to more than
one command set, as shown in Table A-1l.

The following sections will describe command syntax and how to use
the on-line HELP facility to display detailed command descriptions
for the general, macro, diagnostic, and microhardcore command
sets. For descriptions of the PROM and EDOBA commands, refer to
the appropriate sections in Chapters 2 and 3, respectively.

A.l.2 Console Command Syntax

The information in this section applies to all command sets in the
console except for the PROM and EDOBA. Command syntax |is
illustrated using the following conventions.

[1] Brackets are used to indicate an optional switch or
keyword.
{1} Braces are used to show a list of choices from

which one item must be selected.

~

Aiewuns 39S puewwo) 2TOSUO) 0098 XVA I-v °anb1g
=-104INOD
0-T0NINOD
J~104INOD 0-T04INOD
9-108INOD $-T0MINOD
0-1041INOD X
S~T04INOD A
5-T04INOD ape ¥
2ep ipe O
135 ANVWWOD V¥EDa3 (wuti3) L
ipe s
ape 3
N\ iep aipe g
18V1S \ a
18043
4001 \ 13S ONVHWOOD WOMd
FONIINOD \
135 ANVWWOD IX3LNOD IWODGHVHONOIW /
\
-
- aais 2
- 18V
g STHOLIMS MOHS o
P VIVO MOHS
HOLIMS 13S ONVEND
Taen 1as WILSIS dOLS/LNVLS
FWOLSI FOVEL Pl NdD dOLS/L¥VLS
FAONTY FOVML e NOISN3A MOHS
313730 FOVHL s 30000 MOHS
aNIJ30 3OVEL 11xa (snam ‘yo3e0S3 ‘euoED) ANIWVXE TYNIWSEL MOHS
day_aoviL (sn@M ‘yoleiosg ‘eyoed) 11S0dIA H3MOd MOHS
3IVISL ‘ONDIWL TANVA MOHS
aieaes (273S0UBRTPOIITH ¥) ANNIINOD T oS
FOVHL MOHS oneaq VIV ¥va1d 5114 MOHS
¥ILSIDFA MOHS ¥J01D MOHS
3een mons 135 ONVAWOD IXJINOD DILSONSVIG |e— TeNIaL The
XNOLSIH MOHS WWOS 13S
aN133A MOHS %2070 13
AVIHE MOHS aac|No Beta 13s
SNIDHVN 13S asve 13s
X¥OLSIH 135 xar¥3a 1¥VLS3Y
AVINE 135 WYCND 1353
180438 1XaN 1vaasy
431SOADIH 431S/1¥VLS 10083
LIX3 Tixa 18V1S Wodd ——=
9aS/aNTHVX3 (Kzomsw utew) avot 100
TANNVHD/ANIWVX3 (WWVE ‘O¥DIW ‘HOLYNDSI ‘0dd) 3ZITVILINT OHW
(s@oeds SSaIpPY 93031S [033UO0D) ANIWVXI LIVH O¥OVKW
AYVH/LISOd3q anIZ 0dn1 | L¥VIS3U/AN ¥amod
3dS0/115043a (eoeds sseappv [Tl 10 NdD) INIWVXI (®1035 1033u0)) QY01
TANNVHD/11S043q onaaa (eovds $s9ippV TTL 30 NdD) 115043 (80S *¥aMOd *¥013) AZITWILINI
(seoeds ss8ipPV 8303 T0i3U0D) L1I1S04AA XHOWIW ¥VITO 4138
1NNOD ¥VATD FONIINOD asonsvIa
AVIEE WVITO 1008 ongaa
_ 135 GNVWWOD ¥399083a XaH | _— 7 | 13s anviwoo ixazwoo owovk — 13S GNVWWOD TVHINID

Table A-1 Command Set/Prompt Relationship

} Context Debug Prompt Command Sets Available
MACRO OFF >>> GENERAL, MACRO
MACRO ON 55> GENERAL, MACRO, HEX
DIAGNOSTIC OFF DC> GENERAL, DIAGNOSTIC
DIAGNOSTIC ON DC>> GENERAL, DIAGNOSTIC, HEX
MHC OFF MH> GENERAL, MHC
MHC ON MH> GENERAL, MHC

The console parses commands made up of one or more of the
following parts.

° Command -- Commands are the first item on any command
line input.

] Switch —- Switches begin with the slash (/) character and
select some option associated with the command. Switches
must appear in proper sequence with other parts of a
command line, as shown by the syntax rules describing a
command. Switches may be separated from commands,
keywords, or other switches by space or tab characters.

] Switch argument -- Some switches require associated
numerical arguments (specified as "/switch:number") .

° Keyword -- Keywords appear to the right of the command
part and are arguments to the command. Keywords must be
separated from commands, switches, or other keywords with
one or more spaces or tabs. Keywords can be numeric
values or symbolic names.

° Keyword argument -- Some keywords require associated
numeric or symbolic arguments (such as
"keyword:argument") .

The following notes describe the main characteristics of the
console with respect to command input.

) A single console command line cannot exceed 80
characters, counting the terminating <RETURN> and
<LINEFEED> characters. Truncation of excessive input is
done and the command line is parsed normally.

° The DELETE key will delete the previously typed
character.

° The <CTRL/U> character will flush the console input
buffer and begin a fresh line for command input.

Table

The <CTRL/R> character is ignored from the 1local
terminal. From the remote terminal, it causes the current
command line to be retyped on the following line.

The <CTRL/0> character acts as a toggle switch that, when
set, suppresses all output to the issuing terminal (the
code continues to run). The state of the <CTRL/O> flag is
reset at the completion of any command.

Upper- and lowercase input is interchangeable.

A parser error message results when (1) an unrecognized
command is entered, (2) an invalid switch or keyword is
used with a command, or (3) when an invalid switch
argument or keyword argument is used. A parser error also
occurs when invalid hexadecimal numbers are entered, or,
in some cases, when the allowable range of numeric input
is exceeded. All numeric input is taken as hexadecimal,
except for the SET CLOCK FREQUENCY command (decimal).
Numeric output is also hexadecimal unless indicated as
decimal by either a decimal point (.) or unit name (e.g.,
megacycles, volts, etc.).

An optional radix specifier prefix (%0, %D, %X) may be
used to override the default radix specified above (i.e.,
$D100 implies decimal 100).

Abbreviations are formed by dropping characters from the
end of a command, switch, or keyword. In general,
commands may be abbreviated to the point where they are
no longer unique among other commands of the current
context. The exception to this is that some commands,
like EXAMINE and DEPOSIT, are defined architecturally as
having single (or double) character equivalents. Thus,
although the command input E may not be unique in the
current context, it is treated as an equivalent to
EXAMINE. Table A-2 shows a complete list of such command
equivalencies.

Keywords and switches may also be abbreviated to the
point where they become no longer unique among other
keywords and switches for that command.

A-2 1lists architecturally defined command and switch

equivalencies.

3

Table A-2 Architecturally Defined Commands

Short Form Long Form

BOOT
CONTINUE
DEPOSIT
EXAMINE
FIND

HALT
INITIALIZE
LOAD

NEXT
START

SET

SHOW
UNJAM
VERIFY
WAIT

P /PHYSICAL

NE<C gggu&z:r-H mmMmoOw

A.1.3 The HELP Facility

There is an extensive, on-line HELP facility that displays
detailed information about command format and available switches.
It also describes completely the purpose and use of the commands
and switches. For the VAX 8600/8650 novice, the HELP command
provides detailed information about each command. This section
describes how to use the HELP facility and includes a couple of
examples of how it is typically used. First, look over the syntax
and description, as shown below.

Syntax: HELP
HELP category
HELP category topic [subtopic]

Déscription:

This command provides on-line help on the various console
software commands (and other topics) and their proper usage.

The HELP command will display all available HELP categories
and wait for the user to select one. After the category is
selected, all available HELP topics in the selected category
are displayed, and once again the user is asked to make a
selection. The HELP text on the topic is then displayed.

The "subtopic" argument is used to differentiate certain
generic command topics such as SHOW, SET, EXAM, etc., which
use optional switch or keyword arguments.

Figure A-2 shows how the system responds when HELP is typed. Note
that there are eight categories of HELP information available,
five for the command sets plus three for information on the
syntax, front panel, and supported register names. Note, also,
that the program prompts a second time for the category you wish
help on. It displays "Select" and waits for the user to provide
the input. In this example, the program displayed all the commands
when HELP was typed, prompted with Select, and waited for the user
to enter input. The user typed MACRO to get the list of the macro
context commands. When the list was displayed, the program again
prompted with "Select"; the user typed CSM to get a description of
the CSM command.

>>>HELP
help available:
CONSOLE_COMMAND_SYNTAX DIAGNOSTIC COMMAND SET FRONT_PANEL

GENERAL_COMMAND_SET HEX_DEBUG_COMMAND SET MACRO_COMMAND_SET
MICROHC_COMMAND_SET REGISTERS_SUPPORTED

Select MACRO

MACRO help available:

BOOT CLEAR CONTINUE
CcsM DEPOSIT EXAMINE
FIND HALT INITIALIZE
LOAD NEXT START
START_STEP UNJAM VERIFY
Select CSM

CsM

Console support microcode (CSM)

Many of the functions of the MACRO context depend on Console
Support Microcode (CSM). CSM is a microcode package which allows
the console program to communicate with the CPU by means of data
packets passed through the CBUS.
CSM is divided into microcode overlays which are managed by the console
program. Depending on the type of packet function being used the console
loads and starts the correct microcode overlay. To improve performance
of the overlay loading all CSM overlays are buffered in T-11 memory
after the first load from the console pack.

>>>

Figure A-2 HELP Command -- Format 1

Figure A-3 shows how to use the second format by providing the
HELP command with an argument, MACRO. At the "Select" prompt, the
user typed LOAD to display information about the LOAD command in
the MACRO context.

Figure A-4 shows how, with a single command, the third format can
be used to obtain information about the START command within the
macro context.

Figure A-5 shows an example of how to obtain information about the
SHOW UCODE command in the GENERAL COMMAND SET. Note the use of
abbreviations. As long as the user types enough characters to make
the item unique, most abbreviations are allowed.

~—

>>>HELP MACRO
MACRO help available:

BOOT CLEAR CONTINUE
CsM DEPOSIT EXAMINE
FIND HALT INITIALIZE
LOAD NEXT START
START_STEP UNJAM VERIFY
Select LOAD

LOAD

Command Syntax:
LOAD [/START:hex_adr] filename[.exe]

Description:
This command is used to load main memory with binary data taken
from the specified file. If the /START switch is used then. the
data is loaded starting at the specified ‘hex_adr’', otherwise the
data is loaded starting at location zero. -

>>> .

Figure A-3 HELP Command -- Format 2

>>>HELP MACRO START
START
Command Syntax:
START [hex_address]
Description:
This command is essentially the same as the CONTINUE command except
that if a 'hex_address’ is specified it is used as the current PC
at which to start the VAX processor. If the CPU is already running
then this command simply re-enters PIO mode without affecting the
5 running CPU, even if a 'hex_address’' is included.
>

Figure A-4 HELP Command -- Format 3, Example 1

>>>HELP GEN SHOW UCODE
SHOW_UCODE
Tommand Syntax:
SHOW UCODE
pescription:
This command displays the state of all control stores and rams in
terms of:
o the current (last loaded) .BPN file name.
o the default .BPN file name for that control store.
o the ucode revision of the currently loaded microcode.
o the ram status: bit 15 == 1 = modified
bit 14 -- 1 = failed verification
bit 13:00 -- parity error count

The "modified” bit, when set, indicates that one or more locations
have been deposited or otherwise altered after that last load of that.
control store. Note that this bit is always se for the E_SCratch ram.
The "failed verification" bit, when set, indicates that the VERIFY
command detected one or more discrepancies in the control store data.
This could be the result of a multiple (undetected) control store
parity error.
The "Parity error count" field contains the total number of detected
parity errors for the control store, whether they were corrected or
not. MCF, CTX, CYC, and ACC rams always show 0's in this field.

>>>

Figure A-5 HELP Command -- Format 3, Example 2

A few more examples will illustrate how to use Figure A=1 with the
HELP command to display information about the console command
sets.

Let's assume the user wants to examine cache. Looking over the
chart in Figure A-1, it's clear that the EXAMINE command in the
DIAG context is the one that's needed. The following command will
display the needed information.

DC> HELP DIAG EXAM

Now suppose the user wants to restart the CPU clock. It's in the
GENERAL command set, so the following command will suffice.

>>>HELP GEN STA CPU

Finally, suppose the user wants to set a microcode breakpoint.
From Figure A-1, it appears to be a HEX command, so typing the
following command should provide the help needed.

>>>HELP HEX SET BRE

Obviously, the user should now find a VAX 8600 or 8650 system and
spend several minutes practicing with the HELP command. Try to
find out information about the commands using Figure A-1 and the
system itself. Let the machine do the look up and page turning.
Isn't that what computers are for?

)

APPENDIX B
CONSOLE SUPPORT MICROCODE

B.1 INTRODUCTION

Part of the system microcode loaded into the EBox control store
during CPU initialization contains a set of microroutines designed
to support the CBus communication interface between the VAX CPU
and the console software. These microroutines, the Console Support
Microcode (CSM), consist of a permanently resident root segment
and a set of overlays that are loaded from the console when a
command is to be executed. This appendix provides a general
description of the CSM.

B.2 CSM OVERLAYS

The following overlay files reside in the RL02 and are read in and
loaded into the EBox control store overlay segment when a command
is first invoked. The command overlays are cached in T-11 RAM and
do not require an RL02 access each time they are invoked. Table
B-1 summarizes the CSM overlay files that reside on the RL02 pack.

Figure B-1 summarizes the functional relationship between the
console and the EBox during console/CSM communication. The Macro
Control Program (MCP) runs in the T-11 while CSM runs in the EBox
control store. Information packets (command/response) are
transported over the CBus using the DC022 register file, while the
CSM overlays are loaded into the EBox control store via the SDB.
Note also how CSM uses reserved locations in the EBox scratchpad
to execute the command. A simple example will suffice to summarize
how the overlays work.

Take, for example, the case where the user types the following
command .

>>>FIND/RPB

The console software reads and parses the command to determine the
action required. Based on the command typed, it loads the EBox
control store overlay segment with the contents of the CSM023.BPN
overlay using the SDB, and then sends a command to the root
segment of CSM via the CBus. The root segment of CSM then
transfers control to the overlay segment to execute the FIND/RPB
command and returns the result back to the console software via
the CBus. From here, the result is formatted and displayed on the
console terminal. After executing the command, the CSM returns to
the root segment console loop to await the next command.

Table B-1l CSM Overlay Files

File Name

Overlay Function

CSM001.BPN
CSM002.BPN
CSM003.BPN
CSM004.BPN
CSM0O05.BPN
CSM006.BPN
CSM007.BPN
CSM008.BPN
CSM009.BPN
CSM010.BPN
CSMO11.BPN
CSM012.BPN
CSM013.BPN
CSM014.BPN
CSMO015.BPN
CSM016.BPN
CSM017.BPN
CSM018.BPN
CSM019.BPN
CSM020.BPN
CSM021.BPN
CSM022.BPN
CSM023.BPN
CSM024.BPN
CSM025.BPN
CSM026.BPN
CSM027.BPN
CSM028.BPN
CSM029.BPN
CSM030.BPN
CSM031.BPN
CSM032.BPN
CSM033.BPN
CSM034.BPN
CSM035.BPN
CSM036.BPN
CSM040.BPN
CSM041.BPN
CSM042.BPN

Read_IPR Group_ 0

IRD

Continue Microflow

Examine_EBox _Scratchpad_Register
Examine EBox Misc. Register
Examine IBox Misc. _Register
Dep051t EBox Scratchpad _Register
Deposit EBox Misc. Register
Examine_PhysTcal CPU_Memory
Flush IBox and Loop

Deposit Physical CPU_Memory
Translate_and_Test_VIrtual_Read
Find 64kb™

Read_Internal MBox _Register
Read Internal EBox Register
Write Internal MBox _Register
Write Internal EBox Register
Clear Internal MBox _Register
TransTate_and_Test_Virtual Write
RLOG_ Unwind and VA

Flush IBox

Access_IOA

Find RPB

Examine PC

Read IPR _Group_1

Read . _IPR Group 2

Read” IPR Group 3

Write IPR Group 0

Write IPR Group 1

Write IPR Group 2

Write IPR Group 3

Wr1te IPR Group 4

Read IPR _Group_ 7

Write IPR Group 5

Write IPR Group 6

Clear memory command

CSM CPU power-up sequence

CSM CPU power-up sequence

Makes MARK bit breakpoints easier
for the user

\\dj

- [@_ '
| bevzz] | ONSE PACKET—— ': 3 > :I-I
| 1 T B i
RBUF | | Resioent csm neseaveo | |
CONSOLE csM
: sortware |+] | XBYF MICROCODE tocations | |
| wer I I 3| |L Al
| i |
so8 CSM OVERLAY
| 1 conTROL MICROCODE |
: CONSOLE | ——Ccsm oveRLAY—s- | |
——t——— = | |
I:F > |
CSMxxx.BPN l EBOX '
| |
| |
wA16200
Figure B-1 Console/CSM Communication
B.3 DC022 REGISTERS

The DC022 dual-port RAM file on the console module is the key link
in the communication path between the console and the EBox. When
the console sends commands to the EBox, it writes specified
locations and sets a flag to signal CSM (which is running in the
EBox) to read the information. CSM then reads the same locations
to retrieve the command and its associated arguments, and then
clears the flag when done.

When CSM needs to send a response back to the console, it loads
the response into specified locations and clears a flag to signal
the console to read and display the response on the console
terminal. After reading the information, the console sets the flag
to indicate it is ready to accept another response.

Ten locations in the DC022 RAM file are reserved for this
console/CSM communication. Five are for sending command packets to

the EBox from the console and five are for sending responses from
the EBox to the console.

CONSOLE --> CSM: Locations 06 through 09 hold four bytes of data
(32 bits)
Location OA holds 8 bits of control information

CONSOLE <-- CSM: Locations 16 through 19 hold four bytes of data
(32 bits)
Location 1A holds 8 bits of control information

The format of the information in these locations is as follows.

1. (0A) RBUFC =-- Contains encoded control information, as
shown below. “,
° BIT<7> -- The DONE bit is set by the console and)

cleared by CSM.

° BIT<6> -- The PKT CTRL bit is set if a second packet
is to follow and cleared if it is a checksum packet.

° BIT<5:0> —- Contains the command code.
2. (06) RBUF0 -- Contains byte 0 of the data.
3. (07) RBUF1 -- Contains byte 1 of the data.
4, (08) RBUF2 -- Contains byte 2 of the data.
5. (09) RBUF3 -- Contains byte 3 of the data.

6. (1A) XBUFC -- Contains control and status information, as
encoded below.

° BIT<7> -- The READY bit is set by the console and
cleared by CSM.

° BIT<6> —-- The PKT CTRL bit is set if a second packet
is to follow and cleared if it is a checksum packet.)

] BIT<5:0> -- Contains the response code, as summarized
in Table B-2.

7. (16) XBUFQ0 -- Contains byte 0 of the data.

8. (17) XBUF1 -- Contains byte 1 of the data.

9. (18) XBUF2 Contains byte 2 of the data.

10. (19) XBUF3 -- Contains byte 3 of the data.

A running checksum is calculated on each location loaded by the
sender and then checked by the receiver. Checksum errors that CSM
detects simply cause an error response to be returned to the
console. Checksum errors detected by the conscole are displayed on
the console terminal and the command is aborted. Table B-2 lists
the response codes that CSM returns.

Table B-2 CSM Response Codes

Encoding Error Packets Description

0 Y 1 Bad Checksum -- The computed
checksum of the RBUF packets does
not match the console checksum.

1 Y .1 Bad Virtual Address -- A good
translation of the virtual
address is unobtainable.

2 Y 1 ACV Condition -- The consovle does
not have access to part or all of
the data specified to perform the
address translation. This error
condition may be remedied if the
PSL<CUR_MOD> field is raised to
kernel mode.

4 Y 1 Hardware Error Abort -- A
hardware error occurred before or
during the requested CSM command.
Error information, possible a
machine check image, has been
created in the EBox scratchpad
RAM for console inspection. The
requested CSM command is aborted.

5 N 1-2 Successful Completion with Data
-~ The command has been
successfully completed.

The first packet contains the
zero-extended data. The second
packet contains a byte checksum
in the low order byte position.

N 1 Successful Completion -- The
command has been successfully
completed.

7 Y 1 Can't Find 64kb -- The FIND_64Kb
command was unable to find 64
Kbytes of good CPU memory. This
is due to MBox hardware errors.

8 Y 1 Can't Find RPB -- The FIND RPB
procedure cannot find an RPB in
memory.

9 Y 1 No Macro PC -- The EXAMINE_PC or

RLOG_UNWIND_AND_ VA commands found
that ESA, ISA, and CPC were
invalid. There is no macro-PC
defined for the ISP.

B-5

B.4 CSM REGISTERS

When information is transferred between MCP and CSM, it is done in
units of 8-bit bytes over the CBus. CSM formats these bytes into
32-bit longwords and stores them in dedicated locations in the
EBox scratchpad. The CSM overlay then executes the commands using
the contents of these locations and also stores the results of the
commands in these locations. Table B-3 summarizes the scratchpad
locations used.

Table B-3 CSM Registers
Name ESC LOC Purpose
CSM.STATUS co Holds CSM status longword
CSM.VMQ Cl Saves VMQ
CSM.SPADRSC c2 Saves SPADR, SC register
CSM.PSLCC Cc3 Saves PSL condition codes
CSM.EMD C4 Saves EMD
CsSM.CC1 C5 Holds first console packet data
CsM.CC2 Cé Holds second console packet data
CSM.CC3 Cc7 Holds third console packet data
CSM.T2 c8 Third temporary storage location

Location CO in the EBox scratchpad holds the CSM.STATUS longword
which ¥'s encoded as follows.

1. Bits <31:16> are set to indicate a non-EBox double error.
A nonzero value in this field indicates that a double
error was detected.

2. Bits <15:08> are set to indicate the general CPU status.
A zero value in this field indicates that CSM is
executing in the EBox, while a nonzero value indicates
that ISP microcode is being executed.

3. Bits <07:00> contain an 8-bit entry reason, as summarized
in Table B-4.

)

Table B-4 CSM Status Reason Codes

Code Reason

0 CsM is not executing now. VAX-11 ISP microcode is
executing.

4 Software error (Interrupt Stack Not Valid).

5 A non-EBox double error has occurred.

HALT instruction in kernel mode.

7 Software error (SCB vector<l:0> = 3).

8 Software error (SCB vector<l:0> = 2, no WCS microcode).

9 Software error (Pending Error on HALT).

A Software error (CHMx with IS = 1).

B Software error (CHMx vector<l:0> # 0).

10 A microbreak occurred and the console started CSM at
CSM,.ENTRY.MICRO.

11 The console set the CONSOLE HALT flag, which set the
CONSOLE HALT PENDING flag, which caused CSM to start
running in the microtrap vector at CSM.ENTRY.MACRO:.

15 The CPU has been powered up and CSM was started by the
console at CSM.ENTRY.PO:.

16 The FIND 64KB and FIND RPB procedures use this as a link

to the CSM.ERROR: microcode. When a hardware error
occurs, EHM will jump to CSM.ERROR: which then sees if a
16 is in CSM.STATUS. If so, CSM.ERROR jumps to the
FIND 64KB/FIND RPB restart address. If not, CSM.ERROR:
will issue a hardware error abort response.

B.5 CONSOLE/CSM PROTOCOL

Figure B-2 shows the detailed sequencing of the command/response
protocol that provides communication between the console and CSM.
A simple example will summarize the handshaking that occurs. 1In
the example, it is assumed the user has typed the EXAMINE PC
command. The console software executes the following sequence.

1. Reads and parses the command
2. Stops the CPU clock and loads the required CSM overlay

3. Writes the command packet into RBUF
4. Starts the CPU clock and sets RBUFC<DONE>

Now, CSM responds by executing the following sequence.
1. Reads the command packet from RBUF
2. Clears RBUFC<DONE>

3. Transfers control to the CSM overlay to execute the
command

4. Writes the response into XBUF
5. Clears XBUF<READY>

Finally, to complete the command, the console software executes
the following sequence.

1. Reads the response packet from XBUF

2. Sets XBUF<READY>

3. Formats and displays the response on the console terminal
4. Returns to wait for the next command

This summary was based on no reported errors. Refer to Figure B-2
for a more detailed description, which includes how errors are
handled.

There are errors, other than those shown in Figure B-2, that may
occur during MCP-to-CSM communication. The most common error
occurs when the EBox microcode gets hung in a loop and is unable
to respond to the MCP request. This will cause MCP to time out. As
a result, the current command will abort and display an
appropriate error message. In general, there are two solutions to
this problenm.

1. Try the UNHANG command which will reinitialize the CPU
clock and restart CSM at its restart address.

2. Reload and restart CSM with the INIT/CPU command.

Refer to Appendix K, Table K-15, for a more complete description
of the errors detected by MCP during the communication protocol.

USER TYPED
A COMMAND

READ AND
PARSE COMMAND

STOP CPU CLOCK
LOAD CSM OVRLY
INTO EBOX CS

SET UP COMMAND
PACKET IN RBUF
SET RBUFC <DONE>

READ RESPONSE
PACKET FROM XBUF
SET XBUFC <READY>

DISPLAY ERROR
MESSAGE

g

i

DISPLAY ERROR
MESSAGE AND ABORT

Figure B-2

HALT OF CODE ~
CONSOLE HALT |
DOUBLE ERROR ———————

MARK BIT SET ——————{

)

! RBUFC <DONE>='

YES DCO22 REGISTER FILE
READ PACKET - o
FROM RBUF
CLEAR RBUFC
06 RBUFO
<DONE> 07 RBUF1
08 RBUF2
09 RBUF3
0A _ RBUFC
NO - =
76 RBUFO
17 RBUF1
Y| 18 RBUF2
&8 19 RBUF3
1A RBUFC
P~ ~
TRANSFER CONTROL
TO CSM OVERLAY
TO EXECUTE
COMMAND
1
XBUFC
<READY>=1
SETUP RESPONSE
PACKET IN XBUF
CLEAR XBUF
<READY>
NO
YES v
wnssuss

Console/CSM Protocol Summary

B-9

APPENDIX C
DIAGNOSTIC SUPPORT MICROCODE

Cc.1 INTRODUCTION

This appendix provides an overview of the Diagnostic Support
Microcode (DSM). DSM gets loaded into the EBox control store when
switching to the diagnostic context with the DIAG command.

Refer to Figure C-1. The purpose of DSM is to provide a standard
firmware interface between the microdiagnostic programs running in
the EBox control store and the DCP running in T-11 RAM. DSM
occupies the first 2048 locations in the EBox control store, from
location 000(16) through location 7FF(16).

(=]

JUMP TO DSM START

EBOX MICRO TRAP VECTORS

DSM SERVICE ROUTINES DSM
MTRAP HANDLER 2
DSM INITIALIZATION
CBUS SUPPURT
MDIAG FUNCTION SUPPORT

770
DC022 MICRODIAGNOSTIC ENTRY

REGISTER POINTS FOR CALLING DSM
FiLe 7e¢ |_SUPPORT ROUTINES
I 800 | VERSION INFORMATION E g

801

MDIAG DISPATCH TABLE
oC A 801-8nn L

I nn=TEST NUMBER IN HEX 'T‘

(MAXIMUM OF 255 TESTS)

MICRO DIAG
TESTS

1FFF

MH-15829

Figure C-1 EBox Control Store Utilization (DSM/Microdiagnostic)

Besides providing CBus service routines, DSM also includes a
standard set of utilities that support common microdiagnostic
functions. Locations 770(16) through 7FF(16) contain linkages
between the microdiagnostic program and the specific support
function requested.

Locations 001(16) through 1F(16) are set up to provide linkage to
the DSM microtrap handlers in the event of expected or unexpected
microtraps. The bulk of the DSM microcode resides between location
1F(16) and location 770(16), and includes the following routines.

Microtrap handler

DSM initialization microcode

CBus support functions
Microdiagnostic support functions

The main control module for each microdiagnostic is loaded into
the upper 8 Kbyte segment of the EBox control store.

When a microdiagnostic is loaded into this segment, location
800(16) will contain program revision information. The data
contained in this microword has the following format.

0000 NNnn MMDD YYYY RRRR rrr (hex representation of 92 bits)
This format has the following specifications.

° 0000 (2 bytes) -- The leftmost 4 hex digits are currently
set to zero.

. NNnn (2 bytes) -- An encoding of the microdiagnostics EDK
series name. The single ASCII character (let's call it
"c") represented by the first 8 bits ("NN") corresponds
to the diagnostic name, EDK"c"A. The other 8 bits of the
field ("nn") are reserved for future name encoding. "00"
is the current setting.

. MM (1 byte) -- The standard decimal number indicating
MONTH of the year.
. DD (1 byte) -- The decimal day of the month.

° YYYY (2 bytes) -- The decimal year.

° RRRR (2 bytes) -- The major revision number. The major
revision will be "1" for the initial diagnostic release.
[rrr (2 bytes) -- The minor revision number. The minor
revision will be "0" for the initial diagnostic release.
. The rightmost 4 bits are not used and will always be
zero.)
c-2

D,

)

Locations 801(16) through 8nn(16) contain a table of test dispatch
microwords that provide the linkage between DSM and the actual
microtests in the diagnostic.

The remaining locations provide the test linkages as follows:

801 contains the linkage to test 1
802 contains the linkage to test 2

8nn contains the linkage to test nn (the last test)

A maximum number of 255 separate test linkages are possible,
depending upon the size of each test. Obviously, the number of
possible tests is limited by the available control store space.

C.2 DCP/DSM COMMUNICATION

DCP, running in T-11 memory, communicates with DSM, running in the
EBox control store, via a special CBus protocol defined for
running microdiagnostics.

This protocol consists of six (DSM to DCP) or seven (DCP to DSM)
byte packets and one "keep alive" byte, as shown in Table C-1.

Communication is achieved by passing packets between DCP and DSM
using the protocol described above. Each byte in a packet is
assigned a unique location in the DC022 register file on the
console module which corresponds to the CBus address listed in

Table C-1. (For example, the "keep alive" byte is in location
174020(8].)

Table C-1 DSM Packet Format

Symbol CBus Description

DSM$SCONTROL 174000 DSM to DCP: Function code
DSM$SCHECK 174003 packet checksum

DSM$DO 174004 data byte 0 (LSB)

DSM$D1 174005 data byte 1

DSM$D2 174006 data byte 2

DSM$D3 174007 data byte 3

DSM$CONTROL 174010 DSM to DCP: Function code
DSM$TARGET 174012 Extended Function code
DSM$CHECK 174013 packet checksum

DSM$DO 174014 data byte 0 (LSB)

DSMS$D1 174015 data byte 1

DSM$D2 174016 data byte 2

DSM$D 3 174017 data byte 3 (MSB)
DSMS$ALIVE 174020 DSM alive status

Cc-3

Cc.2.1 DCP-to-DSM Protocel

Refer to Figure C-2. When DCP is ready to send a packet to DSM, it
writes a nonzero function code into the DC$CONTROL byte in the
DC022 register file, which is sensed by DSM (by polling). The
nonzero byte in DCS$CONTROL signals DSM to retrieve the packet,
perform a checksum, and execute the command if no errors were
detected. After executing the command, DSM clears DC$CONTROL to
signal that the job is done. DCP, sensing zeroes in DCS$CONTROL,
then goes back and waits for further commands.

If a checksum error was detected, DSM writes an error code into
DCSCONTROL to signal DSM that something is awry. When DCP senses
the error code, it re-transmits the packet to try again if the
retry count was not exceeded and the whole process is repeated.
DCP will attempt six retries before it displays a checksum error
message to inform the user, and aborts the current command.

Function codes sent to DSM by DCP include the following.

Examine or deposit ESC

Examine or deposit cache

Examine or deposit a WBus register

Start a microdiagnostic

Continue a paused microdiagnostic

Pause at the end of the current microtest

C.2.2 DSM-to-DCP Protocol

Refer to Figure C-3. The DSM to DCP communications is similar,
except that it is interrupt driven. When DSM is ready to send a
packet to DCP, it sets up the packet in the DC022 register file
and loads DSMS$CONTROL with the function code. It then enters a
loop and waits for DCP to respond by reading the packet and
clearing DSM$CONTROL. Meanwhile, back in the console, a CBus
interrupt signals DCP to examine DSM$CONTROL. When DCP finds a
nonzero DSM$CONTROL, it reads and checks the packet. If no errors
are detected, DCP processes the DSM request and displays the
response or executes the command. If a checksum error is found,
DCP writes an error code into DSM$CONTROL to signal DSM to
retransmit the packet. If unsuccessful after six retries, DCP
displays a checksum error message and aborts the current command.

)

M3TAISAQ T0D0301d WSA ©3 ddd Z-0 2ianbig

ocvstuw

WSQ 30 20 Ni

1907 WYHOO0Ud TVALIV IHL

MOHS ATIY¥SS3I3N LON S300
1HVHD MOT4 Q3141MdWIS SIHL 310N

I]

_ $.0 — T0YLNOJI$2T — — H¥3 — T04LNOI$O0 _

a

3Isnvd
INNILNOD
1¥vis
11S0d30
ININVYX3
ANVWWOD SS300kd

3ISNOJS3Y 3ISNO4S3Y
ILEM av3y

A0
WNSHI3HD
13N0vd

Se=—5

S1INOVd 13INOVd

GNVWINOD QV3d ANVIWWQD 3L1HM

CEEES
T04LNOD$20

05
104LN0D$Oa

asw
3¥NIvd
JAITY d33N
AV1dSIa

ANVWWOI
LN34HND LHO08Y

DSW
HoyH3
WNSMITHD
AV1dSIQ

3gnivd
IANY I

&
a3Q330x3

gy3=
10HLNOD$IA

o=
1041NOD$20

TOHINOD $ 20 NI
GNVWIWOD dNn 13S

ON

ON

GNYWWOD
IHL AHL3Y

Cc-5

M3TAIBAQ [020301d 40d ©31 WSA

evsLuw

WSa $ 24 Ni 21901
WVYHOO0Ud TWNILIV IHL .
MOHS AHVYSSIOIN LON

$300 MOT4 Q3131dWIS SIHL 310N

LIWSWNVHL3Y

HY3=
TOHINOOSWSa

0=
JOHINCOSWSQ

3000 NOLLONNA HLIM
TOHINOISWSA avO1
13IVd dNn 135

|

S3AL

A3¥0vd
GN3S 0L
AQv3y

S$2 X083
wsa

Y

SLIET D34 TLVLIST SS320Hd 00
0770v/007LY3ISSY W3
NYHOTIHIND ™80S 3LIHM

S300J NOLLINNS ONVINWOD «
SSWd— 40T ON3I 1V 3snvd
18317407 ONI LY 3SNVd
dVHLTOHIIW T ave G3NOANITLS3L
dVHLTOHIIWNTG31034XINN
Q3103130 1INv4

$3003 NOLLONNI FONVHO SNLVLS o

3ISNCdS3Y
avay

3ISNOJSIY
3LEM

13%0vd
ANVIWWOD
JLIEM

13NOVd
ONVAWOD
avay

€-0 @anbig

OSW HH3
WNSYHD
AV1dSIO

H43 — TOHLNOIOSWSQ

430330X3 LNNOD

0 — TOHLNOISWSO

1S3n03Y
WSQ SS3008d

S3A | JIELINI SNED

a3avol
TJOHLNOJSWSQ

There are two categories of function codes possible when DSM sends
packets to DCP, as described below.

C.2.2.1 sStatus Change Codes

1. FAULT DETECTED -- A microdiagnostic has detected a fault
and DSM has stopped executing tests in order to report
the fault.

2. UNEXPECTED_MICRO_TRAP -- DSM has sensed an unexpected,
fatal EBox microtrap.

3. TEST_INVOKED BAD MICRO TRAP -- A logic fault caused an
unexpected EBox microtrap.

4. PAUSE_AT END_OF TEST -~ DSM has completed running a
single test and has entered the "pause" state.

5. PAUSE_AT END_OF PASS -- DSM has completed all tests up
through END TEST and has stopped executing tests.

C.2.2.2 Command Function Codes

1. WRITE_SDB CNTRL CHAN -- Requests that DCP write the SDB
control channels.

2. EMM_ASSERT DC/AC_LO --" Requests that DCP have the EMM
assert or deassert AC LO or DC LO.

3. DC_PROCESS_STAT_REG_BITS -- Requests that DCP manipulate
bits in the console's miscellaneous status registers.

Cc.3 SUMMARY

DSM provides a firmware interface between the microdiagnostic test
¢ode running in the EBox and the DCP running in the consSole. DSM
is loaded and started during diagnostic context initialization
when the user types the DIAGNOSE command. Note this final word of
advice before we end this discussion of DSM. There will be
conditions, caused either by the nature of the hardware fault or
operator errors that inadvertently disturb the test environment.
The solution is to reinitialize diagnostic context with another
DIAGNOSE command. This reloads and restarts DSM and should put the
user back in business.

APPENDIX D
RL0O2 DISK ORGANIZATION

D.1 INTRODUCTION

The RL02 disk pack supplied with the system contains all the files
necessary to support the operation of the diagnostic console
subsystem. The files resident on this disk are important to the
operation of the «console front-end system. This appendix
describes the general content and organization of the disk pack
and the purpose of each major file group. In general, the files
may be classified into 14 major groups, as summarized in Table
D-1. The file name extension indicates the major group.

The following sections describe the file types classified
according to system function and include examples of key text and
command files. No attempt is made to include a complete catalogue
of all the files, since it will change with each subsequent
release of the RL02 pack. If needed, the user can retrieve a
current listing of the RL02 directory three different ways.

1. Use the PROM/RT command from the general command set to
gain access to the DIR and TYPE utilities within RT-11.

2. Use the VAX diagnostic supervisor's DIRECTORY command
with the RL02 selected as the load device.

3. Use the operating system utilities.

One example will suffice to illustrate how this would be done
using RT-11.

>>>PROM/RT ;invoke RT-11

.DIR *,CDF ;list all the .CDF files
{RT-11 displays all the SDB signal name filenames}

.TYPE xxXXxxX.CDF ;display contents of xxxxxx.CDF
{RT-11 displays file's contents}

.RUN EDOAA ;jreload and restart console software
{Console software initialization messages}

>>> ;back in CIO mode MACRO context

D-1

Table D-1 RLO2 File Types

Extension General Purpose

.BPN Binary coded files that contain microcode
information loaded into the VAX CPU control RAMs,
including both system and diagnostic microcode

.BIN Binary coded file that is down-line loaded into the
CI1780
.CDF ASCII files that contain SDB signal name

information that is loaded into T-11 RAM during
console software initialization

.COM ASCII files that contain console command
information used to automate test and control
procedures

.DAT ASCII files that contain system configuration
information or snapshot data after a KAF

.DCI, .DCB Binary coded files that contain isolation algorithm
procedures used by the DCP

.EXE Binary image files for macrodiagnostic programs
loaded into VAX internal memory

.HLP ASCII files that contain HELP information for
console commands and diagnostics

.MEM ASCII text files that contain miscellaneous memos
that describe the use of the diagnostic system

.REV ASCII file that contains revision information

.SAV Binary coded T-11 program images

.SYS Binary coded T-11 console software modules

« TXT ASCII text files

D.2 T-11 BASED PROGRAMS

T-11 program files are identified by the .SAV extension. The two
most important are EDOAA.SAV and EDOBA.SAV. EDOAA.SAV is the
console software image that includes several program overlays to
support all the console command sets (MACRO, DIAG, MHC, and HEX).
EDOBA.SAV is the standalone T-11 console module diagnostic. In
addition to these two, there are several .SAV files that support a
minimum subset of RT-11 utilities. They are primarily used for
console software maintenance, not normally used in the field.

D-2

D.3 MICRODIAGNOSTICS

There are over 200 files in this group that support loading and
running of microdiagnostics and isolating faults when the
microdiagnostics detect errors. The file types in this group are
as follows.

. .COM ~-- Command files that automate loading and
initializing the VAX CPU for running microdiagnostics.

. .BPN -- Binary files containing the microcode to be
loaded for a microdiagnostic.

° .DCI -- Machine readable files containing the isolation
algorithms used by DCP during fault isolation.

. .DCB -- Machine readable files containing additional
clock-bursting information used by DCP during fault
isolation.

For example, these are the files that support the IBox diagnostic,
EDKRA.

EDKRA.COM ;top level command file
EDKRE.COM ;jcommand file to set up ESCRATCH patterns
ESCINI.COM ;command file to initialize ESCRATCH
EDKRC.COM ;command file to set up CACHE patterns
EDKRI.BPN ;test microcode loaded in IBox CS
EDKRU.BPN ;diagnostic microcode loaded in EBox CS
EDKRA,DCI jisolation algorithm file
EDKRA.DCB ;isolation algorithm file

D.4 MACRODIAGNOSTICS

Over 50 files reside on the disk to support loading and running
VAX macrodiagnostics from the RLO2. These programs are a subset of
the VAX macrodiagnostic 1library. They were selected to permit
macro testing of the VAX CPU and the load paths to the system load
devices.

The macrodiagnostic files all have the .EXE extension and are
loaded into VAX internal memory via the console front-end. During
system installation, the system disk must be built from the system
mag-tape device. The system magtape and disk load paths must be
operational for this process. If there are load path hardware
problems, the user will use the RL0O2-based macrodiagnostics to
test and troubleshoot the load path devices.

Some of the more important programs follow.
. EVKAA.EXE -- Standalone VAX CPU hardcore diagnostic

EDSAA.EXE -- VAX 8600/8650 diagnostic supervisor
° EVSBA.EXE -~ VAX system autosizer

EVKAA tests the instructions uséd by the supervisor. The
supervisor is then loaded and used to run EVSBA to size the system
and set up the required device configuration tables. The
supervisor can then be used to load and run the remaining CPU and
I/0 diagnostics to test the system in standalone mode.

Another important macroprogram included in this group is VMB.EXE,
the boot loader program used to boot the operating system. During
normal system start-up, VMB is loaded from the RL02 and used to
load a secondary bootstrap loader from the system disk, which in
turn loads and starts the operating system.

There is one file in this group, CI780.BIN, that contains
microcode information to be down-line loaded into the CI780 during
system start-up and when running the CI780 macrodiagnostics. It
is critical to use the current revision level of the file when
operating CI-based systems.

D.5 MISCELLANEOUS FILES

There are many other files on the RL02 disk pack that are required
for normal system operation. This section summarizes the purpose
of most of these files.

Over 160 files have the .COM extension, and contain console

command information used to automate most of the system start-up

and diagnostic control procedures. These are all ASCII files that

can be displayed using the SHOW FILE/ASCII command. The user can

%iitn a lot about how the system works by examining these command
es.

NOTE

It is possible, but not recommended,
for the user to edit and modify
these command files because any
unauthorized changes may cause
abnormal system operations. If
system-specific command files are
required, they should be created
using filenames that are different
from those currently on the pack.

Over 100 files have the .BPN extension and contain microcode

information that is loaded into the EBox control RAMs during

§¥stem operation. 1In general, there are four classes of microcode
les.

1. The first class of files contains the information loaded
into the CSM overlay region of the EBox control store
when executing console commands. All 40 files in this
group have the filename CSMnnn.BPN, where "nnn" is the
number of the overlay. Refer to Appendix B for a list of
each of these files. During console software
initialization, the contents of these files are read from
the RL0O2 and cached in T-11 RAM so the files can be
accessed quickly when console commands are executed.

D-4

)

2. The second class of files contains system microcode
information that is loaded into the CPU control RAMs
during macro context initialization. Certain system
microcode files are also used during diagnostic context
initialization. Table D-2 lists the nine files in this
group.

3. The third class of files contains special microcode
information rused by the microdiagnostics. The 54 files
in this group have filenames that begin with EDK for
shared VAX 8600/8650 files, and EEK for VAX 8650-specific
files. In this group is the file DSM.BPN which contains
the diagnostic support microcode loaded into the EBox
control store during diagnostc context initialization.

4. The fourth class of files contains special diagnostic
microcode used by EDKAA, the microhardcore diagnostic.

Table D-2 System Microcode Files

File Name Unit RAM

ACCESS.BPN MBox Access Violation RAM (ACV)

CTX.BPN EBox Context RAMs

CYCLE.BPN MBox Cycle Condition Code RAMs (CCC)

FADD.BPN FBox Control Store RAMs on the FBA module
FMUL.BPN FBox Control Store RAMs on the FBM module
IBOX.BPN IBox Control Store RAMs in the IBox

MCF.BPN EBox MCF RAMs in the EBox

UCODE.BPN MBox Control Store RAMs in the MBox

KA86AA.BPN EBox Control Store RAMs in the EBox and the IDRAM

RAMs in the IBox

There are 28 files with the .HLP extension that contain ASCII text
information used by the HELP command. These are read and
displayed when the user requests information about how a command
works.

Three files currently have the .DAT extension. These files
contain system configuration information and snapshot dump
information created when a KAF is detected. CONFIG.DAT contains a
list of SDB signal filenames, that is used during console software
initialization, to access and load the SDB signal name tables in
T-11 RAM. The two files, SNAP1.DAT and SNAP2.DAT, contain system
dump information and are created during a KAF. These snapshot
files are copied from the RL02 to the system disk during system
restart for subsequent analysis on-line.

There are six text files with the extension .MEM that contain user
documentation. The user should display and read these memos for
each new release of the RL02 disk pack to obtain up-to-date
information about the diagnostic system. GUIDE.MEM, the largest

of the files, contains diagnostic release notes for the
microdiagnostics.

Nineteen files have the .CDF extension. These are ASCII files
that contain all the SDB signal name information and are read and
loaded into tables in the T-11 RAM during console software
initialization. A unique file exists for each module in the
system with SDB visibility hardware.

Last, but not least, are the two files called KA86.REV and
NOTICE.TXT. KA86.REV is an ASCII text file that contains hardware
and microcode revision information. NOTICE.TXT, also an ASCII
file, contains console software information displayed during
system start-up.

D.6 SUMMARY

The RL02 disk pack contains all the information necessary for
normal system operation and diagnostic fault isolation. It is
important for the user to understand the role of the files on the
RLO2 and how they affect system operation. Appendix J contains
information that describes how to build and update the RL02 system
disk pack.

APPENDIX E
SDB OVERVIEW

E.l SDB OVERVIEW

This appendix reviews the Serial Diagnostic Bus (SDB) in the
context of how it is used by the console software to snapshot the
state of key hardware logic signals during system testing and
troubleshooting. It begins with a summary of how the SDB
visibility terminators work in conjunction with the console
software to select, retrieve, and display the state of internal
CPU logic signals. An example from the MBox is used to illustrate
this operation. Next, there is a 1list of the Default SDB
Registers permanently defined by the console software with a
discussion of when and how they are displayed. This appendix
concludes with procedures for defining additional SDB registers
and signals that can be temporarily added to the default 1list

during troubleshooting. Actual examples are used to illustrate
the process.

E.2 SDB OPERATION

This section describes the operation of the SDB visibility
channels. Basically, the SDB visibility channels provide the
mechanism by which the console software displays the state of over
2000 internal CPU logic signals. Most all of the backplane
signals between CPU modules are accessible via the SDB. The three
major elements that comprise this mechanism are as follows.

° Signal name files on the RL02 disk drive
[} Console software

. SDB logic on the console and CPU modules

Let's take a look at how these three elements tie together to
permit displaying a CPU logic signal state on the console TTY. In
order to display a signal state, the console software needs to
know two things: the name of the signal and control information
to access the signal via the SDB hardware. The signals visible on
the SDB are segmented into channels; each module is assigned a
unique channel number. The hardware design fixes the maximum
number of channels at 24. Currently, only channels 00(x) through
14(x) are active. Channels 15(x), 16(x), and 17(x) are reserved
and currently unused. The SDB channel numbers are assigned as
follows.

00 = FBA 01 = FBM 02 = MCD

03 = IBD 04 = IDP 05 = ICA

06 = ICB 07 = CLK 08 = EDP

09 = EBE 0A = MCC 0B = MAP

0C = EBD 0D = EBC OE = CSB

OF = CSA 10 = IOAO 11 = IOAl

12 = IO0A2 13 = IOA3 14 = MT™

15 = Reserved 16 = Reserved 17 = Reserved

E.2.1 Signal Name Files

There are a set of ASCII files on the RL02 used by the console
software to obtain the SDB signal name and control information.
The first file, named CONFIG.DAT, contains a list of all the
signal name files on the RLO2. Figure E-1 shows an example of
what this file looks like. Note that it contains a list of
filenames, all with the .CDF filename extension which indicates an
SDB signal name file. The .CDF filename is formatted as follows.

XXXYYY.CDF Where: xxx = module name MAP, MCC., etc.
YYy = module revision C04, E06, etc.

Example: MAPC04.CDF L0205 MBox MAP module

Figures E-2, E-3, and E-4 summarize the three file formats for the
three MBox modules: MCD, MCC, and MAP. Each .CDF file is
organized into three columns.

Column 1 SDB signal address information (in octal)
Column 2 SDB visibility ID
Column 3 Signal name

CDF LoD ST COF PN DAT

>>>SHOW CONFTG.DAT/ASCII
! SDB Cad information files for M5 machines.
! Version: 003.000
| Released: December 2;, 1985
[

CLKC03.CDP 1CLK

CSAB02.CDFP ICSA B2

CSBB02.CDF 1CSB B2

EBCCO05.CDF 1EBC C5

EBDDO2.CDF 1EBD D2

EBEB02.CDP {EBE B2

EDPC02.CDF 1EDP C2

FBABO1.CDF IFBA E7

FBMCO1.CDF IFBM CS

IBDF0S.CDF 1IBD F5

ICAHO02.CDF LICA H4

ICBFO1.CDP 1ICB PS

IDPF02.CDP 1IDP F4

MAPDO2.CDP IMAP D2

MCCKO1.CDF IMCC K1

MCDD04.CDP IMCD D4

MTMBO1.CDF IMTM Bl

1VBAAQ1.CDF {VBA Al (SBI VISIBILITY MODULE #1)
;VBBAOI.CDP IVBB Al (SBI VISIBILITY MODULE #2)
>>

Figure E-1 CONFIG.DAT File Format

E-2

>>>SHOW MCDDO04.CDF/ASCII

;CHASER Version 1(31)-1, 21 January 1984. Sources in LSCAD:{SDB>
/CACIF~-VERSION/ 3(5)

/SUDS-SDB/ 1(2)
$SUDS-CHANNEL~-TO-SIGNAL

2000 v$2191 MAP9 CACHE DAT PA 02 H
2001 V$2192 MAP9 CACHE DAT PA 03 H
2002 V$2193 MCC5 BUF WD CNT 2 H
2003 V$2224 REG BUS 3 H

2004 V$2194 MCCS BUF WD CNT 3 H
2005 V$2225 REG BUS 2 H

2006 V$2226 REG BUS 4 H

2007 V§2227 REG BUS 5 H

2010 V$2215 MCCA M ECC CHECK H
2011 V$2216 MCCD U DS MUX SEL 1 E
2012 V$2169 MCC6 CLR ERR REGS H
2013 V$2174 MAPL CACHE 1 DAT H
2014 V$2171 MCCB M CB DR EN H

2015 V$2217 MCCA M SEL WD CNT H
2016 V$2173 MCCJ WRITE REG H

2017 V$2218 MCCA M DSM VALID H
2040 v$2123 MAPL CO MUX SEL B H
2041 V$2124 MCCJ READ REG H

2042 V$2206 MCCD U DS MUX SEL 0 H
2043 V$2207 MCCJ CP WRITE H

2044 V$2125 -EBE WBUS OPAR Bl H

?DCN-I-CCABRT, ~C abort
>

Figure E-2 MCDD04.CDF File

>>>SHOW MCCKO1.CDF/ASCII

;CHASER Version 1(31)-1, 21 January 1984. Sources in LSCAD:<SDB>
/CADIF-VERSION/ 3(5)

/SUDS-SDB/ 1(2)

$SUDS~-CHANNEL-TO-SIGNAL

12000 V$A234 MCC6 OP CURR CTX 2 H
12001 V$A235 MCC8 REFL IN PROG H
12002 V$A236 -MCCM BYTWR CACH PERR H
12003 V$A237 MCCS5 CP CYC ACTIVE H
12004 V$SA189 ABUS MSKED CMD H

12005 V$SA188 ABUS WR CMD H

12006 V$SA238 -MCCK CLK3 TIA A H
12007 V$A239 -MCCK CLK3 TID C H
12010 V$A272 MCC6 DIS IOA REQ H
12011 V$A286 MCCS ABUS XFR IN PROG H
12012 V$A229 ~-MCCC U CPR IO AC EN H
12013 V$A287 MCCB WAITING ON ARY H
12014 V$A288 MCCl1 UADR B 1 H

C
?DCN-I-CCABRT, “C abort
>>>

Figure E-3 MCCKO1.CDF File

>>>SHON MAPDO4.CDF/ASCII

?DCN-W-FILNAM, MAPDO4.CDF file not found

>>>SHOW MAPD02.CDF/ASCII

;CHASER Version 1(31)-1, 21 January 1984. Sources in LSCAD:<SDB>
/CADIF-VERSION/ 3(5)

/SUDS=-SDB/ 1(2)
$SUDS~CHANNEL=TO=SIGNAL

13000 V$B197 ABUS DATA ADDRS 26
13001 V$B198 ABUS DATA ADDRS 25
13002 V$B199 ABUS DATA ADDRS 27
13003 V$B200 ABUS DATA ADDRS 23
13004 V$B201 EDP EVA A25 H
13008 V$B202 1IVA BUS 29 H

13006 V$SB203 ABUS DATA ADDRS 30 H
13007 V$B204 ABUS DATA ADDRS 21 H
13010 V$B233 -MCCB M ABUS LAT LD H
13011 V$B151 -MCC6 PHYS REF H

13012 Vv$B227 -MCC?7 PA LAT LD H

13013 V$Bl42 ~-MCC7 WRITE LRU H

13014 V$B156 -MCC7 WRITE CACHE EN A H
13015 V$B154 MCCB M PA MUX SEL 1 H
13016 V$B155 MCCB M PA MUX SEL 0 H

?DCN-I-CCABRT, “C abort
3>

Figure E-4 MAPD02.CDF File

During system start-up and console software initialization,
CONFIG.DAT is read first to determine which signal name files to
load. The console software then loads the information contained
in all of the .CDF files into signal name tables in T-11 memory.
Once the tables are loaded, the HEX command set can be used to
examine and display the state of any SDB signal using the
information stored in the T-11 tables.

Let's suppose the user wanted to know the state of the signal MCCM
HLD ERR DAT REG, which is terminated on the MCD module. Refer to
Fi?ure E-5. The user would type a command something like the
following.

>>>> EXAMINE/SDB V$2152
The console software would use the V$2152 argument to access the
table entry with the required information. It would use the octal
ID information, 02117, as follows.

1. Selects Channel 2, which is the SDB channel assignment
for the MCD module in the MBox.

2. Enables a visibility multiplexer on MCDV by asserting
MCDV VIS MUX ENA 1.

3. Selects input D7 (pin 15) on the enabled multiplexer,
which samples the state of MCCM HLD ERR DAT REG H.

4, Specifies that the selected signal will be returned in
bit position 2 MCDV VIS BUS DATA 02 H.

E-4

Finally, it is important to understand the relationship between
this file and console software information and the SDB hardware
logic in the console and the MBox.

2117 V$2162 MCCM HLD ERR DAT REG
[N

SDBIDL

’ e
’ Se

’ ~.

~

’ ~

~

~

11

-t

y
501000«1001
e

— MCD MODULE
CHAN 2
VTERM
2105
18
BJ—=— MCDV VIS BUS DATA 02 H
~MCDTCLK3TIC B H—14D0 MA-
—mcoTCLkaTID B H—3] D1 AW
MCDI LAT DSM SEL1 A H—2{ p2 M
MCDI LAT DSM SELOA H —H p3 A\
~MCOTCLK3TIAB H—2ps AW~
MAP9 CACHE DAT PAOS H~——{D5 W\
-McOTCLK3T1IBBH — 4 pg AW
MCCM HLD ERR DAT REG H —21p7 AW
MCOV Vis MUxs2 H—1H 4
MCDV VIS MUX $1 H— 2 seL
I MCOV VIS MUX S0 H—2] 1
MCDV VIS MUX ENA 1 L -0l en
MR16147
Figure E-5 VTERM Selection
E.2.2 Visibility Channel Operation

Refer to Figure E-6. Each module assigned an SDB visibility
channel contains a set of visibility multiplexers (VTERMs) that
are used to both terminate the SDB signals and provide the means
of selecting any signal to be retrieved. The number of VTERM
circuits varies from channel to channel depending upon the total
number of logic test points made visible. Each VTERM can handle
up to eight signals.

~—

cevsium

weibeig yoo01g Touueyd AITTIQISTA €4S

—

9-3 3inb1g

0 = H O34 1VQ Y43 QTH WOOW ZSLZSA

©

ndo

LiL

TSLTSA 80S/3ININVXI

IWVN

XO08W l“ll'lﬁ J10SNOD
—— e i e s s e T
_ <00:£0> V1va $NE SIA e
— Acow AQOW QOW LNO Viva 808 ¥sOas
_ SINIOd % @ [Ecsz]
isaL 3| SIXOW 93y GOW 15 805 ST
QoW _*_ JALIIEISIA 14IHS
— .
~ zzmS_ Lt 104 T B2
@ . XN
_ H 193138
= v
<0:Z> S XNW SIA — L
[rozon aon —{ va10t
— - - @
:L0> VLVA SNE SIA
<00:L0> s 6110
Odvi NdvW dVW LNO @ @
SINIOd v1iva 8 8aas
153t s | saxaw RECY o8 NIviva gas
AV "l aumigisia LdIHS v6151v2]
—]
ey L0t LT
<0T> § XN SIA
<0:Z> VN3 XNW SIA 1 e
50201 VN -
—_ : xnw
_— dVW 12 80S « | 103138
<00:£0> V1va SNE SIA J 19019
: -—]
zo101 |
— 0n 80N ﬁ
. 33W 1IN0 Viva 808
m»ﬁwn : saxnw o3y 30 1 835 T
29W —| ALMISISIA 1dIHs
i j-—p—]
WH3IA 1v101] @ @ swas
i L3IHS SIA 80S
<07T> 8 XNW SIA £125vL

0zzo1

<0T> VNI XOW SIA _.uous

@ hivnois 8as]

JHYMLIOS
JI0SNDD

Wyd

402’ IINAOW
1VA'OIINOD

S

Along with the VTERM multiplexers, each module (channel) ceontains
two 10141 shift register devices that provide an 8-bit, serial
shift/parallel load interface between the CPU module and the
console module. The following steps describe the process of
retrieving signal states from the MCD module.

1. The user types the EXAMINE/SDB V$2152 command to display
the state of MCCM HLD ERR DAT REG.

2. The console software parses the command and uses the
V$2152 argument to access the SDB table entry in T-11
RAM.

3. The console software loads the SDDB register with the
multiplexer enable/select information (01001111).

4. The console software then loads the SDMS register with
the channel select information and sets the shift bit.

5. The console hardware then asserts SDB VIS SHIFT, followed
by eight SDB CLK MCD signals, in order to shift the
contents of the SDDB register out via SDB DATA IN. From
SBD DATA IN, the SDDB register contents are shifted into
the 10141 shift register on MCDV.

6. The data shifted into the 10141 asserts the required VIS
MUX ENA<2:0> and VIS MUX S<2:0> signals on MCDV to enable
and select the VTERM input.

7. The console software loads the SDCSR register with a
command to parallel load the output from the selected
VTERMs into the 10141 shift register devices on MCDV.

8. The console software then loads the SDMS and SDCSR
registers with CHANNEL SELECT, SHIFT, and READ command
information to retrieve the data.

9. The console hardware then generates SDB VIS SHIFT and
eight SDB CLK MCD clocks in order to shift the signal
information out of the 10141 shift register and back to
the console via SDB DATA OUT MCD.

10. The information on SDB DATA OUT MCD is shifted into the
SDDB register via the 10164 data select multiplexer.

11. The console software reads the SDDB into T-11 RAM and
decodes the state of the requested bit, <2>.

12. Finally, the console software displays the signal name
retrieved from the SDB tables, column 3, with the
appropriate state indication (=1 or =0 based on the
actual signal state found in step [1l1]).

Note that even though the command specified examining a single
signal, eight bits are still selected and shifted back via SDB
DATA OUT MCD. Any SDB visibility signal read involves first,
shifting eight bits of control information from the console, and

then shifting eight bits of SDB signal information back to the
console.

E.3 DEFAULT VISIBILITY REGISTERS

The HEX debugger command set provides a number of predefined
visibility registers useful for tracing the machine state. Most
of these registers are part of the default trace list used by the
TMICRO, TSTATE, and REPORT commands. The TRACE ADD command can be
used to add a register to the trace list that is not already
there. The TRACE DEFINE command can be used to define a new
visibility register. The following list summarizes the various
visibility registers present in the console program.

*ABUS *ARADR *ARBUS *DBUS *EBFLSH
*EDPPE EFORK EMCF ESTALL EUPC
*EVABUS *FABUS FAUPC FINFO FMUPC
*IBDBUF *IBUF IBXERR IDIAG *INCR
*IOPSEL IUPC *IVABUS *MDBUSI *MDBUSM
*MEMREQ MISC1l MISC2 MISC3 MUPC
*NATRAM OPAR *OPBUS *OPCODE *OPMCF
OPPORT PAACK * PAMD * PAMM PARITY
PSL RANDM1 RANDM2 *REGBUS SBIBUS
SBITR *STALL UPCSAV *WBUS

*These registers are included in the default trace list; the
contents of these registers are displayed by the REPORT,
TMIC, and TSTATE commands. Any other register must be
explicitly added to the trace 1list with the TRACE ADD
command.

The above information is not complete without a breakdown of what
each register contains. Tables E-1 through E-41 provide a list of
all visibility registers and the signal names that compose them.
Note that bits are listed in order of the most significant bit
first. The special filler symbol, "XXXX," is used to pad a
visibility register in places where signals are no longer defined
or where nibble alignment is desired. If the accuracy of a
visibility register definition is 'in question, the actual
definition can be found in the source listing for the HEXBOX
program module (HEXBOXT11.LST).

E.4 DEFINING ADDITIONAL VISIBILITY REGISTERS

In addition to the default visibility registers defined in the
previous section, the user can define and display additional
registers. This section describes using the TRACE DEFINE and
TRACE ADD commands in the HEX command set to define and display
these personalized registers and signals. It also includes how to
use the TRACE DELETE and TRACE REMOVE commands. Figure E-7 shows
the default registers and SDB signals included in the trace list.
Any other registers and/or signals to be displayed must be defined
and added to the trace list.

>>>DEB
>>>>SHOW TRACE
Registers traced:

8020 OPMCP 801F OPCODE ° B0lE OPBUS
801D EVABUS 801C EDPPE 801B EBFLSH
801A WBUS 8019 REGBUS 8018 PAMM
8017 PAMD 8016 MEMREQ 8014 ARBUS
8013 ARADR 8012 ABUS 802C STALL
802B NATRAM 802A MDBUSM 8029 MDBUSI
8028 IOPSEL 8027 INCR 8025 IBUF
8024 IBDBUF 8023 IVABUS 8022 DBUS
8021 FABUS

Signals traced:
18AS V$C216 -MCC MD RESP A H OCE8 V$6208 ICA LID ISTALL H

1880 V$C169 MCC DEST CODE 0 H
A_breaks set: none
O _breaks set: none
>35>
>>>>EXI
>>

Figure E-7 Default Trace List

E.4.1 TRACE DEFINE

This command allows the user to define a problem-specific register
containing a set of signals to be monitored while tracing. The
first step for the user is to determine which signals to trace and
their associated visibility ID numbers (V$xxxx). Proceed as
follows.

1. Determine the modules where the signals originate.

2. Type SHOW CONFIG.DAT/ASCII to display a list of the
module ".CDF" filenames that contain the SDB signal names
and IDs.

3. Type SHOW xxxxxx.CDF/ASCII to display the signal names in
each file and note the "V$xxxx" ID for each signal in the
list.

At this point, the user should have a list of "V$xxxx" IDs, onhe
for each signal to be traced. Arrange these in the order they're
to. be displayed, from Most Significant Bit (MSB) to Least
Ssignificant Bit (LSB). Everything's now ready to do the TRACE
DEFINE command. Pick a short, meaningful name for the new
register (for example, MYREG1l). .

Now, type the following.
DC>>TRACE DEFINE MYREG1

The program will prompt the user for a list of SDB IDs. Respond
by typing the "xxxx" numbers from the list. Each number should be
separated by a space and typed in descending order from MSB to
LSB. After typing the LSB, simply press <RETURN> twice to signal
the end. The example shown in Figure E-8 illustrates the process.

Refer to Chapter 7 for examples of how the following commands are
used.

DC>>TRACE DEFINE PAMUX
Enter V§ terms separated with <sp> or <,>
B157 B154 B1SS

B9AS PAMUX 3.
DC>>SHOW DEFINE PAMUX
BY9A8 PAMUX 3.
B157 B154 B155S

DC>>

Figure E-8 TRACE DEFINE Example

E.4.2 TRACE ADD

Once the wuser's defined the "tailor-made" register, it Iis
automatically added to the trace 1list. Thus, the user doesn't
need to use the TRACE ADD command initially.

If either the TRACE RESTORE or TRACE REMOVE command were used to
remove the register from the list, this command may be used to add
it back. Individual SDB signal names can be added to the trace
list, as well as registers..

E.4.3 TRACE DELETE

Any register you define can be deleted at any time using the TRACE
DELETE command. It cannot be used to delete any one of the
default registers described earlier. Once deleted, the register
will have to be redefined if you need it later. To prevent this
aggravation, the TRACE REMOVE command described next should be
used to remove items from the trace list while still retaining
their definition.

E.4.4 TRACE REMOVE

This command permits you to remove items from the trace list and
then add them back later using TRACE ADD. You simply type "TRACE
REMOVE regname" to remove any item from the trace list. Unlike
the TRACE DELETE command, this command allows you to remove
default registers and signals, also. Like TRACE ADD, individual
SDB signal names may be removed from the trace list using this
command.

E.4.5 TRACE RESTORE

This command simply restores the trace list to its default state
in one, swift step. If you want to get back those registers that
were added, you will have to repeat the TRACE ADD command.

E.4.6 SHOW REGISTER
This command will display a complete list, including name, ID, and
size, of all the currently defined registers.

E.4.7 SHOW TRACE

This command will display a list of all registers and SDB signals
currently in the trace 1list. It also includes any current
breakpoints that may be set.

E.5 SUMMARY

The system hardware contains a sophisticated Serial Diagnostic Bus
(SDB) that provides visibility to thousands of hardware logic
signal states within the CPU. This hardware is enhanced by a
comprehensive set of user commands in the HEX command set that
allow the user to tailor the response to individual needs when
troubleshooting problems.

Table E-1

ABus Register Format

Name V$ Symbol Bit Nibble Signal Name

ABUS vs$a223 43 11 SB ABUS IOA REQUEST 3 H
V$A225 42 SB ABUS IOA REQUEST 2 H
V$A215 41 SB ABUS IOA REQUEST 1 H
V$A217 40 SB ABUS IOA REQUEST 0 H
V$A130 39 10 ABUS CPU BUF DONE H
VS$A226 38 ABUS CPU BUF ERROR H
V$A220 37 ABUS LEN STAT 1 H
VS$A222 36 ABUS LEN STAT 0 H
V$a21l 35 9 ABUS CMD MASK 3 H
V$A214 34 ABUS CMD MASK 2 H
V$A219 33 ABUS CMD MASK 1 H
V$A210 32 ABUS CMD MASK O H
V$B195 31 8 ABUS DATA ADDRS 31 H
V$B203 30 ABUS DATA ADDRS 30 H
V$B139 29 ABUS DATA ADDRS 29 H
V$B128 28 ABUS DATA ADDRS 28 H
V$B199 27 7 ABUS DATA ADDRS 27 H
V$B197 26 ABUS DATA ADDRS 26 H
V$B198 25 ABUS DATA ADDRS 25 H
V$B183 24 ABUS DATA ADDRS 24 H
V$B200 23 6 ABUS DATA ADDRS 23 H
V$B130 22 ABUS DATA ADDRS 22 H
V$B204 21 ABUS DATA ADDRS 21 H
V$B131 20 ABUS DATA ADDRS 20 H
v$B189 19 5 ABUS DATA ADDRS 19 H
V$B135 18 ABUS DATA ADDRS 18 H
V$B138 17 ABUS DATA ADDRS 17 H
V$B136 16 ABUS DATA ADDRS 16 H
V$B140 15 4 ABUS DATA ADDRS 15 H
V$B190 14 ABUS DATA ADDRS 14 H
V$B141 13 ABUS DATA ADDRS 13 H
V$B191 12 ABUS DATA ADDRS 12 H
V$B127 11 3 ABUS DATA ADDRS 11 H
V$B196 10 ABUS DATA ADDRS 10 H
V$B208 09 ABUS DATA ADDRS 09 H
V$B193 08 ABUS DATA ADDRS 08 H

Table E-1 ABus Register Format (Cont.)

Name V$ Symbol Bit Nibble Signal Name '

ABUS V$B194 07 2 ABUS DATA ADDRS 07 H
V$B169 06 ABUS DATA ADDRS 06 H
V$B209 05 ABUS DATA ADDRS 05 H
V$B206 04 ABUS DATA ADDRS 04 H
V$B205 03 1 ABUS DATA ADDRS 03 H
V$B168 02 ABUS DATA ADDRS 02 H
V$B176 01 ABUS DATA ADDRS 0Ol H
V$B177 00 ABUS DATA ADDRS 00 H

Table E-2 ARADR Register Format

Name V$ Symbol Bit Nibble Signal Name

ARADR V$K103 25 7 MAP1 ARRAY ADR 28 H
V$K105 24 MAP1 ARRAY ADR 27 H
V$K101 23 6 MAP1 ARRAY ADR 26 H
V$K179 22 MAP1 ARRAY ADR 25 H
V$K174 21 MAP1 ARRAY ADR 24 H
VEK177 20 MAP1 ARRAY ADR 23 H
V$K173 19 5 MAP1 ARRAY ADR 22 H
V$K171 18 MAP1 ARRAY ADR 21 H
VS$K159 17 MAP1 ARRAY ADR 20 H
VSK162 16 MAP1 ARRAY ADR 19 H
V$K161 15 4 MAPl1 ARRAY ADR 18 H
V$K157 14 MAP1 ARRAY ADR 17 H
V$K156 13 MAP2 ARRAY ADR 16 H
V$K155 12 MAP2 ARRAY ADR 15 H
V$K151 11 3 MAP2 ARRAY ADR 14 H
V$K154 10 MAP2 ARRAY ADR 13 H
V$K148 09 MAP2 ARRAY ADR 12 H
V$K147 08 MAP2 ARRAY ADR 11 H
V$K143 07 2 MAP2 ARRAY ADR 10 H
V$K146 06 MAP2 ARRAY ADR 09 H
V$K142 05 MAP2 ARRAY ADR 08 H
V$K145 04 MAP2 ARRAY ADR 07 H
V$K141 03 1 MAP2 ARRAY ADR 06 H
V$K140 02 MAP2 ARRAY ADR 05 H
V$K139 01 MAP2 ARRAY ADR 04 H
V$K135 00 MAP2 ARRAY ADR 03 H

E-13

Table E-3 ARBus Register Format
Name V$ Symbol Bit Nibble Signal Name
ARBUS V$K113 31 8 ARRAY BUS D31 H
V$K112 30 ARRAY BUS D30 H
V$K106 29 ARRAY BUS D29 H
V$K107 28 ARRAY BUS D28 H
V$K108 27 7 ARRAY BUS D27 H
V$K102 26 ARRAY BUS D26 H
V$K175 25 ARRAY BUS D25 H
V$K178 24 ARRAY BUS D24 H
V$K104 23 6 ARRAY BUS D23 H
V$K100 22 ARRAY BUS D22 H
V$K176 21 ARRAY BUS D21 H
V$K172 20 ARRAY BUS D20 H
V$K167 19 5 ARRAY BUS D19 H
V$K169 18 ARRAY BUS D18 H
V$K166 17 ARRAY BUS D17 H
V$K170 16 ARRAY BUS D16 H
V$K131 15 4 ARRAY BUS D15 H
V$K127 14 ARRAY BUS D14 H
V$K129 13 ARRAY BUS D13 H
V$K130 12 ARRAY BUS D12 H
V$K126 11 3 ARRAY BUS D11 H
V$K125 10 ARRAY BUS D10 H
V$K128 09 ARRAY BUS D09 H
VS$K119 08 ARRAY BUS D08 H
V$K123 07 2 ARRAY BUS D07 H
V$K124 06 ARRAY BUS D06 H
V$K122 05 ARRAY BUS DOS H
VS$K118 04 ARRAY BUS D04 H
V$K121 03 1 ARRAY BUS DO3 H
V$K117 02 ARRAY BUS D02 H
V$K120 0l ARRAY BUS DOl H
V$K116 00 ARRAY BUS DOO H

Table E-4 DBus Register Format

Name V$ Symbol Bit Nibble Signal Name
DBUS v$3271 31 8 -DBUS D31 H
V$3262 30 -DBUS D30 H
V$3272 29 -DBUS D29 H
V$3266 28 -DBUS D28 H
V$3170 27 7 -DBUS D27 H
V$3225 26 -DBUS D26 H
v$3241 25 -DBUS D25 H
V$3240 24 -DBUS D24 H
V$3270 23 6 -DBUS D23 H
V$3263 22 -DBUS D22 H
V$3273 21 -DBUS D21 H
V$3275 20 -DBUS D20 H
v$3171 19 5 -DBUS D19 H
v$3187 18 -DBUS D18 H
v$3237 17 -DBUS D17 H
V$3236 16 -DBUS D16 H
V$3269 15 4 -DBUS D15 H
V$3268 14 -DBUS D14 H
v$3274 13 -DBUS D13 H
v$3267 12 -DBUS D12 H
V$3220 11 3 -DBUS D11 H
v$3222 10 -DBUS D10 H
v$3239 09 -DBUS D09 H
V$3242 08 -DBUS D08 H
V$3176 07 2 -DBUS D07 H
v$3178 06 -DBUS D06 H
V$3105 05 -DBUS DOS H
v$3104 04 -DBUS D04 H
V$3145 03 1 -DBUS D03 H
V$3144 02 -DBUS D02 H
v$3243 01 -DBUS DO1 H
V$3126 00 -DBUS D00 H

Table E-5 EBFLSH Register Format

Name V$ Symbol Bit Nibble Signal Name

EBFLSH V$3198 04 2 -ICA BUF FLUSH MRES3 H
V$5230 03 1 -ICAB EFLSH FR CPC LAT H
v$5218 02 -CSB UMCF 2 A H
v$§5242 01 ICA6 IFORK CTL 2 H
V$5194 00 -CSB UMCF 0 A H

Table E-6 EDPPE Register Format

Name V$ Symbol Bit Nibble Signal Name

EDPPE V$9104 43 11 EDP EDPE D3 H
V$D157 42 EDP EDPE D2 H
v$9102 41 EDP EDPE D1 H
V$D156 40 EDP EDPE DO H
VS$SE138 39 10 EDP STATE 7 H
VS$E109 38 EDP STATE 6 H
VSE177 37 EDP STATE 5 H
V$E120 36 EDP STATE 4 H
V$E184 35 9 EDP STATE 3 H
VS$E136 34 EDP STATE 2 H
V$E1l10 33 EDP STATE 1 H
V$E178 32 EDP STATE 0 H
V$A180 31 8 ICA ISTALL A H
V$9103 30 EBD RSV MODE H
V$9100 29 ICB RLOG PE H
v$9181 28 ICB IBUF PE H
v$5123 27 7 ICA7 ICS PAR ERR H
v$9101 26 ICB IDRAM PE H
V$9176 25 IDP IAMUX PE H
V$9182 24 IDP IBMUX PE H
VEXXXX 23 6 Filler
v$6127 22 MCC OP PA ACK B H
V$5167 21 MCC IBF PA ACK H
V$9162 20 MCC MBOX CS PE H
v$5221 19 5 EBD ESTALL TO ICA H
V$5186 18 EBE IBOX ERR LTH A H
V$9170 17 EBD ECS PE FLAG H
v$9110 16 EBD ECS PE LST CYC H

Table E-6 EDPPE Register Format (Cont.)

Name V$ Symbol Bit Nibble Signal Name

EDPPE v$D166 15 4 EBD EBOX ERR LST CYC H
v$4167 14 EBD EBOX ERR TO IDP H
V$9170 13 EBD ECS PE FLAG H
V$9110 12 EBD ECS PE LST CYC H
v$D158 11 3 EBD EDP PE FLAG A H
v$9169 10 EBD EDP PE FLAG H
V$9173 09 EBD EMCR PE FLAG H
v$9161 08 EBD EN ETRAP H
v$5221 19 5 EBD ESTALL TO ICA H
V$5186 18 EBE IBOX ERR LTH A H
V$9170 17 EBD ECS PE FLAG H
V$9110 16 EBD ECS PE LST CYC H
V$D166 15 4 EBD EBOX ERR LST CYC H
V$4167 14 EBD EBOX ERR TO IDP H
V$9170 13 EBD ECS PE FLAG H
Vv$9110 12 EBD ECS PE LST CYC H
V$D158 11 3 EBD EDP PE FLAG A H
V$9169 10 EBD EDP PE FLAG H
V$9173 09 EBD EMCR PE FLAG H
V$9161 08 EBD EN ETRAP H
v$9174 07 2 EBD USTK PE FLAG H,
V$9143 06 EBD WBUS PE FLAG H
V$C159 05 -EBC MCF RAM PAR ERR H
V$C161 04 EBD6 EVC D09 H
V$4139 03 1 -ICA BMUX CHK WITH CTX H
V$0131 02 EBE WBUS OPAR B2 C H
v$0129 01l EBE WBUS OPAR Bl C H
v$4281 00 -DBUS D08 H

Table E=7 EFORK Register Format

Name V$ Symbol Bit Nibble Signal Name

EFORK V$6146 08 3 -CSB EBOX FORK E H
v$0100 07 2 -CSB EBOX FORK D H
v$8124 06 -CSB EBOX FORK C H
V$5159 05 -CSB EBOX FORK B H
V$C226 04 -CSB EBOX FORK A H
VSXXXX 03 1 Filler
V$C102 02 -CSB EBOX IRD A H
V$6101 01 -CSB EBOX IRD B H
v$1231 00 -CSB EBOX IRD C H

Table E-8 EMCF Register Format

Name V$ Symbol Bit Nibble Signal Name

EMCF v$D184 37 10 CSA UMCF 5 A H
Vv$D186 36 CSA UMCF 4 A H
v$D181 35 9 CSA UMCF 3 A H
v$D183 34 CSB UMCF 2 A H
v$D180 33 CSB UMCF 1 A H
v$D182 32 CSB UMCF 0 A H
VS$XXXX 31 8 Filler
VEXXXX 30 Filler
V$A153 29 EBC EBOX MCF 5 H
v$a182 28 EBC EBOX MCF 4 H
V$AL174 27 7 EBC EBOX MCF 3 H
V$Al65 26 EBC EBOX MCF 2 H
V$Al64 25 EBC EBOX MCF 1 H
V$Al54 24 EBC EBOX MCF 0 H
V$XXXX 23 6 Filler
V$D154 22 -EBC9 MCF-LOAD N H
V$D153 21 -EBC9 MCF-LOAD T H
V$D155 20 -EBC9 MCF-REQUE N H
Vs$D151 19 5 -EBC9 MCF-REQUE T H
Vv$Dl46 18 EBCA MCF-EN MBOX H
v$D140 17 EBCA MCF-WCHK H
v$D150 16 EBC8 MCF-E DISP I H
V$C1l79 15 4 -EBC MCF-ACK REQ LTH H
v$Cc187 14 -EBC MCF-CLR EBPS LTH H
vs$C184 13 -EBC MCF-CLR IBPS LTH H
V$C186 12 -EBC MCF-CLR OPPS LTH H
v$C180 11 3 -EBC MCF-EN OWSTL LTH H
Vv$Cl78 10 -EBC MCF-MEM REQ LTH H
v$C127 09 -EBC MCF-MEM WRT LTH H
v$C199 08 -EBC MCF-OP WRT LTH H
V$D143 07 2 -EBCA MCF-ACK REQ H
v$D138 06 ~-EBC8 MCF-CLR EBPS H
v$D149 05 -EBC8 MCF-CLR IBPS H
v$D137 04 -EBC8 MCF-CLR OPPS H
Vv$D134 03 1 -EBC7 MCF-EN OWSTL H
V$D139 02 -EBC7 MCF-MEM REQ H
V$D104 01 -EBC7 MCF-MEM WRT H
v$D105 00 ~EBC7 MCF-OP WRT H

Table E-9 ESTALL Register Format

Name V$ Symbol Bit Nibble Signal Name

ESTALL VS$E183 11 3 -EBD ESTALL TO CSB H
V$D171 10 EBD ESTALL TO EBC H
V$9166 09 EBD ESTALL TO EBE H
V$8160 08 EBD ESTALL TO EDP H
v$0190 07 2 EBD ESTALL TO FBA H
v$1123 06 EBD ESTALL TO FBM H
V$3157 05 -EBD ESTALL TO IBD H
v$5221 04 EBD ESTALL TO ICA H
V$6138 03 1 EBD ESTALL TO ICB H
V$4126 02 EBD ESTALL TO IDP H
V$A184 01 EBD ESTALL TO MCC H
v$2114 00 EBD ESTALL TO MCD H

Table E-10 EUPC Register Format

Name V$ Symbol Bit Nibble Signal Name

EUPC V$F122 12 4 CSB UPC 12 H
V$F123 11 3 CsSB UPC 11 H
VS$F111 10 CSB UPC 10 H
VS$F113 09 CSB UPC 09 H
VSF107 08 CSB UPC 08 H
V$F112 07 2 CSB UPC 07 H
V$F115 06 CSB UPC 06 H
VS$F109 05 CSB UPC 05 H
V$F110 04 CSB UPC 04 H
V$F114 03 1 CSB UPC 03 H
V$F126 02 CSB UPC 02 A H
VS$F118 0l CSB UPC 01 A H
V$F127 00 CSB UPC 00 A H

Table E-11 EVABUS Register Pormat

Name V$ Symbol Bit Nibble Signal Name

EVABUS V$B222 31 8 EDP EVA A3l H
V$B112 30 EDP EVA A30 H
V$B187 29 EDP EVA A29 H
V$B182 28 EDP EVA A28 H
v$Blgs 27 7 EDP EVA A27 H
V$B132 26 EDP EVA A26 H
V$B201 25 EDP EVA A25 H
V$B119 24 EDP EVA A24 H
V$B118 23 6 EDP EVA A23 H
V$B133 22 EDP EVA A22 H
V$B134 21 EDP EVA A2l H
V$B123 20 EDP EVA A20 H
V$B126 19 5 EDP EVA Al9 H
V$B192 18 EDP EVA Al8 H
V$B122 17 EDP EVA Al7 H
V$B207 16 EDP EVA Al6 H
V$B215 15 4 EDP EVA AlS5 H
V$B143 14 EDP EVA Al4 H
V$B146 13 EDP EVA Al3 H
V$B145 12 EDP EVA Al2 H
V$B144 11 3 EDP EVA All H
V$B216 10 EDP EVA Al0 H
V$B213 09 EDP EVA A09 H
V$B175 08 EDP EVA AO8 H
V$B171 07 2 EDP EVA AO07 H
V$B179 06 EDP EVA A06 H
V$B173 05 EDP EVA A0S H
V$B174 04 EDP EVA AO4 H
V$B167 03 1 EDP EVA AO3 H
V$B170 02 EDP EVA AO02 H
V$B159 0l EDP EVA A0l A H
V$Bl162 00 EDP EVA A00 A H

E-21

Table E-12 FABUS Register Format
Name V$ Symbol Bit Nibble Signal Name
FABUS V$1197 31 8 -FBA FA BUS D31 H
V$1269 30 -FBA FA BUS D30 H
V$1138 29 -FBA FA BUS D29 H
V$1180 28 -FBA FA BUS D28 H
V$1171 27 7 -FBA FA BUS D27 H
V$1167 26 -FBA FA BUS D26 H
v$1250 25 -FBA FA BUS D25 H
V$1170 24 -FBA FA BUS D24 H
V$1198 23 6 -FBA FA BUS D23 H
V$1260 22 -FBA FA BUS D22 H
V$1139 21 -FBA FA BUS D21 H
V$1165 20 -FBA FA BUS D20 H
V$1261 19 5 -FBA FA BUS D19 H
v$1248 18 -FBA FA BUS D18 H
V$1137 17 -FBA FA BUS D17 H
V$1169 16 -FBA FA BUS D16 H
V$1199 15 4 -FBA FA BUS DI1S H
V$1262 14 -FBA FA BUS D14 H
V$1134 13 -FBA FA BUS D13 H
v$1183 12 -FBA FA BUS D12 H
V$1263 11 3 -FBA FA BUS D11 H
v$1244 10 -FBA FA BUS D10 H
v$1249 09 -FBA FA BUS D09 H
V$1164 08 -FBA FA BUS D08 H
V$1200 07 2 -FBA FA BUS D07 H
V$1265 06 -FBA FA BUS D06 H
V$1133 05 -FBA FA BUS DOS H
V$1196 04 -FBA FA BUS D04 H
V$1264 03 1 -FBA FA BUS D03 H
v$1245 02 -FBA FA BUS D02 H
V$1251 01 -FBA FA BUS DOl H
V$1168 00 -FBA FA BUS D00 H

Table E-13 FAUPC Register Format

Name V$ Symbol Bit Nibble Signal Name

FAUPC v$0243 08 3 FAll UPCA A8 H
v$0321 07 2 FAll UPCA A7 H
v$0320 06 FAll UPCA A6 H
Vv$0319 05 FAll UPCA A5 H
V$0325 04 FAll UPCA A4 H
Vv$0324 03 1 FAll UPCA A3 H
v$0322 02 FAll UPCA A2 H
v$0242 01 FAll UPCA Al H
v$0335 00 FAll UPCA AO H

Table E-14 FMUPC Register Format

Name V$ Symbol Bit Nibble Signal Name

FMUPC V$1152 08 3 FM11l UPC A8 H
v$1149 07 2 FM11 UPC A7 H
V$1179 06 FM11 UPC A6 H
V$1178 05 FM11 UPC A5 H
V$1155 04 FM11 UPC A4 H
V$1154 03 1 FM11 UPC A3 H
v$1148 02 FM11l UPC A2 H
V$1153 0l FM11 UPC Al H
V$1150 00 FM11 UPC AO H

Table E-15

IBDBUF Register Format

Name V$ Symbol Bit Nibble Signal Name

IBDBUF V$4289 42 11 IBD DRAM CTX 2 H
vs$4288 41 IBD DRAM CTX 1 H
v$4287 40 IBD DRAM CTX O H
V$5117 39 10 IBD DRAM TYPE 1 H
V$5211 38 IBD DRAM TYPE 0 H
V$5116 37 IBD DRAM REF 1 H
V$5214 36 IBD DRAM REF 0 H
V$5192 35 9 IBD BDEST NEXT H
V$5163 34 IBD DRAM LAST H
V$5171 33 IBD DRAM SUSP H
V$5236 32 IBD DISABLE SB HIT H
V$5245 31 8 IBD BUF FD INST H
V§$5249 30 IBD EXT OPC H
V$6129 29 IBD BUF IBUF PE H
v$6128 28 IBD BUF DRAM PE H
V$5270 27 7 IBD TFORK VALID H
V$5175 26 IBD DMUX VALID H
V$5172 25 IBD EXC ONLY H
v$5213 24 IBD EPC 0 OR 7 H
Vv$5111 23 6 IBD ISEL B2 H
V$3193 22 ICA LD IFORK DISP H
v$5101 21 IBD BUF LD CTL 1 H
v$5103 20 IBD BUF LD CTL 0 H
V$4286 19 5 -IBD OPTIMIZED H
V$4192 18 IBD BUF DELTA PC 2 H
v$4187 17 IBD BUF DELTA PC 1 H
V$4193 16 IBD BUF DELTA PC 0 H
V$6132 15 4 IBD IBGPR 3 H
V$6179 14 IBD IBGPR 2 H
V$6135 13 IBD IBGPR 1 H
V$6133 12 IBD IBGPR 0 H
v$4285 11 3 IBD IGPR 3 H
v$4284 10 IBD IGPR 2 H
V$4283 09 IBD IGPR 1 H
v$4282 08 IBD IGPR 0 H

E-24

Table E-15 IBDBUF Register Format (Cont.)
Name V$ Symbol Bit Nibble Signal Name
IBDBUF V$5161 07 2 IBD BUF FA 7 H
V$5136 06 IBD BUF FA 6 H
v$5253 05 IBD BUF FA 5 H
V$5158 04 IBD BUF FA 4 H
v$5179 03 1 IBD BUF FA 3 H
v$6123 02 IBD BUF FA 2 H
v$6119 01 IBD BUF FA 1 H
V$6121 00 IBD BUF FA 0 H
Table E-16 IBUF Register Format
Name V$ Symbol Bit Nibble Signal Name
IBUF v$5114 15 4 IBD IBUF DATA Bl 7 H
v$5208 14 IBD IBUF DATA Bl 6 H
V$5209 13 IBD IBUF DATA B1 5 H
Vv$5210 12 IBD IBUF DATA Bl 4 H
v$5237 11 3 IBD IBUF DATA Bl 3 H
v$5233 10 IBD IBUF DATA Bl 2 H
V$5246 09 IBD IBUF DATA Bl 1 H
V$5243 08 IBD IBUF DATA Bl O H
V$5104 07 2 IBD IBUF DATA BO 7 H
V$5106 06 IBD IBUF DATA BO 6 H
v$5108 05 IBD IBUF DATA BO S5 H
V$5105 04 IBD IBUF DATA BO 4 H
v$5250 03 1 IBD IBUF DATA BO 3 H
v$5248 02 IBD IBUF DATA BO 2 H
v$5247 01 IBD IBUF DATA BO 1 H
V$5252 00 IBD IBUF DATA BO O H
E-25

Table E-17 IBXERR Register Format

Name V$ Symbol Bit Nibble Signal Name

IBXERR V$C197 04 2 -EBE IBOX ERR LTH E H
v$8163 03 1 EBE IBOX ERR LTH D H
V$4166 02 EBE IBOX ERR LTH C H
V$6204 0l EBE IBOX ERR LTH B H
V$5186 00 EBE IBOX ERR LTH A H

Table E-18 IDIAG Register Format

Name V$ Symbol Bit Nibble Signal Name

IDIAG V$D102 05 2 ICA IBOX DIAG DONE H
V$5244 04 EBC E DISP I DLY H
Vs$D150 03 1 EBC8 MCF-E DISP I H
V$5196 02 -ICB ID FULL STALL H
V$6116 01 ICA PC ISTALL H
Vv$4130 00 IDPS ISTALL A H

Table E-19 INCR Register Format

Name V$§ Symbol Bit Nibble Signal Name

INCR V$4175 07 2 -IBD INCR VIBA BY 4 H
V$3131 06 IBD9 SHIFT COUNT 2 B H
V$3150 05 IBDD LAT CTX 1 H
V§$3253 04 IBD9 SHIFT COUNT 0 B H
V$6171 03 1 IBD UNLAT CUR VAL 3 H
V$6170 02 IBD UNLAT CUR VAL 2 H
V$6174 01 IBD UNLAT CUR VAL 1 H
V$6206 00 IBD UNLAT CUR VAL 0 H

E-26

Table E-20 IOPSEL Register Format
Name V$ Symbol Bit Nibble Signal Name
IOPSEL V$3163 05 2 CSB UOPSEL 1 B H
V$3206 04 CSB UOPSEL 0 B H
v$8146 03 1 CSA UMISC 3 H
Vv$8168 02 CSA UMISC 2 H
v$8143 01 CSA UMISC 1 H
V$8150 00 CSA UMISC 0 H
Table E-21 IUPC Register Format
Name V$ Symbol Bit Nibble Signal Name
IUPC V$5120 07 2 ICA8 LD OR SAV 7 H
V$5119 06 ICA8 LD OR SAV 6 H
v$5157 05 ICA8 LD OR SAV 5 H
V$5121 04 ICA8 LD OR SAV 4 H
V$5155 03 1 ICA8 LD OR SAV 3 H
v$5154 02 ICA8 LD OR SAV 2 H
V$5150 01 ICA8 LD OR SAV 1 H
v§5156 00 ICA8 LD OR SAV O H
E-27

Table E-22 IVABUS Register Format

Name V$ Symbol Bit Nibble Signal Name
IVABUS V$B160 31 8 IVA BUS 31 H
V$B223 30 IVA BUS 30 H
V$B202 29 IVA BUS 29 H
V$B185 28 IVA BUS 28 H
V$B117 27 7 IVA BUS 27 H
V$B186 26 IVA BUS 26 H
V$B184 25 IVA BUS 25 H
V$B115 24 IVA BUS 24 H
V$B114 23 6 IVA BUS 23 H
V$B129 22 IVA BUS 22 H
V$B1l16 21 IVA BUS 21 H
V$B125 20 IVA BUS 20 H
v$Bl121 19 5 IVA BUS 19 H
V$B120 18 IVA BUS 18 H
V$B124 17 IVA BUS 17 H
V$B217 16 IVA BUS 16 H
V$B214 15 4 IVA BUS 15 H
V$B147 14 IVA BUS 14 H
V$B149 13 IVA BUS 13 H
V$Bl48 12 IVA BUS 12 H
V$B218 11 3 IVA BUS 11 H
V$B219 10 IVA BUS 10 H
V$B220 09 IVA BUS 09 H
V$B211 08 IVA BUS 08 H
V$B172 07 2 IVA BUS 07 H
V$B210 06 IVA BUS 06 H
V$B180 05 IVA BUS 05 H
V$B166 04 IVA BUS 04 H
V$B178 03 1 IVA BUS 03 H
V$B181 02 IVA BUS 02 H
V$B161 01 IVA BUS 01 H
V$B158 00 IVA BUS 00 H

E-28

e’

Table E-23 MDBUSI Register Format
Name V$ Symbol Bit Nibble Signal Name

MDBUSI Vv$3281 31 8 MD BUS D31 H
v$3232 30 MD BUS D30 H
V$3244 29 MD BUS D29 H
v$3251 28 MD BUS D28 H
V$3252 27 7 MD BUS D27 H
v$3282 26 MD BUS D26 H
V$3116 25 MD BUS D25 H
V$3165 24 MD BUS D24 H
Vv$3280 23 6 MD BUS D23 H
v$3234 22 MD BUS D22 H
V$3229 21 MD BUS D21 H
V$3235 20 MD BUS D20 H
V$3120 19 5 MD BUS D19 H
v$3279 18 MD BUS D18 H
v$3118 17 MD BUS D17 H
v$3283 16 MD BUS D16 H
V$3277 15 4 MD BUS D15 H
V$3230 14 MD BUS D14 H
v$3248 13 MD BUS D13 H
V§3233 12 MD RUS D12 H
vs$3121 11 3 MD BUS D11 H
V$3256 10 MD BUS D10 H
V$3119 09 MD BUS D09 H
v$3168 08 MD BUS D08 H
v$3276 07 2 MD BUS D07 H
v$3228 06 MD BUS D06 H
v$3249 05 MD BUS DOS H
V$3250 04 MD BUS D04 H
V$3254 03 1 MD BUS DO3 H
v$3257 02 MD BUS D02 H
V$3135 01 MD BUS DOl H
V$3164 00 MD BUS DOO H

Table E-24 MDBUSM Register Format

Name V$ Symbol Bit Nibble Signal Name
MDBUSM V52130 31 8 MD BUS D31 H
Vv$2131 30 MD BUS D30 H
v$2129 29 MD BUS D29 H
v$2132 28 MD BUS D28 H
v$2140 27 7 MD BUS D27 H
Vv$2139 26 MD BUS D26 H
Vv$2135 25 MD BUS D25 H
v$2136 24 MD BUS D24 H
v$2144 23 6 MD BUS D23 H
v$2134 22 MD BUS D22 H
V$2155 21 MD BUS D21 H
V$2161 20 MD BUS D20 H
V$2154 19 5 MD BUS D19 H
V$2153 18 MD BUS D18 H
v$2162 17 MD BUS D17 H
V$2160 16 MD BUS D16 H
V$2166 15 4 MD BUS D15 H
V$2156 14 MD BUS D14 H
v$2167 13 MD BUS D13 H
v$2157 12 MD BUS D12 H
v$2158 11 3 MD BUS D11 H
v$2101 10 MD BUS D10 H
V$2195 09 MD BUS D09 H
Vv$2100 08 MD BUS D08 H
v$2103 07 2 MD BUS D07 H
v$2102 06 MD BUS D06 H
V$2106 05 MD BUS DO5 H
v$2198 04 MD BUS D04 H
v$2107 03 1 MD BUS D03 H
Vv$2199 02 MD BUS D02 H
V$2200 01l MD BUS DOl H
v$2105 00 MD BUS DOO H
E-30

Table E-25 MEMREQ Register Format

Name V$ Symbol Bit Nibble Signal Name

MEMREQ VS$C171 25 7 MCC EBOX PA ACK A H
V$Cl72 24 MCC OP PA ACK A H
V$5167 23 6 MCC IBF PA ACK H
v$C215 22 EBC EBD MAST RST DLY H
VS$C173 21 MCC DEST CODE 1 H
V$C174 20 -EBD9 MEM REQ LST CYC H
Vs$C193 19 5 . MCC PORT STAT CODE 3 H
v$Cc19l 18 MCC PORT STAT CODE 2 H
v$C190 17 MCC PORT STAT CODE 1 H
V$C192 16 MCC PORT STAT CODE O H
V$A180 15 4 ICA ISTALL A H
V$Al67 14 ICA IBF REQUEST H
v$Cc231 13 MCC STAT CODE OUT 1 H
v$C226 12 -CSB EBOX FORK A H
V$A168 11 3 ICB OP MCF 3 H
V$A179 10 ICB OFP MCF 2 H
VS$A190 09 ICB OP MCF 1 H
V$A186 08 ICB OP MCF 0 H
V$A221 07 2 ICA OP ABORT A H
VSAl84 06 EBD ESTALL TO MCC H
V$A153 05 EBC EBOX MCF 5 H
V$A182 04 EBC EBOX MCF 4 H
V$A174 03 1 EBC EBOX MCF 3 H
V$Al65 02 EBC EBOX MCF 2 H
V$Al64 01 EBC EBOX MCF 1 H
V$A154 00 EBC EBOX MCF 0 H

E-31

Table E-26 MUPC Register Format

Name V$ Symbol Bit Nibble Signal Name

MUPC V$A192 07 2 MCCl1 UADR B 7 H
v$a231 06 MCC1 UADR B 6 H
V$A273 05 MCC1l UADR B 5 H
V$A274 04 MCC1l UADR B 4 H
V$A109 03 1 MCC1 UADR A 3 H
V$All0 02 MCC1l UADR A 2 H
V$A288 0l MCCl1 UADR A 1 H
V$A279 00 MCC1 UADR A 0 H

Table E-27 NATRAM Register Format

Name V$ Symbol Bit Nibble Signal Name

NATRAM V$3213 19 5 IBDC NAT CTX 2 H
V$3217 18 IBDC NAT CTX 1 H
V$3209 17 IBDC NAT CTX 0 H
v$3112 16 IBDC NAT TYPE 1 H
v$3183 15 4 IBDC NAT TYPE O H
v$3167 14 IBDC NAT REF 1 H
v$3182 13 IBDC NAT REF O H
v$3210 12 IBDC NAT CTL 1 H
v$3177 11 3 IBDC NAT CTL O H
v§3208 10 IBDC NAT SUSPEND H
v$3109 09 IBDC NAT BDEST NXT H
V$3211 08 IBDC NAT LAST H
v$3184 07 2 IBDB NAT OPAR H
V$3101 06 IBDB NAT FPA H
v$3180 05 IBDB NAT ADRS 05 H
Vv$3103 04 IBDB NAT ADRS 04 H
V$3278 03 1 IBDB NAT ADRS 03 H
V$3102 02 IBDB NAT ADRS 02 H
v$3108 01 IBDB NAT ADRS 01 H
v$3100 00 IBDB NAT ADRS 00 H

E-32

Table E-28

OPAR Register Format

Name V$ Symbol Bit Nibble Signal Name

OPAR v$4278 37 10 ICA FORCE AMUX OPAR H
v$4102 36 ICA FORCE BMUX OPAR H
v$C144 35 9 EDP OPR PAR ERR H
v$3184 34 IBDB NAT OPAR H
v$3221 33 IBDD LAT OPAR H
V$5170 32 ICAS ICS OPAR H
VSXXXX 31 8 Filler
v$4206 30 -ICA EN OP OPAR VAL H
v$8184 29 -IDP OP OPAR VALID H
v$8191 28 IDP OP LWD OPAR H
v$8154 27 7 EBE WBUS OPAR B3 A H
V§8155 26 EBE WBUS OPAR B2 A H
v$8153 25 EBE WBUS OPAR Bl A H
v$8156 24 EBE WBUS OPAR BO A H
v$0186 23 6 EBE WBUS OPAR B3 C H
v$0131 22 EBE WBUS OPAR B2 C H
v$0129 21 EBE WBUS OPAR Bl C H
v$0180 20 EBE WBUS OPAR BO C H
v$4205 19 5 EBE WBUS OPAR B3 B H
v$4123 18 EBE WBUS OPAR B2 B H
v$4210 17 EBE WBUS OPAR Bl B H
V$4209 16 EBE WBUS OPAR BO B H
V$2126 15 4 -EBE WBUS OPAR B3 H
v$2127 14 -EBE WBUS OPAR B2 H
v$2125 13 -EBE WBUS OPAR Bl H
v$2113 12 -EBE WBUS OPAR BO H
V$3153 11 3 MCD MD BUS OPAR B3 H
v$3149 10 MCD MD BUS OPAR B2 H
V$3152 09 MCD MD BUS OPAR Bl H
v$3148 08 MCD MD BUS OPAR BO H
VSXXXX 07 2 formally MCD MD BUS OPAR B3 H
VSXXXX 06 formally MCD MD BUS OPAR B2 H
VSXXXX 05 formally MCD MD BUS OPAR Bl H
VSXXXX 04 formally MCD MD BUS OPAR BO H
v$4101 03 1 IBD DBUS OPAR B3 H
v$4104 02 IBD DBUS OPAR B2 H
V$4140 01 IBD DBUS OPAR Bl H
v$4100 00 IBD DBUS OPAR BO H

Table E-29 OPBUS Register Format

Name V$ Symbol Bit Nibble Signal Name
OPBUS v$0178 31 8 OP BUS D31 H
V$0174 30 OP BUS D30 H
V$0148 29 OP BUS D29 H
V$0106 28 OP BUS D28 H
V$0203 27 7 OP BUS D27 H
V$0260 26 OP BUS D26 H
V$0153 25 OP BUS D25 H
V$0232 24 OP BUS D24 H
V$0202 23 6 OP BUS D23 H
V$0261 22 OP BUS D22 H
V$0149 21 OP BUS D21 H
V$0228 20 OP BUS D20 H
V$0285 19 5 OP BUS D19 H
V$0172 18 OP BUS D18 H
V$0154 17 OP BUS D17 H
v$0229 16 OP BUS D16 H
V$0295 15 4 OP BUS D15 H
v$0198 14 OP BUS D14 H
V$0344 13 OP BUS D13 H
v$0289 12 OP BUS D12 H
v$0301 11 3 OP BUS D11 H
V$0300 10 OP BUS D10 H
V$0293 09 OP BUS D09 H
V$0271 08 OP BUS D08 H
V$0286 07 2 OP BUS D07 H
vV$0274 06 OP BUS D06 H
V$0103 05 OP BUS DOS H
V$0275 04 OP BUS D04 H
V$0179 03 1 OP BUS D03 H
V$0264 02 . OP BUS D02 H
V$0152 01 OP BUS DO1 H
V$0233 00 OP BUS D00 H

/

Table E-30 OPCODE Register Format
Name V$ Symbol Bit Nibble Signal Name
OPCODE V$1101 07 2 ICA OPC BIT 7 A H
v$1103 06 ICA OPC BIT 6 A H
V$1238 05 ICA OPC BIT 5 A H
V$§1125 04 ICA OPC BIT 4 A H
v$1240 03 1 ICA OPC BIT 3 A H
V$1237 02 ICA OPC BIT 2 A H
v$1141 01 ICA OPC BIT 1 A H
vs$1241 00 ICA OPC BIT 0 A H
Table E-31 OPMCF Register Format
Name V$ Symbol Bit Nibble Signal Name
OPMCF V$A168 03 1 ICB OP MCF 3 H
V$A179 02 ICB OP MCF 2 H
V$A190 0l ICB OP MCF 1 H
V$A186 00 ICB OP MCF O H

E-35

Table E-32 OPPORT Register Format

Name V$ Symbol Bit Nibble Signal Name

OPPORT V$6186 63 16 ICA OPV CTL 0 H
V$6190 62 ICA OPV CTL 1 H
V$5149 61 -ICAG SET OPV FB H
v$5141 60 15 -ICB SET OPV H
V$6158 59 -ICB9 IMD OPV LAT H
V$6154 58 -ICB9 PEND IMD OPV H
VSXXXX 57 Filler
VS$XXXX 56 14 Filler
V$Ccl72 55 MCC OP PA ACK A H
V$6127 54 MCC OP PA ACK B H
V$XXXX 53 Filler
VSXXXX 52 13 Filler
v$0191 51 EBD OPBUS VALID H
V$1206 50 -FBA OPBU VAL TO FBM H
VSXXXX 49 Filler
v$Cc212 48 12 -ICB ALWAYS OP VALID H
v$Cc211 47 -ICB ALMOST OP VALID H
V$6155 46 -ICB8 ALMOST SET OPV H
VEXXXX 45 Filler
V$A221 44 11 ICA OP ABORT A H
vs$c183 43 ICA OP ABORT B LAT H
V$1120 42 ICA IBF OR OP FLUSH H
V$A264 41 ICA MBOX FLUSH A H
v$C188 40 10 -ICA OP FLUSH B H
V$4206 39 -ICA EN OP OPAR VAL H
v$s184 38 -IDP OP OPAR VALID H
V$XXXX 37 Filler
VEXXXX 36 9 Filler
V$C201 35 ICB KILL OP WRT H
VSE102 34 MCC NEXT OP WRT H
VSE186 32 MCC TRAP OP WCHK H
V$E135 31 8 MCC TRAP OP WRT H
V$C176 30 -EBD9 EN OP WRT STALL H
V$5254 29 -ICAG OP REQ CIP LAT H
V$5148 28 ICB SET OP WRT CIP H

Table E=32 OPPORT Register Format (Cont.)

Name s V$ Symbol Bit Nibble Signal Name

OPPORT V$6109 27 7 -ICBA OP WRT CIP H
v$Cc213 26 -EBD9 OP WRT IN PROG H
V$C148 25 -EBD9 OP WRT LST CYC H
v$6134 24 -ICA OP WRT LAT H
v$C170 23 6 -ICA EN OP WRT ACK H
V$6165 22 -ICA ENA OP MD RESP H
VSXXXX 21 Filler
v$4147 20 -ICA IVA SEL OP VA H
V$4176 19 S -ICA ENA OP VA LD H
V$5131 18 IDP OP VA BIT 00 H
v$5241 17 IDP OP VA BIT 01 H
V$A186 16 ICB OP MCF 0 H
V$A190 15 4 ICB OP MCF 1 H
V$A179 14 ICB OP MCF 2 H
V$A168 13 ICB OP MCF 3 H
V$XXXX 12 Filler
V$A185 11 3 ICB OP MEM CTX O H
V$A170 10 ICB OP MEM CTX 1 H
V$A183 09 ICB OP MEM CTX 2 H
v$3143 08 ICB OP MEM REQ H
v$4148 07 2 ICB OP MEM REQ A H
VS$XXXX 06 Filler
v$6182 05 -ICA SET FA OPMEM REQ H
V§Cl17 04 ICB FA OP MEM REQ H
VEXXXX 03 1 Filler
v$4172 02 IDP5 IVA SEL OP VA A H
vs$4221 01 IDP5 IVA SEL OP VA B H
v$4108 00 IDPS5 IVA SEL OP VA C H

E-37

Table E-33 PAACK Reyister Format

Name V$ Symbol Bit Nibble Signal Name

PAACK VsD167 06 2 -MCC EBOX PA ACK B H
V$Cl71 05 MCC EBOX PA ACK A H
V$6142 04 EBD EB PA ACK LTH H
VS$XXXX 03 1 Filler
V$5167 02 MCC IBF PA ACK H
Vs$C172 01 MCC OP PA ACK A H
vV$6127 00 MCC OP PA ACK B H

Table E-34 PAMD Register Format

Name V$ Symbol Bit Nibble Signal Name

PAMD Vv$D167 23 6 ~MCC EBOX PA ACK B H
V$Al184 22 EBD ESTALL TO MCC H
Vs$C215 21 EBC EBD MAST RST DLY H
V$Al67 20 ICA IBF REQUEST H
V$A264 19 5 ICA MBOX FLUSH A H
V$A180 18 ICA ISTALL A H
V$A221 17 ICA OP ABORT A H
V$A277 16 ICA MBOX FLUSH B H
VS$A168 15 4 ICB OP MCF 3 H
V$AL179 14 ICB OP MCF 2 H
V$A190 13 ICB OP MCF 1 H
V$Al186 12 ICB OP MCF 0 H
V$C193 11 3 MCC PORT STAT CODE 3 H
V$C191 10 MCC PORT STAT CODE 2 H
VS$C190 09 MCC PORT STAT CODE 1 H
V§C192 08 MCC PORT STAT CODE 0 H
V$C172 07 2 MCC OP PA ACK A H
V$5167 06 MCC IBF PA ACK H
V$A153 05 EBC EBOX MCF 5 H
V$A182 04 EBC EBOX MCF 4 H
V$A174 03 1 EBC EBOX MCF 3 H
V$Al65 02 EBC EBOX MCF 2 H
V$Al64 0l EBC EBOX MCF 1 H
V$Al154 00 EBC EBOX MCF 0 H

E-38

Table E-35 PAMM Register Format

Name V$ Symbol Bit Nibble Signal Name

PAMM V$A212 04 2 MAP9 PAMM CONF A H
V$Al173 03 1 MAP9 PAMM CONF 8 H
V$AL72 02 MAP9 PAMM CONF 4 H
VSA224 01 MAP9 PAMM CONF 2 H
V$A216 00 MAP9 PAMM CONF 1 H

Table E-36 PARITY Register Format

Name V$ Symbol Bit Nibble Signal Name

PARITY V$9170 65 17 EBD ECS PE FLAG H
V$D158 64 EBD EDP PE FLAG A H
v$9169 63 16 EBD EDP PE FLAG H
V$9173 62 EBD EMCR PE FLAG H
V$9174 61 EBD USTK PE FLAG H
V$9143 60 EBD WBUS PE FLAG H
VS$XXXX 59 15 Filler
V$XXXX 58 Filler
VSXXXX 57 Filler
V$9110 56 EBD ECS PE LST CYC H
V$C219 55 14 ~CSB ECS PAR ERR H
V$E164 54 CSA PAR ERR H
VS$F104 53 CSAS CSA PAR H
V$F124 52 -CSB CS PAR OK A H
V$Cl42 51 13 CSB USTK PAR ERR H
VSE140 50 -CSBR FLIP USTK PAR H
VSE151 49 CSBS DATA PAR H
V$Cl44 48 EDP OPR PAR ERR H
V$C1l60 47 12 -EDP RESULT PAR ERR H
v$8134 46 DISA BYTE 10 PAR H
V$8165 45 EDPI DISA BYTE 32 PAR H
V$8126 44 EDPI FLIP WREG PAR H
V$9150 43 11 EBC FLIP WBUS PAR BO H
V$9149 42 EBC FLIP WBUS PAR Bl H
V$9145 41 EBC FLIP WBUS PAR B2 H
Vv$9144 40 EBC FLIP WBUS PAR B3 H

E-39

Table E-36 PARITY Register Format (Cont.)

Name V$ Symbol Bit Nibble Signal Name

PARITY VS$XXXX 39 10 Filler
V$C159 38 -EBC MCF RAM PAR ERR H
V$D142 37 EBCA MCF PAR H
V$D133 36 EBCH FLIP MCF RAM PAR H
VEXXXX 35 9 Filler
v$0240 34 FA17 GPR PPAR 00 H
V$0241 33 FAl17 GPR PPAR 01 H
v$0122 32 FAl7 GPR PPAR 02 H
v$0121 31 8 FAl9 UWD PARITY H
V$0169 30 FBM CS PAR ERROR H
V$0165 29 FBM FDRAM PAR ERROR H
V$1275 28 FM16 UWD PARITY H
VSXXXX 27 7 Filler
v$6128 26 IBD BUF DRAM PE H
V$6129 25 IBD BUF IBUF PE H
V$4201 24 ICA FORCE GPR PE H
V$6115 23 6 ICA FORCE RLOG PE H
V$9179 22 ICA ICS PE H
v$9181 21 ICB IBUF PE H
V$9101 20 ICB IDRAM PE H
v$9100 19 5 ICB RLOG PE H
V$9176 18 IDP IAMUX PE H
v$9182 17 IDP IBMUX PE H
VSXXXX 16 Filler
VS$XXXX 15 4 Filler
VSXXXX 14 Filler
V$2165 13 MAP2 <29:4> PAR H
VSXXXX 12 formally MCC1l MMS PAR ERR H
VEXXXX 11 3 formally MCC2 ACCESS PAR H
V$A118 10 MCCC U CPR PAR A H
V$A126 09 MCCC U CPR PAR B H
v$2109 08 MCCM INV CACH BYT PAR H
V$A201 07 2 MCD3 ABUS DAT PERR H
V$A251 06 -MCDU CACH DAT PERR H
V$A250 05 -MCDU WR DAT PERR H
V$A200 04 MAP2 ABUS ADR PERR H
V$A204 03 1 MAPL TAG PERR H
V$A202 02 MAPL TAG W PERR H
V$A148 01 -MAPR TB PERR H
V$9162 00 MCC MBOX CS PE H

E-40

Table E-37

PSL Register Format

Name V$ Symbol Bit Nibble Signal Name
PSL VSE117 20 6 EBE PSL CM TO CSB H
Vv$C1l13 19 5 -EBE PSL TP H
V$E112 18 EBD UTRAP VECTOR 4 H
VSE152 17 EBE PSL IS TO CSB H
Vv$al44 16 EBE CURMOD 1 TO MCC H
V$A162 15 4 EBE CURMOD 0 TO MCC H
VEXXXX 14 Filler PREVMODE
VEXXXX 13 Filler PREVMODE
V$D125 12 EBE PSL IPL 4 H
v$D127 11 3 EBE PSL IPL 3 H
V$D126 10 EBE PSL IPL 2 H
V$D131 09 EBE PSL IPL 1 H
V$D130 08 EBE PSL IPL O H
VEXXXX 07 2 Filler DECIMAL OVERFLOW
VEXXXX 06 Filler FLOATING UNDERFLOW
V$C1l09 05 -EBE PSL IV TO EBD H
VEXXXX 04 Filler TRACE FAULT PENDING
V$9171 03 1 EDP PSL N BIT A H
V$9172 02 EDP PSL Z BIT A H
v$9168 01 EDP PSL V BIT A H
V$9167 00 EDP PSL C BIT A H
Table E-38 REGBUS Register Format
Name V$ Symbol Bit Nibble Signal Name
REGBUS V$2205 07 2 REG BUS 7 H
v$2203 06 REG BUS 6 H
v$2227 05 REG BUS 5 H
v$2226 04 REG BUS 4 H
v$2224 03 1 REG BUS 3 H
vV§$2225 02 REG BUS 2 H
v$2204 01 REG BUS 1 H
v$2223 00 REG BUS 0 H

Table E-39 STALL Register Format

Name V$ Symbol Bit Nibble Signal Name

STALL V$6202 28 8 ICA IFORK NOP H
v$3189 27 7 ICA IFORK CYCLE H
v$6185 26 ICA CTX UNALIGNED H
V$5133 25 ICA6 UTRAP CTL 1 H
V$5132 24 ICA6 UTRAP CTL O H
V$A180 23 6 ICA ISTALL A H
v$9107 22 ICA ISTALL B H
v$C205 21 ICA ISTALL BUF A H
V$6137 20 ICA ISTALL C H
V$3197 19 5 ICA ISTALL D H
v$4156 18 ICA ISTALL E H
Vv$5196 17 -ICB. ID FULL STALL H
v$3190 16 ICA PC ISTALL A H
V$9103 15 4 EBD RSV MODE H
V$9100 14 ICB RLOG PE H
V$5123 13 ICA7 ICS PAR ERR H
v$9181 12 ICB IBUF PE H
v$9101 11 3 ICB IDRAM PE H
V$9176 10 IDP IAMUX PE H.
V$9182 09 IDP IBMUX PE H
VS$XXXX 08 Filler
v$C172 07 2 MCC OP PA ACK A H
V$6127 06 MCC OP PA ACK B H
V$5167 05 MCC IBF PA ACK H
V$9162 04 MCC MBOX CS PE H
v$5221 03 1 EBD ESTALL TO ICA H
V$5186 02 EBE IBOX ERR LTH A H
V$9170 01 EBD ECS PE FLAG H
V$9110 00 EBD ECS PE LST CYC H

E-42

Table E-40 UPCSAV Register Format

) Name V$ Symbol Bit Nibble Signal Name
UPCSAV V$E173 12 4 CSBQ UPCSAVE 12 H
VSE172 11 3 CSBQ UPCSAVE 11 H
V$E143 10 CSBQ UPCSAVE 10 H
VSE157 09 CSBQ UPCSAVE 09 H
V$E156 08 CSBQ UPCSAVE 08 H
V$E150 07 2 CSBQ UPCSAVE 07 H
V$E171 06 CSBQ UPCSAVE 06 H
VSE174 05 CSBQ UPCSAVE 05 H
VSE170 04 CSBQ UPCSAVE 04 H
V$E149 03 1 CSBQ UPCSAVE 03 H
V$E141 02 CSBP UPCSAVE 02 H
V$E142 01 CSBP UPCSAVE 01 H
V$E148 00 CSBP UPCSAVE 00 H
E-43

Table E-41 WBus Register

V$4178 01 WBUS DO1
v$4188 00 WBUS D00

Name V$ Symbol Bit Nibble Signal Name
WBUS v$4232 31 8 WBUS D31 H
v$4231 30 WBUS D30 H
v$4227 29 WBUS D29 H
V$4223 28 WBUS D28 H
v$4107 27 7 WBUS D27 H
V$4257 26 WBUS D26 H
v$4271 25 WBUS D25 H
V$4256 24 WBUS D24 H
V$4251 23 6 WBUS D23 H
V$4252 22 WBUS D22 H
V$4266 21 WBUS D21 H
v$4253 20 WBUS D20 H
v$4157 19 5 WBUS D19 H
v$4131 18 WBUS D18 H
v$4127 17 WBUS D17 H
v$4128 16 WBUS D16 H
v$4247 15 4 WBUS D15 H
v$4243 14 WBUS D14 H
v$4244 13 WBUS D13 H
v$4245 12 WBUS D12 H
v$4122 11 3 WBUS D11 H
v$4274 10 WBUS D10 H
v$4276 09 WBUS D09 H
V$4202 08 WBUS D08 H
v$4184 07 2 WBUS D07 H
v$4182 06 WBUS D06 H
v$4158 05 WBUS DO5 H
v$4177 04 WBUS D04 H
V$4194 03 1 WBUS D03 H
v$4191 02 WBUS D02 H
H
H

F.l

APPENDIX F
DIAGNOSTIC NAMING CONVENTIONS

MICRODIAGNOSTICS

Each microdiagnostic name uses the five-letter code EXXXX, where
each letter indicates the following.

b.

e,

First letter letter: E = VAX family

Second letter: D = 8600-specific and shared 8600/8500, or
E = 8650

Third letter: K = CPU
Fourth letter: identifies the specific diagnostic

Fifth letter: identifies the file type

Figure F-1 illustrates how this convention is used to name one of
the EBox diagnostic files. Table F-1 summarizes the meaning of the
fifth letter in the file name.

L TOP LEVEL COMMAND FILE
EBUX MICRODIAGNOSTIC

CPU DIAGNOSTIC
600

VAX

MR-15438

Figure F-1 Diagnostic Naming Convention

Table F-1 summarizes the meaning of the fifth letter in the filename.

F-1

Table F-1 Diagnostic Naming Convention (Fifth Letter)

Fifth File Extension Description

Letter Type List

A . COM .COM Top-level command file for loading
and initializing a microdiagnostic
for execution

B .BPN +MCR FBox adder microcode

C .COM .COM Command file to deposit test
patterns in cache

D .BPN .MCR IDRAM microcode

E .COM .COM Command file to deposit test
patterns in the EBox scratchpad RAMs

F +«BPN +MCR FBox multiplier microcode

G .BPN .MCR FDRAM microcode

H .BPN .MCR MBox access RAM information

I +.BPN .MCR IBox microcode

M .BPN .MCR MBox microcode

N +«BPN +MCR MBox cycle condition code RAM
information

u .BPN .MCR EBox microcode

X .BPN .MCR EBox context RAM information

Y .BPN .MCR EBox MCF RAM information

The following example describes one of the IBox microdiagnostics
to illustrate how these file-naming conventions work.

EDKRA.COM -- This top-level command file is invoked to
load the microcode and initialize the CPU for running
EDKRA, which 1is also the official name for this
diagnostic.

EDKRU.BPN -- This file contains the main diagnostic test
microcode loaded into the EBox control store.

EDKRU.MCR -- This is the listing for the EBox microcode
in the microfiche library.

F-2

. EDKRI.BPN -- This file contains the diagnostic microcode
loaded into the IBox control store.

. EDKRI.MCR -- This is the listing for the IBox diagnostic
microcode.

. EDKRE.COM -- This command file is invoked from within
EDKRA.COM and contains a set of DEPOSIT/ESC commands used
to load test data into the EBox scratchpad RAMs.

. EDKRC.COM -- This command file is invoked from within
EDKRA.COM and contains a set of DEPOSIT/CACHE commands
used to load test instructions and data into cache.

F.2 MICROHARDCORE TESTS

The microhardcore tests contained within EDKAA are described in
three different types of listings with either a .DOC, .MCR, or
.LST extension. EDKAA.DOC is a single document file that contains
operating instructions and program descriptions, including a
discussion of error reporting. Table F-2 lists the names of all
the microcode listings used by MHC, while Table F-3 lists all
MACRO-11 program module listings.

Normally, the user should be able to use the error information
displayed by the program to resolve most hardware faults and
should seldom need to refer to the program listings. If it is
necessary to go to the listings for additional information, the
user may need to reference the listings. This involves the
following procedure.

1. Refer to EDKAA.DOC for general test information.

2. Refer to the appropriate .LST listing shown in Table F-3
based on which test failed.

3. Refer to the appropriate .MCR listing shown in Table F-2
if the failing test uses test microcode loaded into the
CPU control stores.

F.3 MACRODIAGNOSTICS

For additional information on the naming conventions and
organization of the VAX family diagnostics, refer to the EVNDX
document in the microfiche library. This document provides a
complete index of all the VAX diagnostics, not only those specific
to the VAX 8600 and VAX 8650 systems. Like previous members of
the VAX family, certain macrodiagnostics are system-specific and
use a unique letter in the diagnostic name to indicate the system
type. The letter chosen for the VAX 8600 was D. Note that in the
VAX 8600-specific diagnostics shown in Table F-4, D is the second
letter in the diagnostic name.

Table F-2 MHC Microcode Listings

Name Description

DKABAA.MCR FBA control store file for load 1

DKABBA.MCR FBA control store file for load 2

DKABCB.MCR FBA control store file for load 3

DKAFAA.MCR FBM control store file for load 1

DKAFBA.MCR FBM control store file for load 2

DKAIAA.MCR IBox control store file for load 1
DKAMAA .MCR MBox control store file for load 1
DKAMBA.MCR MBox control store file for load 2
DKAMCA .MCR MBox control store file for load 3
DKAMDA.MCR MBox control store file for load 4
DKAUAA ,MCR EBox control store file for load 1
DKAUBA.MCR EBox control store file for load 2

Table F-3 MHC MACRO-11 Program Listings

Name Description

MHCCLK.LST Clock Logic Tests

MHCEBA.LST EBox MCF RAM, CTX RAM, and logic tests
MHCEBB.LST EBox microcode tests

MHCEBC.LST EBox SDB and control store tests
MHCFBX.LST FBox logic, RAM, and microcode tests
MHCIBX.LST IBox logic, RAM, and microcode tests
MHCLMT.LST Logical multi-box tests

MHCMBA.LST MBox logic and RAM tests

MHCMBB.LST MBox microcode tests

MHCMHC.LST Root control section and handlers

Table F=4 VAX 8600-Specific Macrodiagnostics

Name Description

EDSAA VAX Diagnostic Supervisor

EDKAB VAX Basic Instruction Exerciser

EDCLA VAX DW780, CI780, DR780, RH780 SBI Exerciser
EDKAX VAX CPU Kernel Exerciser

APPENDIX G
DIAGNOSTIC LISTINGS

G.1 OVERVIEW

This appendix provides an overview of the various types of program
listings that the user must deal with when performing corrective
maintenance on VAX 8600 and VAX 8650 systems. In general, there
are three major types of listings supplied with the system
microfiche library.

1. Listings for the T-11 programs that run in the console
front-end subsystem.

2. Listings for the microcode that reside in the VAX CPU
control RAMs when running diagnostics.

3. Listings for the macrocode that reside in the VAX
internal memory subsystem.

Depending upon the nature of the hardware fault, the user may find
it necessary to refer to several different listings while
analyzing the failure symptoms. Hopefully, the diagnostic will
display sufficient fault isolation messages so the need to refer
to the actual program listings will be minimized.

The following sections summarize the major types of listings
available with the system microfiche library. No attempt is made
to describe how to read and interpret the program listings. It is
assumed that the reader knows how to interpret the output listings
of the macro and micro assemblers used to develop the system
firmware and software.

G.2 T-11 MACROCODE LISTINGS
There are three major sets of program listings that describe the
T-11 macroprograms used in the system.

1. The VAX 8600-8650 console software (EDOAA)
2. The console diagnostic (EDOBA)
3. The PROM code

The console software program consists of a set of program modules,
each with its own listing. The program consists of six major
modules.

1. DCN -~ Console control code

2. DCP -- Diagnostic Control Program
3. MCP -- Macro Control Program

4. EMM -- EMM control code

5. HEX -- HEX debugger code

6. MHC -- Microhardcore control code

The listings for each of the six major modules are divided
according to specific function into two or more separate
sublistings with unique identifying names. They all have a .LST
extension to identify them as MACRO-11 listings. For example, the
listing DCNERR.LST describes the error handling code within the
DCN main console control module. MCPMCP.LST describes the main
control code within the MCP macro control module.

In addition to the .LST listings, there are three macro definition
listings with the filename extension .MAC and one map listing with
the .MAP extension. For example, the listing MCPMLB.MAC defines
the macros used by the MCP module. The file EDOAA.MAP describes
how all the program modules are linked to absolute T-11 addresses.
It is used to locate specific segments of program code in T-11
memory.

The listing EDOBA.LST describes all the code in the console
diagnostic and uses macros defined in the file SYSMAC.MAC.

Finally, the console PROM code is described in the PROMV36.LST
listing.

G.3 MICROCODE LISTINGS
There are three major classes of microcode listings supplied with
the system microfiche library.

1. Test microcode used by MHC

2. Test microcode used by the microdiagnostics

3. System microcode used by the operating system and the
microdiagnostics

All the microcode listings are identified by the .MCR filename
extension.

G.4 MICROHARDCORE LISTINGS
EDKAA, the MHC diagnostic, is described in three sets of listings.

1. EDKAA.DOC provides operating instructions and a general
description of the operation.

2. The xxxxxx.LST files describe the T-11 based MACRO-11
program modules where "xxxxxx" is the name of the module.

Appendix F, Table F-3, lists the individual MHC program
module names.

3. The xxxxxx.MCR files describe the test microcode EDKAA
uses. Table F-3 lists the microcode load module names.

G.5 VAX MACROCODE LISTINGS

The two major classes of VAX macrocode versions are the operating
system code and the VAX macrodiagnostics. Refer to the VMS
operating system microfiche 1library for information on the
operating system. Refer to the EVNDX document within the VAX
macrodiagnostic microfiche library for detailed information on how
the VAX macrodiagnostics are named, indexed, and described. It is

beyond the scope of this manual to describe VAX generic software
documentation.

APPENDIX H
FAULT ISOLATION OVERVIEW

H.1 INTRODUCTION

This 4appendix summarizes the fault isolation design process
implemented by the VAX 8600/8650 microdiagnostics. It provides
background information on how all the parts of the diagnostic
software interplay to display fault isolation messages on the
operator's console. Understanding this process will enable the
user to interpret the output more intelligently and to deal with
unusual problems that affect the process itself.

H.2 MAJOR COMPONENTS
Fault isolation in the VAX 8600/8650 system involves a complex
interaction between several major components, as summarized below.

1. A set of microdiagnostic tests, resident in the EBox
control Store, that provide stimulus/response testing of
the individual hardware logic elements

2. A set of predefined EBox scratchpad locations that
contain fault syndrome information when a microtest
detects a failure

3. Diagnostic Support Microcode (DSM), also resident in the
EBox control store, that provides the interface between
the microdiagnostic tests and the Diagnostic Control
Program (DCP) running in the T-11 console processor

4. A set of files stored on the RL02 and used by DCP to
control the process

Since the whole process hinges on the contents of the files
resident on the RL02, let's examine them first and then proceed to
describe the isolation sequence. Each microdiagnostic program is
associated with the following set of files that are read by DCP
and used to control the process.

NOTE
XXXXX = name of the microdiagnostic.

1. XXXXx.COM -- This file contains a set of commands
executed by DCP to do the following.

. Initialize the required data structures within DCP
itself.

. Define the name of the microdiagnostic being invoked.

° Define the EBox scratchpad locations used to convey
fault information.

. Load the EBox control store with the actual
microtests from the RLO2.

° Load any other CPU control store (MBox, IBox, and
FBox) with any microcode required to support running
the microdiagnostic.

. Load the EBox scratchpad to initialize test data used
by the microtests.

2. XXXXE.COM -- This file, invoked from within xxxxx.COM,
contains a set of DEPOSIT/ESC commands to initialize the
EBox scratchpad.

3. xxxxC.COM -- This file, also invoked from within
XXXxX.COM contains a set of DEPOSIT/CACHE commands used
to load test data into the data cache for some
microdiagnostics.

4. XxxxxU.BPN - This file contains the actual microcode
loaded into the EBox control store.

5. XxXxXX.DCI =-- This file contains a set of isolation
algorithms read by DCP during actual fault isolation
(basic isolation algorithms).

6. XXXxx.DCB -- This file contains a set of additional
isolation statements read by DCP during fault isolation
(timing information for clock bursting).

H.3 MICRODIAGNOSTIC TEST SEQUENCES

This section describes a typical sequence of events from the time
the user types the @xxxxx.COM command, until a fault isolation
message is displayed on the console terminal. The EBox
diagnostic, EDKBA, will be used to illustrate the sequence. Refer
to Figure H-1.

CONSOLE ._"—-PEBOX

EDKBA.COM

EoKbADCE

ESCRATCH

TEST DATA

ERROR
SYNDROME

T-11 RAM @

DC
DIAGNOSTIC
CONTROL
PROGRAM

—L_©

cTY r ““““ 1
ISOLATION| ‘CK‘ |
IMESSAGE | |
1 |
| |
| 1

| F N ——
LOGIC UNDER TEST

@ DC>@EDKBA
@ DC>>START

MA-15439

Figure H-1 Fault Isolation Summary

At the DC> prompt, the user types @EDKBA to command DCP
to initialize the system for running the EBox
microdiagnostic.

DCP reads the EDKBA.COM file from the RL02 system into
T-11 RAM and executes the commands needed to initialize
DCP, load the EBox control store with the microtests from
EDKBU.BPN, and load the EBox scratchpad with the test
data specified by EDKBE.COM.

Once loaded, DCP responds with the DC>> prompt to wait
for user input.

The user now types START to begin execution.

DCP sends the START command to DSM, which in turn starts
the microdiagnostic at test 1.

The microdiagnostic executes test 1 a specified number of
times, as determined by the /PASSES:n switch, and if no
errors are detected, signals completion to DCP via a call
to DSM.

NOTE
The default setting of the /PASSES
switch is n=100.

10.

11.

12.

13.

14.

DCP then signals DSM to run test 2. It will run the test
100 times and repeat this sequence until all tests have
been run.

When the microdiagnostic detects a solid fault in one of
the tests, it leaves the fault data in the previously
defined EBox scratchpad locations and signals DCP that a
fault was detected via a call to DSM.

DCP retrieves the fault data from the EBox Sscratchpad,
formats it, and displays it on the terminal.

Using the test number of the failing microtest, DCP now
reads the EDKBA.DCI file to retrieve the isolation
algorithm information for that test.

DCP executes the isolation algorithm to finally display
the fault isolation information that indicates possible
failing module(s) and or component(s).

An isolation algorithm is nothing more than DCP executing
a hierarchy of IF statements that analyze test data in
one of the following ways.

a. Direct callout -- The cause of the failure is
directly known since the microcode has left a
specific error code or fault number in a predefined
scratchpad location.

b. Scratchpad analysis -- All pertinent test data is in
the scratchpad, but the isolation algorithm must
perform bit-level analysis to isolate the fault
properly.

c. SDB analysis -- The isolation algorithm requires that
DCP burst the failing test to key test points, and
make isolation analysis decisions based on specific
SDB data at those points.

When necessary, the EDKBA.DCB file may also be read by
DCP to obtain additional isolation instructions. These
instructions call for restarting the failing test using
clock bursting techniques to retrieve additional fault
symptom information.

After completing its isolation process, DCP returns to
the DC>> prompt to await user input.

At this point, the user can use the isolation information
to decide which modules, or which components on a module,
to replace.

In summary, the actual logic testing is done by the microcoded
tests executed out of the EBox control store. The results of the
tests are left in designated locations in the EBox scratchpad.
The fault isolation process is carried out by a T-11 based
program, DCP, under the direction of isolation algorithms from
files stored on the RL0O2 disk pack. As a result of this process,
final isolation information is displayed on the console terminal.

The actual design process used to implement system fault isolation
will be discussed next.

H. 4 FAULT ISOLATION STRATEGY

This section will explain the fault isolation strategy and
criteria used to define solid faults that are amenable to
isolation call-out. First, let's define how we classify a solid
fault. A solid fault must meet two requirements.

1. It must cause a microtest to fail every pass as specified
by the pass count at run time. The default is that each
microtest will be executed 100 times.

2. Each time the failure occurs, it must yield the same
error syndrome. That is, the data error patterns must be
identical for each pass of the failing test.

Only faults meeting these two requirements will invoke DCP to
execute the isolation algorithms specified by the contents of the
.DCI and .DCB files. Non-solid faults result in displaying the
error data which the user must manually analyze. The output for
non-isolatable faults includes the following information.

1. Error reports for up to a maximum of 10 unique error
syndromes

2. Counts of the number of times the test passed and failed

3. Count of the number of syndromes encountered, if more
than 10 (a message 1is displayed indicating this
condition)

DCP will display a default maximum of 10 different error
syndromes.

The user can force the invocation of the isolation process for
non-solid faults if the test fails on the first and subsequent
passes with different error syndromes. The user simply sets the
/PASSES: switch to 1 before starting the test. This forces it to
become solid since it now fails every pass (1) with the same
syndrome (1). When using this technique, the isolation data may
be invalid since the algorithm producing it assumes that the error
syndrome was constant.

This discussion will now focus on the mechanics of coarse and fine
isolation.

H.4.1 Isolation in General

Refer to Figure H-2. Assume that the wuser is running a
microdiagnostic consisting of 14 tests, Tl through TE. When
started, each test is run 100 times (default) and a failure is
detected by test 7. Each time test 7 fails, it leaves error
information in the EBox scratchpad that conveys the state of the
hardware at the time of the failure. If this error information is
the same for all 100 passes, the fault is classified as solid.
DCP will then invoke the isolation process, as directed by the
contents of the .DCI file, to generate the isolation output. The
output displayed consists of a dump of the error data itself, plus
an isolation report that may include a brief description of what
the failure may be and a 1list of suspected module(s) and
components.

MICRODIAGNOSTIC

BEGIN END

T1|T2ITBIT"[TSITGIT?ITBITB|TAITB|TG|TDITE

/ \ HARDWARE STATE
AT END OF TEST 7
/ \ DETECTING SOLID FAULT

-DCI
ALGORITHM
FORT7

P1|PZIP3 P4[P5

END
BEGIN

COARSE
ISOLATION

|_crock
BURST

HARDWARE STATE AT END
OF PHASE 3 IN TEST 7

.DCB
ALGORITHMS

FINE ISOLATION

MA-15481

Figure H-2 Fault Isolation Overview

)

H.4.2 Isolation with Bursting

Burst isolation involves repeating the failing test using a clock
) bursting technique to capture the state of the hardware logic at
intermediate check points within the failing test. If available,
the isolation algorithms within the .DCI file will instruct DCP to
read additional information from the .DCB file. DCP will be asked
to restart test 7 at the beginning, "burst"™ the clock the required
number of ticks to capture the state at the end of P3, for
example, and examine the state of specific SDB signals. This
information provides more detailed localization of the fault.
H.4.3 Summary of Fault Isolation)
Briefly, the fault isolation strategy involves the following
steps.

1. The microdiagnostic detects the failure and saves the
error information.

2. DCP simply retrieves, formats, and displays this error
information if the fault is non-solid (no isolation).

3. DCP uses the .DCI and .DCB files to analyze the error
information and append a 1list of possible failing
module(s) and components.

As VAX 8600 and 8650 systems mature, users will learn more about
how they fail, how they display the failure symptoms, and these
symptoms can be more accurately associated to the Field
Replaceable Unit (FRU). The microdiagnostics and 1isolation
algorithms can then be modified and expanded to provide more
accurate and concise fault isolation displays.

H.5 ISOLATION DESIGN PROCESS
Refer to Figure H-3. The design process involves three
programming groups. They jointly produce all the system

components needed for VAX CPU fault isolation. The process begins
when the diagnostic engineer designs the microdiagnostic tests and
isolation algorithms. It ends when the service engineer runs the
microdiagnostic on the failing system, wusing the 1isolation
call-out messages to indicate the possible failing modules.

)

ssed01g ubiseq uorjefosI 3[neg €-H 2anb1g

oPrSLEN
JWVN 3114 TOBWAS HITBWISSYOEIIN AAAAA
5I1SONOVIO X083 = VENQ
JWVN DIISONDVIOOUDIW XXXXX 3LON
(aaxaani
it NOILYWHO3NI
IVYNOIS-80S
NOILVIWHO4NI
— T08SWAS 3000N
WYHOO0Ud
¥INIWOI
NOLLVI0SI
WYHOOUd LI-L
NouvIoS WYa50ud 111
AdIHIA
3LYYINIO WYHO0Hd
NOILOVHIX3
L] viva
NOILVLS]
1S3l
NOILVI0S! HLIM SS300Hd

NOIS3Q JILSONOVIGOHIIW

H.5.1 Microdiagnostic Design Process

The diagnostic engineer analyzes the hardware logic and designs a
logical sequence of microcoded tests to stimulate specific logic
circuits and check for the correct responses. For each incorrect
response, the engineer optionally assigns a fault identification
number and saves the results of the test as an error syndrome in
one or more (up to 16) EBox scratchpad locations. This error
syndrome is usually the following information.

Test number that failed

Fault identification number

Data patterns used to stimulate the logic under test
Expected response data patterns

Actual response data patterns

Difference data patterns between expected and actual

@0 0000

For each fault defined, the diagnostic engineer must provide a
procedure for analyzing the error syndrome information so as to
associate it with a fault isolation message that clearly indicates
the suspected module(s) and components that could be causing the
failure. These analysis procedures are then coded as algorithms
using a specialized VAX 8600/8650 fault isolation language and

embedded into the actual microdiagnostic program along with the
test microcode.

When the diagnostic engineer assembles the program, the
microassembler produces three files that are used as inputs to the
isolation compiler process: xxxxx.ULD(binary), xxxxx.MCR(listing),
and XXXXX.MIC (source). An indirect command file (xxxxx.COM)
specifies the procedure for 1loading and initializing the
microdiagnostic at run time.

In summary, the diagnostic engineer designs the actual test
microcode and the algorithms for interpreting and reporting the
results to the service engineer. Next will be a discussion on how
this information is used by the rest of the process.

H.5.2 UCBLD Utility

The microassembler produces a binary loadable file, xxxxx.ULD,’
that must be loaded eventually into the EBox control store from
the RL0O2 system via the console subsystem. This file is processed
by the UCBLD (Microcode Build) utility to generate an encoded
binary file, xxxxx.BPN, that can be stored efficiently on the RLO02
system and read by the console software at load time.

H.5.3 Data Extraction Utility

This utility uses the microassembler-generated files and extracts
the embedded isolation language statements to produce a source
file, xxxxx.ISO, that can be read and compiled by the isolation
compiler program. A by-product of this program is a set of test
documentation files that can be used to review the actual test
algorithms implemented in the microdiagnostic, and to understand
the actual test sequencing and fault isolation strategy for any
program.

H-9

H.5.4 Isolation Compiler Program

This program was designed by the Diagnostic Tools Group to support
the fault isolation process. It accepts input from the following
four sources.

1. The .ISO file from the Data Extraction Program and the
.MIC, .MCR, and .DAT files from the microdiagnostic
design process

2. The .COM file from the microdiagnostic design process

3. The .ULD file containing microcode symbol information
from the microassembler

4. The SDB signal name information from the files specified
by SDBSIG.KEY

It compiles all of these inputs to produce three files as output.

1. The xxxxx.LIS file contains a listing and report of the
compilation.

2. The xxxxx.DCI file contains the machine-readable coarse
isolation algorithms read by DCP at run time.

3. The xxxxx.DCB file contains the machine-readable burst
data read by DCP at run time to extend and supplement the
algorithms contained in the xxxxx.DCI file. This file is
actually generated to verify proper clock-bursting
information.

Figure H-4 illustrates the relationship between the primary input
and output from the isolation compiler for the EDKBA. EDKBA,ISO
is the ASCII source input that contains the isolation algorithms
specified in the specialized language, while EDKBA.DCI contains
the machine-readable hexadecimal code read by DCP from the RL02
disk. Each source statement in the source file is assembled as a
line or more in the binary file that is terminated by the 2-byte
sequence 0D OA (<RETURN> <LINEFEED>) in hexadecimal code. Each
line in EDKBA begins with a single byte that contains a character
count of the 1line, 1including the byte count and <RETURN>
<LINEFEED> characters. The next two bytes represent the line
number of the statement in the source code. The fourth byte
specifies a 1line type 1identifier indicating how DCP is to
interpret the remaining COUNT-6 bytes in the line. The next
example will show how it works.

H-10

)

|
|

EDKBA.ISO |

A e

iFAULT ISOLATION CODE FOR EBOX TEST NO. 1

+BEGIN ISOLATION

DEFINE EFILE = EDKBA
; DEFINE F.NUM = ESPD (F.NUM)
i DEFINE XOR.CMP = ESPD (XOR.CMP)

** ISOLATION CODE WHEN FAULT NUMBER = 1 **

MESSAGE GENERATION SECTION

IF ESPD (FAULT.NUM) = 1 THEN
NT ™

PRI
VMQ REGISTER ACCESS FAILURE."

IF ESPD (PAT.1) = ESPD (EXP.DATA) THEN
PRINT *

READING THE VMQ REGISTER DID NOT PRODUCE THE SAME DATA THAT WAS
WRITTEN INTO IT."

ENDIF

ISOLATION
COMPILER

12 21 00 00 00 20 00 S0 98 91 31 00 20 24 04 00 OD OA
07 1F 00 02 01 0D 0A
12 2D 00 03 00 06 FF FF FF FF 04 01 00 00 00 07 OD OA

06 2e 00 06 UL VA
06 2E 00 06 0D O0A

26 2E 00 06 20 20 20 20 56 4D 51 20 52 45 47 49 53 54 45 52 20
41 43 43 45 53 53 20 46 41 49 4C 55 52 45 2E 0D OA

13 32 00 03 00 00 FF FF FF FF 00 03 FF FF FF FF 07 0D 0A

07 33 00 06 20 0D OA

06 33 00 06 OD 0A

4C 33 00 06 20 20 20 20 20 20 20 52 45 41 44 49 4E 47 20 54 48 45 20 56 4D S1

20 52 45 47 49 53 54 45 52 20 44 49 44 20 4E 4F 54 20 50 52 4F 44 55 43 45
20 54 48 45 20 53 41 4D 45 20 44 41 54 41 20 54 48 41 54 20 57 41 53 0D 0A

1D 33 00 06 20 20 20 20 20 20 20 57 52 49 54 54 45 4E 20 49 4E 54 4F 20 49 54

2E 0D 0A

w

06

mA.15442

Figure H-4 Isolation Files Format

Consider the following source statement.
PRINT "
VMQ REGISTER ACCESS FAILURE."
When written into EDKBA.DCI, it becomes the following.
06 2F 00 06 0D OA
06 2F 00 06 0D OA

26 2F 00 06 20 20 20 20 56 4D 51 20 52 45 47 49 53 54 45 52 20
41 43 43 45 53 53 20 46 41 49 4C 55 52 45 2E 0D 0A

The encoding of this line follows.

° 26 -- Indicates 38 bytes in the line

° 2F00 -- Indicates the line number for the PRINT statement
in the microdiagnostic listing

° 06 -- Specifies the line ID for the PRINT statement

° OD O0A -- Specifies the 1line terminator, <RETURN>
<LINEFEED>

The remaining 32 bytes between the 06 and the 0D OA contain the
ASCII message actually displayed and include four leading spaces.
It is left as an exercise for the reader to verify that these
bytes result in printing the specified message.

This brief discussion was meant to give the reader a glimpse of
the magic performed by the isolation compiler and DCP and is not
required when using the microdiagnostics.

Now we should be ready to examine the final step of the process.

H.5.5 DCP Isolation Program

DCP executes the process at run time which produces the isolation
messages the wuser needs to determine the possible failing
components. When a fault is detected by the microdiagnostic tests
running in the EBox control store, DCP retrieves the error
syndrome information specified by the xxxxx.COM command file,
reads the xxxxx.DCI and xxxxx.DCB files to retrieve the required
algorithms, and executes the analysis procedure to display the
fault isolation messages to the service engineer.

H-12

H.6 SUMMARY
System fault isolation is a complex process involving interaction

) between three separate design groups.

° The Microdiagnostic Engineering Group
'y The Fault Isolation Tools Group
° The Console Software Design Group

These groups produce a set of files, resident on the RL02 disk,
that are used at run time to test the VAX CPU and generate fault
isolation call-out messages that tell the service engineer which
module(s) and or components are the possible cause of the failure.
A list of the files required to support EBox microdiagnostic
execution is shown next.

] EDKBA.COM -- Top-level, indirect command file executed by
DCP

° EDKBU.BPN -- Test microcode loaded into the EBox control
store

° EDKBE.COM -- Lower-level command file used to set up the
EBox scratch pad

e EDKBA.DCI -- File containing the coarse isolation
algorithms

° EDKBA.DCB -- File <containing the fine isolation
information

This completes the summary of the fault isolation process.

APPENDIX I
REMOTE DIAGNOSIS

I.1 INTRODUCTION

Remote diagnosis is a key ingredient in the overall maintenance
strategy of VAX 8600/8650 system. Special hardware and software
features have been designed into the system to permit establishing
a remote connection to the console subsystem via a telephone line
for the delivery of a wide range of remote services. This appendix
provides a general description of the types of remote services
available, the general operation of the hardware and software
features designed into the system, and also includes detailed
procedures for establishing the remote connection.

I.2 REMOTE SERVICES

Figure I-1 provides an overview of remote services delivery. For
purposes of this discussion, the system under test will be
referred to as the Unit Under Test (UUT). The service delivery may
occur either via the remote port on the console module or via a
standard timesharing dial-up line. The major differences between
the two methods are as follows.

1. The standard dial-up line requires the operating system
be up and running and is limited to delivering only those
services supported by the on-line operating system. It
does not permit access to the system diagnostic console

software.
DIGITAL ‘5;' 15%;
DIAGNOSTIC cTY
CENTER
(0DC) £ oca][Vax seooesso
SYSTEM
REMOTE-»{| (UUT)
BRANCH
DISTRICT, OR TELEPHONE
REGIONAL COMMUNICATIONS
SUPPORT LINK
TIMESHARE LINE
ENGINEERING
MARLBORO, MA
wn 16201
Figure I-1 Remote Diagnosis Overview

I-1

2. The remote port permits access to the system diagnostic
console software. This allows testing a system that is
unable to run the operating system due to the nature of
the hardware fault. In addition to standalone testing
using micro and macro diagnostics, this method also
permits access to the operating system for on-line
testing.

The remote service required may be delivered from any location
with a terminal, modem, and access to a telephone communications
1ink to the UUT. In general, the service is provided from one of
three possible sources.

1. The Digital Diagnostic Center (DDC)
2. The branch, district, or regional support offices
3. The Engineering group in Marlboro, Ma.

For U.S. and Canadian customers, the primary source of delivery
will be from the DDC in Colorado Springs. Basingstoke and Valbonne
are delivery sources for Europe. Hardware and software suppert
specialists at the branch, district, or regional offices can also
dial-in to provide additional assistance. When necessary, the
hardware and software design engineers in Marlboro can connect to
provide technical expertise on the more difficult problems.

I.2.1 Types of Remote Services

The Remote Services Delivery System (RSDS) at the DDC uses a host
computer, manned by VAX 8600/8650 support specialists, to provide
the following types of services.

1. Remote Diagnosis =-- A hardware support specialist can
connect to the remote port and run diagnostics to isolate
hardware faults to a Field Replaceable Unit (FRU). All
test activity during the session is logged and saved on
the DDC host computer and can be recalled for review
during any future service calls.

2. Hardware Monitoring -- The RSDS host can connect to the
UUT and monitor system operation for some fixed interval
to attempt to capture the cause of intermittent faults.
During the monitoring operation, all system responses
from the UUT are saved in a session log and subsequently
analyzed by a hardware support specialist.

4.

I.2.2

Error File Analysis -- The RSDS host system supports
Remote File Transfers (RFT) that permit transferring
system event files from the UUT's system disk to the host
computer for analysis. This transfer can occur either via
the remote port or via a dial-up timesharing line.

In addition to the system event file, the system also
saves snapshot files created by the console software and
saved on the RL02 disk. If the system can be successfully
restarted, the snapshot files are copied to the system
disk. The RSDS host is able to transfer these files from
either the UUT's system disk or from its RL02 disk. The
host computer can also analyze these files to determine
the cause of hardware faults.

Software Updates -- The RSDS host computer can down-line
load software updates to the UUT.

Remote Services Features

The system remote connection facilities provide the following

features

1.

required by the RSDS host.

Local copy =-- This feature is turned on by a SET
LOCAL-COPY ON command from the local CTY and can not be
turned off from the remote port. It provides a means of
maintaining an audit trail of all the activity occuring
over the remote port during any session. It is necessary
to satisfy both the legal and customer requirements for
remote service sessions.

Talk mode -- This feature allows the remote user and the
local user to talk using the remote electronic
connection. All messages typed on the local CTY are
echoed on the remote RTY and vice versa. It Iis
implemented on the console by starting each message line
with the "!" character which is interpreted by the
console software as a comment and not executed as a
command line.

Parallel control/monitor mode ~- This feature allows
either the remote user or the local user to enter
commands to the system. It allows the local user to
override any command entered remotely at any time. Its
inclusion requires cooperation on the part of both the
local and remote user because input from one terminal can
disrupt the input from the other.

Remote file transfer -- This feature requires that
special software modules be installed on the system under
test to communicate with the RSDS host computer so that
files can be transferred between the two systems.

In summary, the remote diagnosis features provide an efficient and
timely method of delivering service to the customer. The next
section will describe the actual hardware and software features
implemented.

I.3 HARDWARE FEATURES

This section summarizes the hardware features provided with the
system. Three major components comprise the remote hardware in a
system.

1. A Programmable Communhications Interface (PCI) built into
the console module provides the communications 1link
between the console software and the remote port.

2. One switch and two LED indicators on the System Control
Panel (SCP) are used for operator control of the remote
port.

a. Terminal Control Switch -- This switch has two
positions to control the remote port's mode of
operation.

° REMOTE DISABLE -- In this position, remote access
is enabled in only PIO mode, limiting the level
of control given the remote user. This position
is interpreted as "REMOTE terminal activated, but
<CTRL/P> disabled.”

° REMOTE -- In this position, remote access is
allowed in both CIO and PIO mode, giving the
remote user full control of the system. This
position is interpreted as "REMOTE access
activated and <CTRL/P> enabled."

b. LED indicators -- Two green LEDs indicate the state
of the remote port.

. REMOTE ACTIVE -- This green LED is set to the ON
state when the carrier from the modem is asserted
and set to the OFF state when the carrier is
lost.

° REMOTE ENABLE -- This green LED is set to the ON
state when access to the RD port is allowed.
When REMOTE ENABLE is ON, it indicates to the
operator that the system is not secure from
remote access.

3. A modem connects the remote port on the console module to
a direct-dial phone line in the computer room.

I.4 SOFTWARE FEATURES

The hardware features just described are controlled by the
T-11 based console software. This section provides a description
of the console software's operation during remote access.

I.4.1 PROM Remote Support

The PROM code services the remote port with a much simpler
procedure than the one used by the console program, since the PROM
code has neither timer nor interrupt capability.

After the PROM code completes its power-up self-tests, which
include loopback tests on the remote PCI, it configures the PCI to
operate with default characteristics (the same defaults used by
the SET TERMINAL command). Once the PCI is set up, and if the
front panel Terminal Control Switch is in the REMOTE position, the
PROM asserts the DTR signal to the modem, allowing the modem to
turn on-line. If the DSR and CD signals from the modem are sensed
as TRUE, then all character output to the CTY will also be sent to
the remote port and input will be accepted from either. Note that
because the DTR signal to the modem is not asserted until the end
of the self-tests, it will be virtually impossible to establish a
modem connect to the remote port during system power-up
initialization while the PROM is still running. However, a
terminal connected locally with a NULL MODEM cable should not have
any problem getting control of the PROM code, and it is for this
reason that this scheme becomes useful.

Once the PROM asserts DTR to the modem, the dial-in capability is
activated. When the console program starts running, it begins to
service the remote port immediately, thus giving the remote user
control throughout PROM-to-console program transitions, and vice
versa. This means that if T-11 control transfers to the PROM
because of some unexpected condition, such as for a T-1l1 halt or
unexpected interrupt, the PROM can continue to service the remote
connection.

During the handling of connections and disconnections of the
remote terminal by the PROM code, the state of the front panel
indicators is updated in accordance with how this document defines
those indicators.

I.4.2 Console Software Remote Support

The descriptions of remote handling in this section apply to the
console program (EDOAA) only; the PROM code has the simplified
connect and disconnect procedure discussed in the previous
section. The modem connect and disconnect protocols described in
Digital Standard 052 have been used in the design of the remote
terminal support. This implementation allows console modem support
to work properly in all areas of the world.

I.4.2.1 Establishing a Remote Connection -- The following
conditions must exist before the console program can make a remote
port connection.

° If the console program is in CIO mode, the Terminal
Control Switch must be in the REMOTE position.

L) If the console program is in PIO mode, the Terminal
Control Switch must be in either the REMOTE or REMOTE
DISABLE position.

) A modem device must be connected to the rear async-panel
port for the remote terminal, or a nearby terminal may be
connected using a null modem cable (the null modem must
assert DSR and CD to the console).

With either of the first two items satisfied, the console program
asserts the Data Terminal Ready (DTR) and Ready To Send (RTS)
signals to the modem, turns on the REMOTE ENABLE light, and waits
indefinitely for DSR from the modem. Note that the console
deasserts the Data Set Rate Select (DSRS) signal during its
initialization.

Once DSR asserts, the console program begins a 30-second timer
while waiting for Carrier Detect (CD) to assert from the modem.
The console program does not look at the state of CD until
approximately 520 ms after the assertion of DSR to avoid data
transfers during this turn-on period.

If the 30-second timer expires before CD asserts, then the console
initiates a disconnect sequence (see next section). Otherwise, the
assertion of CD triggers the console program to turn the front
panel REMOTE ACTIVE light on, and to send the "<CR><LF>Console
Password?" message to the remote terminal if the password feature
is enabled (see SET TERMINAL command). If the password prompt is
sent, the console begins a two-minute timeout and waits for the
correct password. If the timeout occurs, a disconnect sequence is
initiated.

once the password step passes successfully and the console program
is running in PIO mode, an RX register request is sent to the CPU.
If not in PIO mode, the RX register request is bypassed and the
console program enters a low-activity state when it processes CTY
and remote characters and monitors different disconnect
indicators. At this point, the remote connection has been made
(REMOTE ACTIVE).

)

I.4.2.2 Remote Disconnection -- A disconnect sequence will occur
at any stage of the remote port connection and steady-state
operation if one of the following events occurs.

. CD is not asserted within 30 seconds after the assertion
of DSR.

. The password is not entered within two minutes.

. DSR from modem is negated.

° CD from the modem is negated for more than two seconds.

. The Terminal Control Switch is changed to a non-REMOTE
position.

] If running in PIO mode and the VAX operating system

(e.g., VMS) deasserts the logical DTR bit in the RXCS
register (connection dropped). Note that this will cause
a disconnect only if the logical DTR bit changes from a
set to a clear state.

The disconnect sequence involves several steps. First, the DTR
signal to the modem is deasserted and a two-second timer is
started. The remote port transmitter and receiver are turned off
and the logical DTR flag to the CPU is deasserted. The disconnect
sequence ends when either the DSR signal from the modem deasserts
or the two-second timeout occurs.

I.4.2.3 Operation -- Once a remote port connection has been
established and the console password prompt has been satisfied,
the console processes input and output characters with the remote
terminal. Note, however, that if the CPU program failed to respond
to the RX register request made by the console during the final
steps of the connection process, then remote input is not passed
to the CPU (it is ignored). The console program will only
disconnect the remote connection if the CPU first accepts the
line, and then drops it. This allows the remote user to remain
connected while running a nonoperating-system type program in the
CPU. The <CTRL/P> break character is honored by the remote user if
the front panel switch is in the REMOTE position.

In PIO mode, remote port input characters are sent to the VAX CPU
through the RX register interface with no control character
checking or masking (providing, of course, that the CPU has
accepted the remote connection). Remote characters are echoed by
the VAX operating system through the TX console. While in PIO
mode, input from the remote and local ports and from the CTY are
sent to the VAX CPU independent of each other. In this way, the
two terminal ports behave as separate devices, even though the
console is controlling character flow to and from both of them.

In CIO mode, input characters from the remote port are echoed (to
remote port only) and placed in a command input buffer. The
standard command line control characters (<KCTRL/U>, <CTRL/R>,
<CTRL/0>, and <DELETE>) can be used by the remote user. When the
command line terminator is entered, the contents of the remote
command buffer are displayed on the CTY device and the command is
parsed and executed. Any output resulting from the command is sent
to both terminal ports.

The following operational characteristics of the remote handler
should be noted.

. The console password is not effective until the SET
TERMINAL/PASSWORD command is encountered (optionally) in
the LOAD.COM file during macro context initialization.
If the front panel Terminal Control Switch is in the
REMOTE position and a remote connection occurs before
this command is encountered, then the remote connection
will be made without a password. To safeguard against
this, the Terminal Control Switch can be placed in any
non-REMOTE position during system initialization.

[} When prompted, the password must be entered within two
minutes. Upper and lower case characters are
interchangeable. Press <RETURN> to terminate input.

° The remote user's input characters are echoed only while
the console program is executing in its null loop. If the
console program is executing a command (whether it was
entered by the remote or local user) then input character
echoing will be suspended until the executing command
completes. The remote port input buffer in the console
program can easily be filled using the type-ahead process
while the console program is executing a command.

[} The SET TERMINAL command cannot be used from the remote
port, with the exception of the /SCOPE and /NOSCOPE
switches,

° In both CIO and PIO mode, the console program will send

the XOFF control character to the remote port when the
console's input ring buffer is three-quarters full. This
is indicated by the appearance of the KBD LOCKED LED on a
VT100 device. The XON control character is sent once when
the input buffer is one-quarter full.

° When in CIO mode, the <CTRL/S> control character (XOFF)
entered from either terminal will suspend console program
operation for both terminals. A <CTRL/Q> (XON) entered at
the same terminal will resume console program output. A
<CTRL/C> or <CTRL/P> entered from either terminal forces
an XON sequence which frees terminal output if locked
from a previous XOFF.

I.5 OPERATING PROCEDURES
This section describes the actual procedures required to set up
the system for the delivery of remote service.

I.5.1 Remote Services Delivery Via Timeshare Line

When the connection is made via a dial-up timesharing line, the
procedure is simple. The customer or Digital representative makes
a phone call to the location providing the service and supplies
the following information.

1. The customer name, address, and system ID

2, A description of the problem to be solved

3. The telephone number of the dial-in line

4, The baud rate of the dial-in line

5. The name of the account to be used and its password

With this information, the call can be logged and a remote
connection established to deliver the required service. The
services that can be provided are limited to running on-line
diagnostics, system dump analysis, error file transfer and
analysis, and software updates.

I.5.2 Remote Services Delivery Via Remote Port
If the remote service requires on-line testing under VMS, the user
may need to execute the following commands to connect the RD port.

$ RUN SYSGEN
SYSGEN>CONNECT CONSOLE/REMOTE

Normally, these commands should be included in the SYSTARTUP.COM
file to automate the process. Note that the SCP switch still
controls remote access.

When the connection is made via the remote port, the setup
procedure is more involved. The customer must perform the
following additional steps.

1. Use the SET LOCAL-COPY ON command to ensure that an audit
trail is left during the remote session. The default
setting for this switch is ON and can only be turned OFF
from the local CTY.

2. Use the following commands to set the receive/transmit
baud rate for the remote port.

SET TERMINAL/RECEIVE:nnnn
SET TERMINAL/TRANSMIT:nnnn

where nnnn=baud rate (1200 or 300)

I-9

3. Use the following command to set a login password for the
remote port. If no password is set, remote access is
allowed as soon as the connection is established.

SET PASSWORD [<password>]

where <password> is a string of up to six alphanumeric
characters (0--9, A--2)

NOTE
The SET commands should be included in
the ULOAD.COM command file to eliminate
the need to reset them if the system is
reinitialized during the remote session.

4, Place the Terminal Control Switch to either the REMOTE or
REMOTE DISABLE position.

5. Set the modem baud rate select switch to the baud rate
specified in the SET TERMINAL commands.

6. Call the DDC or other location that will provide the
service and supply the following information.

a. The customer name, address, and system ID

b. The description of the problem to be serviced

c. The telephone number of the dial-in line

d. The baud rate of the dial-in line

e. The password (if set) for the remote port

f. The name of the account to be used and its password,
if the service requires logging into the operating
system

Optionally, VAX/VMS V4.1 provides the user a way to preserve their
process, which will preserve their work when a dial-up line drops
the carrier. Virtual terminals enable a VMS Process to exist
without being assigned a physical terminal. For instance, when the
RD center loses connection to a system due to a noisy phone line,
work can be saved. This is done by creating a virtual terminal and
by assigning the physical terminal the /DISCONNECT attribute.
These commands are needed when working with a system via an RD
port if the operating system is running.

If the system has designated a virtual terminal and the RD 1line
drops the carrier, the user can dial back in and login into the
same account. Upon doing so, the user is asked if it is necessary
to connect to the former process. By reconnecting to the former
process, all work done in the previous work session is saved.

sysgen> connect vta0/noadapter /driver=ttdriver
!set up virtual terminal

sysgen> exit
$ set term opal: /perm/hang/auto/modem/DISCONNECT

I-10

)

At this point, a remote connection may be established and the
service delivered. In addition to the services described in the
previous section, the support engineer on the remote terminal can
switch to CIO mode and run standalone micro and macrodiagnostics
(if the Terminal Control Switch is set to the REMOTE position).

APPENDIX J
RLO2 MAINTENANCE AND UTILITIES

J.1 OVERVIEW

This appendix provides information about the VAX 8600 and VAX 8650
diagnostics distribution strategy and the system utilities and
procedures required to either build an RL02 diagnostic disk pack
or update an existing one.

J.2 DIAGNOSTIC DISTRIBUTION STRATEGY

The system uses an RL0O2 as the front-end load device; this is used
for loading console software, system microcode, microdiagnostics,
and load path macrodiagnostics. All console software,
microdiagnostics, and load path macrodiagnostics will reside on
one RLO2 pack. All other macro-level diagnostics will be in the
[SYSMAINT] account on a VMS disk.

The distribution of diagnostics for the VAX 8600 and VAX 8650
systems will be different from current VAX CPUs being shipped.
These systems will follow the new Digital Diagnostic Policy which
states that diagnostics will no longer be shipped with the system
from manufacturing. At the moment, this policy applies only to
those products introduced after the establishment of the policy;
however, in the future, this policy may be applied to all
products.

To implement this policy, manufacturing will ship two RL02 disk
packs with the system: one blank scratch pack and one Console No
Diagnostics Pack. The Console No Diagnostics Pack will contain all
the system microcode and console software necessary to boot and
run the system; it will not contain diagnostics.

The VAX 8600 and VAX 8650 Diagnostics Kits will be shipped to
those branches that will be maintaining VAX 8600 and VAX 8650
systems. The diagnostic kit will contain an RL02 console-w/
diagnostic pack, a VAX 8600/8650 diagnostic tape set, and a VAX
8600/8650 microfiche library. The RL02 disk pack will contain all
the microcode, console software, microdiagnostics, and load path
macrodiagnostics. The tapes will contain all the system microcode,
console software, and diagnostics for the system and associated
peripherals. The microfiche will contain the console software,
microdiagnostics, the VAX 8600~ and 8650-specific
macrodiagnostics, and any generic macrodiagnostics which have been
modified for the VAX 8600/8650 systems.

During installations, the branch will use the RL0O2
console-w/diagnostic pack to install the VAX 8600 or VAX 8650
system. Once the system installation is complete, a
console-w/diagnostic pack must be built onto the scratch RL02 pack
that is shipped with all systems under warranty or contract. A
command procedure (RL02.COM) will be supplied for building this
diagnostic pack. This command procedure resides on the
console-w/diagnostic tape.

When the warranty/contract expires, Digital policy states that the
branch must remove (delete) all Digital diagnostics from the site.
A command procedure (RL02D.COM) will be supplied for deleting
diagnostics from the RL02 pack.

For per-call customers, the branch engineer will have to bring a
console/diagnostic pack to the site for diagnosing the system.
When tge branch engineer leaves the site, the diagnostics must be
removed.

Self-maintenance customers, and customers with third-party
maintenance agreements must purchase a diagnostic license along
with the diagnostic pack or tape. For more details on this
subject, refer to existing Digital Diagnostic Policy.

Je2.1 Diagnostic Update Distribution Process

The Standard VAX Field Service Update tape (VAXPAX) used today
(order number ZE999-HM) has been split into two tapes with the
introduction of the VAX 8600 system. Tape 1 (BB-S409Y-YE) contains
all existing EVxxx generic diagnostics. Tape 2 (BB-T988A-YE)
contains all of the VAX family CPU-specific console code,
microdiagnostics, and load path diagnostics.

Note that both tapes may be ordered with the kit number ZE999-HM
(the same number used today to order the Standard Field Service
Update tape). The VAX 8600/8650 microfiche will be included in the
standard VAX microfiche 1library. Thus, those people already
receiving update tapes and microfiche will automatically receive
the VAX 8600 and VAX 8650 diagnostics and microfiche.

The first distribution of VAX 8600 diagnostics and microfiche
through the standard VAX update process will correspond with
either VAX Diagnostic Release 2.1 or 2.2.

Prior to the formal release, VAX 8650 diagnostics will be
distributed to the field by Marlboro Engineering. After joining
the VAX release process, Marlboro will no longer support updates,
and the normal VAX diagnostic process must be used to maintain the
proper diagnostic and microfiche revisions in the field.

All basic VAX 8600/8650 system configurations will include a tape
drive, and therefore the normal diagnostic update media will be
tape. However, branches may subscribe to any combination of tape
or RLO2 media that they wish to receive.

US Area and GIA engineers may get on the automatic update of VAX
diagnostics by contacting the library at Colorade Springs with
either DTN 522-5050 or 1-800-525-6570. Europe may get on the
automatic diagnostic update list by contacting the IDS. When
contacting either Colorado or IDS, be prepared to furnish the
following information.

1. Name

2. Cost Center

3. Badge Number

4. Address/Location

5. Diagnostic Media Type (or part number)

J.2.2 SDC Diagnostic Part Numbers

New part numbers have been created to support the VAX 8600 system.
The new part numbers that have been created start with the letter
B. The seventh character of the new part numbers (Bx-xxxxA-xx) is
the revision. Thus, every time the media is updated the revision
letter will <change (for example, BC-T989A-DE would become
BC-T989B-DE) .

The console-w/diagnostic BB-T990A-DE tape and macro diagnostic
BB-FF15A-DE tape contain all the diagnostics and console software
to support the VAX 8600 system. These tapes contain neither
diagnostics nor console software for the rest of the VAX family.

Also, new kit numbers have been created to package the necessary

media, 1license, and documentation for customers. Tables J-1
through J-3 list the diagnostic media available from the SDC.

Table J~1 VAX 8600 Release Packages

SDC Part
Numbers Title (29 characters) Description

BC-T987A-ME VAX 8600 Console-No Diag Pack RL02 pack (No Diag)
BB=FF58A=ME VAX 8600 Console Update Tape Console update tape

BC-T989A-DE VAX 8600 Console-W/Diag Pack RLO2 pack (With
Diag)

BB-T990A-DE VAX 8600 Console-W/Diag Tape VAX 8600-only tape
BB-FF15A-DE VAX 8600 Macrodiag Tape VAX 8600-only tape
BB-S409U-YE Field Service Update Tape PT-1 (Existing EVXXX)

BB-T988A~-YE Field Service Update Tape PT-2 (VAX CPU Diag)

Table J-2 Field Service Automatic Update Kit

SDC Part Number Description

ZE999-HM Kit including BB-5409U-YE and BB-T988A-YE

Table J-3 Customer Kits

SDC Part Number Description
ZK200-DZ SPD for VAX 8600 (Single-Use Diag License)
ZK200-CQ Kit including BC-T989A-DE, BB-T990A-DE,

BB-FF15A-DE, and guides

ZK200-HQ Update Kit of ZK200-CQ (depending upon what
changed could contain any of the following:
BC-T989A-DE, BB-T990A-DE, or BB-FF15A-DE)

J.2.3 VAX 8600 Diagnostic Release 2.0 and 3.0

VAX 8600 diagnostic releases 2.0 and 3.0 were shipped to the field
on March 15, 1985. Only those branches receiving VAX 8600 systems
received the diagnostic kits. Release 2.0 supports VAX 8600

systems with the MCC revision J module, while release 3.0 uses the
MCC revision K module.

Release 3.0 will not run on a MCC revision J module. Therefore, if
a MCC revision J module is replaced with a MCC revision K, or vice
versa, a new diagnostic pack will have to be built to match the
installed revision. However, if you replace a revision K module
with a revision J, you should Pl a revision K and return the
customer's system to the original revision. An FCO to upgrade all

systems in the field to MCC revision K occurred around May or June
1985.

Some early released 2.0 kits were shipped with a BB-FF15A-DE tape
instead of a BB-FF15B-DE. These tapes are basically the same. The

BB-FF15A-DE had some unnecessary files which were deleted,
creating a BB-FF15B-DE revision.

Tables J-4 and J-5 summarize release versions 2.0 and 2.3.

Table J-4 VAX 8600 Diagnostic Kit 2.0

SDC Part Number Title

BC-T989B-DE VAX 8600 Console-W/Diag Pack
BB-T990B-DE VAX 8600 Console-W/Diag Tape
BB-FF15B-DE VAX 8600 Macrodiag Tape
MD-8600B VAX 8600 Fiche Library

Table J-5 VAX 8600 Diagnostic Kit 3.0

SDC Part Number Title

BC-T989C-DE VAX 8600 Console-W/Diag Pack
BB-T990C-DE VAX 8600 Console-W/Diag Tape
BB-FF15C-DE VAX 8600 Macrodiag Tape
MD-8600C VAX 8600 Fiche Library

J.2.4 Speedy Update Process

A new update process has been implemented for the VAX 8600 and VAX
8650 systems which updates machine-critical microcode and console
software quickly. These speedy updates will be provided via a tape
(part number BB-FF58A-ME). Changes made through this procedure
will bump the minor revision of the diagnostic release (for
example, 2.0 would become 2.1).

J.3 THE EXCHANGE UTILITY

Building or updating an RL02 diagnostic disk pack requires using
the VMS utility, EXCHANGE. The EXCHANGE utility program is used
with mass storage volumes that are formatted for operating systems
other than VAX/VMS. It performs file transfers and format
conversions for the following file structures.

1. DOS-11 magnetic tape volumes
2. Files-11] volumes
3. RT-11 block-addressable volumes (VAX 8600 RL02 disk)

In addition to transferring files, EXCHANGE allows the user to
perform the following operations.

1. Initialize foreign volumes

2. List directories of volumes

3. Delete files from block-addressable volumes

4. Rename files on block«addressable volumes

5. Write boot blocks on VAX-1ll processor consoles
6. Mount and dismount foreign volumes

To obtain more detailed information about the EXCHANGE utility,
use the VMS HELP EXCHANGE command after logging on to the system.

J-5

Figure J-1 shows how to use EXCHANGE to obtain a directory listing
of all files on the RLO2 with a ".TXT" extension, while Figure J-2
shows how to copy the NOTICE.TXT file from the RL02 to the
[SYSMAINT] account on the system disk using the EXCHANGE utility.

$EXCHANGE DIR CSAl:

Figure J-1 EXCHANGE Directory Command Example

$ EXCHANGE COPY [SYSMAINT)NOTICE.TXT CSAl:NOTICE,TXT

Figure J-2 EXCHANGE Copy Command Example

J.4 OPERATING PROCEDURES

The next two sections describe the procedures for maintaining the
RLO2 disk, building a diagnostic disk pack from the distribution
tape, and updating existing files.

J.4.1 Building an RLO2 Pack

This is a simple, two-step procedure that is entirely automated by
a command procedure contained in the file RL02.COM, which resides
on the distribution magnetic tape. Figure J-3 shows a listing of
this file. The first step is to copy all of the tape files onto
the system disk, and then copy selected files from the system disk
to the RL02 disk pack. The following procedure outlines the

process, which may require some modifications depending upon the
actual system configuration.

1. Load the RLO02 build tape onto the magtape unit (SDC Part
No. BB-T990B-DE or BB-T990C-DE) .

2. Log into the field service account using the username
FIELD and the password assigned by the system manager.

NOTE

Approximately 50,000 blocks of free disk
space is required to perform the build.
Consult the system manager if you need
this additional space. Remember that
this allocation is only temporary, since
the command procedure will delete all
the files read from the tape after the
disk pack is built.

| RLO2.COM version V2.0

UPDATE_ID := °*D-"

TEMP_DIR := "RL2CREATE"

TAPE_DIR := "RL2TAPE"

PROC = ""

NEW TYPE = "%

LAST_TYPE = **

SAVE_DEF = "*

TAPE_DEF = "*

DISK DEF = **

COUNTER = 0

1

| This command procedure builds console media from magtape.
| Modified 14-MAY-1985 to accomodate 8600's which do not

! have a tape drive on their system and to be able to more
| Quickly build more than one pack on the system.

!

on control then goto EXIT
SET PROCESS/PRIV=(CMK,VOLPRO)
save def = fSenvironment(®"default”)
IF Pl .EQS. "" THEN GOTO INIT
IP PSLOCATE("CON", P1) .NE. 0 .AND. FSLOCATE("NEW®,Pl) .NE. O THEN GOTO INIT
IF FSLOCATE("CON", Pl) .EQ. 0O THEN PROC = "CON"
IF FSLOCATE(®NEW", Pl) .EQ. O THEN PROC = “NEW"
TAPE := 'F$EXTRACT(O,F$LENGTH({SAVE_DEF) = I,SAVE_DBP)'.'TAP!_DIR']
GOTO SYSGEN
SINIT:
$ type sys$input:
THIS PROCEDURE WILL BUILD CONSOLE MEDIA FPOR THE VAX 8600 FROM MAGTAPE.
IN ORDER FOR THIS PROCEDURE TO OPERATE CORRECTLY, YOU MUST HAVE APPROXIMATELY
50000 BLOCKS OF FREE SPACE. THE PROCEDURE WILL:
1) CREATE A SUBDIRECTORY
2) COPY FROM TAPE TO THAT SUBDIRECTORY
3) COPY FROM THAT SUBDIRECTORY TO THE RLO2

4) DELETE THE SUBDIRECTORY AND ITS FILES
WRITE SYSSOUTDUT "*###aaasanaas aanaaadad s dd e aaaanadadesnenssnnennn

“Luvuaouanaaaanahraoaonaonananan

WRITE SYSSOUTPUT "* b
WRITE SYS$OUTPUT "* THE FOLLOWING SHOULD BE VERIFIED. =
WRITE SYSSOUTPUT "* 1. CSAl: MUST BE DISMOUNTED b
WRITE SYSSOUTPUT ** 2. SOURCE TAPE MUST BE MOUNTED *"
WRITE SYS$OUTPUT "* *e

WRITE s!ssourpur (R 2R eSS 2RSSR S22 222222 222 2 222t 22 22 a2t t)

1
START:
inquire cont "DO YOU WISH TO CONTINUE? [Y/N]"
if .not. cont then exit
INQUIRE CONT "Is the tape drive on the VAX 86002 [Y]"
IF FP$LOCATE("Y",CONT) .EQ. 0 THEN GOTQ SYSGEN
CREATE/DIRECTORY [.'TAPE_DIR']
SET DEFAULT [.'TAPE_DIR'T
TAPE_DEF .EQS. FSENVIRONMENT("DEFAULT")
inquire tape "ENTER MAG TAPE DEVICE (INCLUDING COLON)"
if tape .eqs. "" then goto start
WRITE SYS$OUTPUT "Copying tape intc '‘tape_def'. Files will not be deleted”
WRITE SYSSOUTPUT "by this process. Delete by hand later if you wish."
COPY 'TAPE'*.* []
DISMOUNT ’'TAPE’
WRITE SYS$OUTPUT "Log off this system and Log on to the VAX 8600 whose"
WRITE SYSSOUTPUT "RLO2 you are updating. Set default to '‘save_def’'.
WRITE SYSSOUTPUT "Then type @RLO2 CONTINUE. This will complete the build.”
WRITE SYS$OUTPUT **
set default [-]
exit
!

“vovnunanonaonhansanannannanananann

Figure J-3 Command File to Create a New RL02 Pack
(Sheet 1 of 4)

J-7

$SYSGEN:

$ mcr sysgen

CONNECT CONSOLE

EXIT

$ create/dir [.'TEMP _DIR']

$ set def [.'TEMP_DIR‘]

dllk def = f$environment("default®)

l 1st build or another build ‘different kind

NEXT2:
IF NEW_TYPE .EQS. "DIAG" THEN GOTO nzx'rs
IF NEW TYPE .EQS. "NODIAG® THEN GOTO NEX'
INQUIRE KIND "DO YOU WANT 70 BUILD A DIAB OR NO DIAG PACK? [DIAG/NODIAG]®
IF KIND .EQS. "DIAG®" THEN GOTO NEXT3
IP KIND .NES. "NODIAG" THEN GOTO NEXT2
NEXT3: -
IF PROC .NES., "CON" .AND. PROC .NES. "NEW" -
THEN inquire tape "ENTER MAGTAPE DEVICE (INCLUDING COLON)*
IF PROC .NES. "NEW* THEN copy 'tape’'*.* []
IFP PROC .NES. “"NEW®" THEN WRITE SYS$SOUTPUT -
"Copying files into '‘disk_def’'. Files will not be deleted®
IF PROC .NES. "NEW" THEN WRITE IYBQOUT PUT -
"by this process. Delete by hand later if you wish.”

IF KIND .EQS. "DIAG" THEN open/read rlist CONLIST.LIS
IF KIND .EQS. "NODIAG" THEN open/read rlist CONLIST NODIAG.LIS
NEXTS:
EXCH INIT/CREATE/SEG=31/ALLOC=20480 COMSOL.DSK
IF NEW_TYPE .EQS. "DIAG" THEN open/read rlist CONLIST.LIS
IF NEW_TYPE .EQS. "NODIAG" THEN open/read rlist CONLIST_NODIAG.LIS
GET_FILES:
OPEN/WRITE TEMP RLO2TEMP.COM
WRITE TEMP "$ EXCH/NOMESS"
WRITE TEMP "MOUNT/VIRTUAL RL02: CONSOL.DSK"
WRITE SYSSOUTPUT "CREATING MASTER LIST FOR EXCHANGE. PLEASE WAIT .ccccveceoces
MACFLAG=0
readlist:
read/end=donelist rlist entry
A=F$LOCATE("." ,ENTRY)
A=A+]
EXT-"!XTRACT(A 3,ENTRY)

F ENTRY .EQS. "EVRLA.DAT" THEN GOTO IMAGE_COPY
Il Elﬂ'l! .EQS. "CI780.BIN" THEN GOTO IMAGE COPY
IF ENTRY .EQS. "KKTMAD.PAK" THEN GOTO IMAGE_COPY
IP ENTRY .EQS. "COPY." THEN GOTO IMAGE COPY
IF ENTRY .EQS. "BOOT." THEN GOTO IMAGE COPY
IF EXT .EQS. "EXE" THEN GOTO IHAG!_COPY
IF EXT .EQS. "SAV" THEN GOTO IMAGE_COPY
IF EXT .EQS. "BPN" THEN GOTO IMAGE_COPY
IF EXT .EQS. "OBJ" THEN GOTO IMAGE (,_COPY
IF EXT .EQS. "DCI" THEN GOTO IMAGE (_COPY
IF EXT .EQS. "DCA" THEN GOTO !HAGI_COP!

WRITE TEMP "COPY/LOG ''ENTRY' RL0O2:*"

GOTO READLIST

IMAGE_COPY:

WRITE TEMP "COPY/LOG ''ENTRY'/TRANS=BLOCK RLO2:*/TRANS=*BLOCK"
goto readlist

donelists

close rlist

IF NEW_TYPE .EQS. "NODIAG* THEN GOTO NEXT4

IF KIND .EQS. "NODIAG®" THEN GOTO NEXT4

IF MACFLAG .EQS. 1 THEN GOTO NEXT1

«n O‘Q“ﬁ“““ﬁ'ﬂ'“
-

“teuneruoaane "h@l““ﬁﬁ(ﬂﬂﬁ“ﬁ'ﬁ“-“ﬂ.ﬁ‘“o“ﬂ“ﬁ “u o

Figure J-3 Command File to Create a New RLO2 Pack
(Sheet 2 of 4)

J-8

MACFLAG=1

OPEN/READ RLIST MACLIST.LIS

GOTO READLIST

NEXT1:

ON ERROR THEN EXIT

WRITE TEMP "COPY/LOG/BOOT=DL RLO2:RT11FB.SYS RL02:"
CLOSE TEMP

@RLO2TEMP

MAKE_PHYS_PACK:

inqulre rT1 "ENTER RLO2 DEVICE (INCLUDING COLON)*
IF RL1 .EQS. "® THEN GOTO MAKE_ PHYS_PACK
MOUNT/FOREIGN/DATA_CHECK 'RL17T

EXCH MOUNT/FOREIGN 'RL1‘

EXCH INIT 'RL1’

COPY/WRITE CHECK/LOG CONSOL.DSK 'RL1Y

nxsuou ‘RL1’

XNQUIRI CONT -
Is this the last VAX 8600 Console to be built on this system at this time? ([Y]*
WRITE SYS$OUTPUT *"
ir nx.ocu:(;v' SOIﬂ‘) .EQ. 0 THEN WRITE SYSSOUTPUT =~
u ext time, .
WRITE sxssoutv%* Jex me, log in and type @RLO2 NEW."

IF PSLOCATE("Y"®,CONT) .EQ. 0 THEN GOTO DEL_RLO2_BUILD_AREA
nlounl NEW TYPE:
COUNTER=COUNTER+1
IP COUNTER .LE. 1 THEN LAST_TYPE = KIND
IF COUNTER .GT. 1 THEN LAST TYPE = NEW_TYPE
IP PSLOCATE("N",CONT) .EQ. 0 THEN INQUTRE NEW_TYPE -
- "WHAT TYPE DO YOU WISH TO CREATE [DIAG/NODIAG]?"
IP NEW TYPE .EQS. LAST_TYPE THEN GOTO MARE_PHYS_PACK
GOTO RESET

Mo VLooaweupe VO sLLLLULVLALLLOLOAOOGOOOON
-

Sl Deleting tape area function has been disabled for quicker rebuilding of packs

SIDBL TAPE_AREA:
{ wrlte sys§output "CURRENT (DELETE) OPERATION TAKES SOME TIME-PLEASE WAIT"
ll SET DEFAULT ‘TAPE’
$1 DELEE *.*;*
$1 set def [~]
$! set prot 'TAPE_DIR'.dir/prot=(OWNER:D,G:D,W:D)
$1 delEE 'TAPE_DIR'.dir;
$DEL_RLO2_BUILD_AREA:
$ set def 'save_def'’
§ set def [.'TEMP_DIR']
§ delEE CONSOL.DSK;*
$ set def (-]
$! DELEE RL02.COM;
$1 set prot 'TEMP_DIR'.dir/prot=(OWNER:D,G:D,W:D)
$1 delEE 'TEMP_DIR'.dir;
$ WRITE SYSSOUTPUT ""
$ WRITE SYS$SOUTPUT "Console has been updated. If you are on an 8600 you can "
$ WRITE SYSSOUTPUT "shut down the system using site specific procedures and "
$ WRITE SYSSOUTPUT "reboot the system with the new version of the console."”
$ WRITE SYSSOUTPUT ’lxlting...
$ WRITE SYS$OUTPUT *
$ SET PROCESS/PRIVe(NOCMK,NOVOLPRO)
$ EXIT
$RESET:

Figure J-3 Command File to Create a New RL02 Pack
(Sheet 3 of 4)

“uoaonsasLaonLaoannand

set def 'save_def’

set def (.'TEMP_DIR']

DEL CONSOL.DSK;

GOTO NEXT2

EXIT:

CLOSE RLIST

CLOSE TEMP

SET. PROCESS/PRIV=(NOCMK,NOVOLPRO)
SET DEF 'SAVE_DEF'

exit

NEXT4:

WRITE TEMP "COPY/LOG CI780.BIN/TRANS=BLOCK RLO2:*/TRANS=BLOCK"

GOTO NEXT1

Figure J-3 Command File to Create a New RL02 Pack
(Sheet 4 or 4)

3. Dismount the RLO02 tape by typing the following command.
$ DISMOUNT CSAl:

If the response to this command is "no such device,"
don't panic; the procedure will connect the console
automatically.

4, Mount the magtape with the following command:

$ MOUNT HSCO04$MUAO: (TA78 on an HSC50)
_Label: VAXPAX
_Log name: <CR>

5. Copy the RL02 command file from tape to disk with the
following command.

$ COPY HSCO004$MUAO:RL02.COM *

CAUTION

Be sure to remove the console pack from
the RL02 drive and replace it with a
formatted scratch pack before
proceeding. Failure to do this will
result in the destruction of the console
pack's contents, which will ultimately
crash the system and prevent restoring
normal operation until a new pack is
available.

Finally, execute the command file by typing the following
command .

$ @RLO2

The command file will now take over and execute the
command sequences required to build the new RL02 disk
pack. It will take approximately one hour to complete the
entire build process.

After the command file terminates, there are two files on
the disk pack that may need to be modified to permit
booting the customer's system with the new pack. Use the
following command procedure to update the files
DEFBOO.COM and CIBOO.COM to reflect the customer's system
node and load device drive numbers.

$ EXCHANGE

EXCHANGE> COPY CSA1:DEFB00.COM *
EXCHANGE> EXIT

$ EDIT DEFBOO.COM

(edit the file to reflect the
specific customer configuration)

$ EXCHANGE

EXCHANGE> COPY DEFB0OO.COM CSAl:*
EXCHANGE> EXIT

$

As a final check, the system should be shut down and rebooted to
test whether the new pack performs correctly.

J.4.2

Updating an RLO2 Pack

The following procedure outlines the process for updating an
existing disk pack. It is similar to the build process just
described except that a different tape and a different command
file are used. Figure J-4 shows a listing of the command file.

1.

2.

Load the RL02 update tape onto the magtape unit (SDC Part
No. BB-ZZKHA~JS or BB-FF58A-ME V1.0).

Log into the field service account using the username
FIELD and the password assigned by the system manager.

Mount the magtape with the following command.
$ MOUNT HSCO004$SMUAO: (TA78 on an HSC50)

_Label: VAXPAX
_Log name: <CR>

Copy the RL02 command file from tape to disk with the
following command.

$ COPY HSC004$MUAO:RLUPDATE.COM *

Finally, execute the command file by typing the following
command .

$ @RLUPDATE

The command file will now take over and execute the command
sequences required to update the RL02 disk pack. As a final check,
the system should be shut down and rebooted to test whether the
updated pack performs correctly.

i 4

‘-.-“‘Q‘Q“ﬂﬁ‘-.ﬂ'

if

“VDavwnBBvanvonne

| RLUPDATE.COM version V1.0
UPDATE_ID := ®"BB-FFPSSA-ME*
TEMP_DIR := "RL2UPDATE®
TAPE_DIR := "RL2TAPE"

PROC = **

[}
| This command procedure updates console media with new microcode and
! console software. Written 4-APR-1985 11:07:22

on control then goto EXIT
SET PROCESS/PRIV=(CMK,VOLPRO)
save def = fSenvironment("default”)

«EQS. "" THEN GOTO INIT

IF FSLOCATE("CON®, Pl) .NE. O THEN GOTO INIT
PROC = "CON"
TAPE = 'FSEXTRACT(0,F$LENGTH(SAVE DEF) - I.SAVI_DII)'.'TAPE_DIR'J
GOTO SYSGEN
$INIT:
$ type sys$input:
This procedure updates files on the console pack. Certain files will be
be replaced. The procedure will take only a few minutes. Please ensure
:hqc the tape is mounted.
!
$START
inquire cont "DO YOU WISH TO CONTINUE? (Y/N)*
.not. cont then exit
INQUIRE CONT "Is the tape drive on the VAX 86007 [yy*
IF FSLOCATE("Y",CONT) .EQ. 0 THEN GOTO SYSGEN
CREATE/DIRECTORY [.'TAPE DIR']
SET DEFAULT (.'TAPE_DIR'T
inquire tape "ENTER MAG TAPE DEVICE (INCLUDING COLON)*
if tape .egs. "" then goto start
WRITE SYSSOUTPUT "Copying tape...”
COPY 'TAPE'*.* []
DISMOUNT 'TAPE’
WRITE SYS$OUTPUT 'Log off this system and Log on to the VAX 8600 whose”
WRITE SYSSOUTPUT "RLO2
WRITE SYS$OUTPUT "Then type @RLUPDATE CONTINUE."
$WRITE SYS$OUTPUT "This will complete the installation."
$ l.§ default (=]
$ exit

you are updating. Set default to ‘'save_def'.

Figure J-4 File to Update an Existing RLO2 Pack

(Sheet 1 of 3)

$SYSGEN:

$ mcr sysgen

CONNECT CONSOLE

EXIT

create/dir [.'TEMP_DIR']

set def [.'TEMP_DIR')

inquire rll "ENTER RLO2 DEVICE (INCLUDING COLON)"
RL1 := *CSAl:"
MOUNT/FOREIGN/DATA_CHECK 'RL1’
EXCH MOUNT/FOREIGN °'RL1’

EXCH COPY ’'RL1'NOTICE.TXT ()

1

! This section determines out which version of the console that we have.

!

§check_version:

$ ITYPE NOTICE.TXT

$ OPEN/READ/ERR=BAD_VERSION V_NOTICE NOTICE.TXT

$GET_LINE:

READ/END=BAD VERSION V_NOTICE LINE

IP FSLOCATE(™VAX 8600 TONSOLE®,LINE) .EQS. PSLENGTH(LINE) THEN GOTO GET_LINE
READ/END=BAD_VERSION V_NOTICE LINE

CON_VER 3= *¥

VERSION = 30

KIND = "DIAGS"

IF FSLOCATE("BC-T989C-DE V3.0",LINE) .NES., FSLENGTH(LINE) THEN CON_VER := "D30

“uouuaeonaananan

KIND = "NODIAGS"
IF FSLOCATE("BC-T987C-ME V3.0",LINE) .NES. FSLENGTH(LINE) THEN CON_VER := "C30

VERSION = 20
IF FSLOCATE("BC-T987B~-DE V2.0",LINE) .NES. FSLENGTH(LINE) THEN CON_VER := "C20

KIND = "DIAGS"
IF PSLOCATE("BC-T989B-DE V2.0",LINE) .NES. FSLENGTH(LINE) THEN CON_VER := "D20

IF CON_VER .EQS. "" THEN GOTO BAD_VERSION
1
! Check if already updated

]

READ/END=BAD VERSION V_NOTICE LINE

CLOSE V_NOTITE | Finished reading notice

IF FSLOCATE(UPDATE_ID,LINE) .EQS. FSLENGTH(LINE) THEN GOTO GET_FILES
WRITE SYSSOUTPUT "The console pack already has this release on it."
WRITE SYSSOUTPUT “Exiting..."

GOTO DELETE

1

{ Start update

GET_FILES:
IF PROC .NES. "CON" THEN inguire tape “ENTER MAG TAPE DEVICE (INCLUDING COLON)

copy 'tape’CONLIST 'CON_VER'.LIS *.*
open/read rlist CONLIST_ 'CON_VER'.LIS
OPEN/WRITE TEMP RLO2TEMP.COM

WRITE TEMP "$ EXCH/NOMESS"

WRITE SYSSOUTPUT “CREATING MASTER LIST FOR EXCHANGE. PLEASE WAIT ccccccccsccss
readlist:

read/end=donelist rlist entry

ENTRY = ENTRY - " NODIAG"
A=P$LOCATE("." ,ENTRY)

NAME = FSEXTRACT(O0,A,ENTRY)

A=A+]

EXT=F$SEXTRACT(A,3,ENTRY)

PDUBDANVANANNVY TRV ANDANVALDLLNNIVY 3VY LN sHLOaLLOLL
-

Figure J-4 File to Update an Existing RL02 Pack
(Sheet 2 of 3)

COPY 'TAPE’' 'NAME'_ 'CON_VER'.'EXT' 'ENTRY’ ! COPY TO DISK
IP ENTRY .EQS. "EVRLA.DAT" THEN GOTO IMAGE_COPY
IP ENTRY .EQS. "CI780.BIN" THEN GOTQO IMAGE COPY
IF ENTRY .EQS. "KKTMAD.PAK" THEN GOTO IH.AGE__COP!
IP ENTRY .EQS. "COPY." THEN GOTO IMAGE_COPY
IF ENTRY .EQS. "BOOT." THEN GOTO IMAGE_COPY
IF ENTRY .EQS. "COPY.COM" THEN GOTO IMAGE_COPY
IF ENTRY .EQS. "ANYBOO.COM" THEN GOTO IHAL'E COPY
IF EXT .BO&- "EXE" THEN GOTO IMAGE_COPY
IF EXT .EQS. "SAV" THEN GOTO IHAG!_COPY
IF EXT .EQS. "BPN" THEN GOTO IMAGE_COPY
IF EXT .EQS. "OBJ" THEN GOTO IMAGE_COPY
IP EXT .EQS. "DCI" THEN GOTO IMAGE_COPY
EXT .EQS. "DCA®" THEN GOTO IMAGE_COPY
WRITE TEMP "COPY/REPLACE/LOG ''ENTRY' ''RL1'*"
GOTO READLIST
IMAGE_COPY:
WRITE TEMP "COPY/REPLACE/LOG '‘'ENTRY'/TRANS=BLOCK ‘'’'RL1’'*/TRANS=BLOCK"
goto readlist
donelist:
close rlist
ON ERROR THEN EXIT
CLOSE TEMP
IF PROC .NES. "CON" THEN DISMOUNT ‘'TAPE’
@RLO2TEMP
WRITE SYSSOUTPUT "Console has been updated.”
$ WRITE SYSSOUTPUT "Shut down the system using site specific procedures and rebo
ot the system."
$ WRITE SYSSOUTPUT "Exiting..."
$DELETE:
$ delEE *.*;*
$ set def [-)
$ set prot 'TEMP DIR’'.dir/prot=(owner:d,G:D,W:D)
$ delEBE 'TEMP DIR'.dir;
$ IF PROC .NES. "CON" THEN GOTO RESET
$ inquire CONT "Is this the last VAX 8600 Console to be updated? {[Y]*"
$ IF CONT .EQS. "" THEN GOTO DEL_TAPE
$ IP PSLOCATE("N",CONT) .EQ. 0 THEN GOTO RESET
$DEL_TAPE:
$ SET DEFAULT 'TAPE’
$ DELEE *.%;*
$ set def (-]
$ set prot 'TAPE DIR’.dir/prot=(owner:d,G:D,W:D)
$ delEE 'TAPE D!!'.dlzx
$RESET:
$ SET PROCESS/PRIV=(NOCMK,NOVOLPRO)
$ DELEE RLUPDATE.COM;
$ exit
$BAD_VERSION:
$ CLOSE V_NOTICE | Pinished reading notice
$ WRITE SYSSOUTPUT "This pack is INVALID for this update.”
$ WRITE SYSSOUTPUT "To apply this update you must have a V3.0 or V2.0 pack.”
$ WRITE SYS$OUTPUT "If you have a later version you cannot apply this update.”
$ HIETB SYSSOUTPUT "Othervise you must rebuild the pack before appplying the upd
ate.
$ GOTO DELETE
$EXIT:
$ close rlist
$ CLOSE TEMP
$ CLOSE V_NOTICE
$ SET PROCESS/PRIV=(NOCMK,NOVOLPRO)
: exit

“touuoaenuranaann tooonoanrnanna
(o]
~

Figure J-4 File to Update an Existing RL0O2 Pack
(Sheet 3 of 3)

J-14

APPENDIX K
CONSOLE SOFTWARE ERROR MESSAGES

K.1 INTRODUCTION

This appendix describes console messages for Version 7.0 through
Version 9.0 of the console software. It begins with a description
of the console message format and is followed by a list of tables.
The tables identify both the pProgram or routine running at the
time the message was printed and the type of message (error,
warning, etc.). Finally, there are tables which list, in
alphabetical order, most messages and what they mean. In many
cases, the message descriptions include a statement explaining how
the user might response to the message.

K.2 CONSOLE MESSAGE FORMAT
Console messages consist of four parts, as shown in the following
example.

?CSM-F-ACCVIO ACV Condition

1. Part 1: The Calling Routine -- begins with a question
mark and includes the three-character routine name that
initiated the message. For example, in the above

message, the Console Support Microcode (CSM) initiated
the message print out. The following is a list of
console routines that display messages.

a. CSM -- Console Support Microcode

b. DCN -- General Console

c. DCP -- Diagnostic Console Program
d. ECR -- Error Correction Routine

€. EMM -- Environmental Monitor Module
f. HEX -- Hexadecimal Debugger

g. MCP -- Macro Control Program

2. Part 2: Severity Code -- Consists of a letter (E, F, W,
or I) preceded and followed by a hyphen. The letter
indicates the general severity of the condition, as
summarized below.

a. E (Error) -- Indicates that the routine printing the
message is responding to a device or hardware error
of some sort.

K.3

b. F (Fatal) -- Indicates that the routine printing the
message either detected an internal consistency error
(e.g., bad parameters passed to a routine) or a
totally unexpected or unserviceable error (e.g.,
errors from RT-11).

c. W (Warning) -- Indicates that the routine printing
the message was able to complete some, but not all,
of the operation. Check the result before proceeding.

d. I (Information) -= Indicates that the routine
printing the message completed the operation
successfully and the user should be aware of the
information that follows the message header.

Part 3: Message ID == Is a six-letter mnemonic that
identifies the message.

Part 4: Message Text -- Is the text of the message. It
contains a line of text explaining the reason for the
message.

CONSOLE MESSAGE TABLES

The console messages have been further defined and organized into
tables, as shown in Table K-1.

IMPORTANT
Refer to the Console Software
Specification for further information
and specific details on console
operation. Also, keep in mind that

these message are subject to console
revisions.

Table K-1 Console Error Messages Tables

Table Message Descriptions

K-2 Console Support Microcode (CSM) Fatal Messages
K-3 General Console (DCN) Error Messages

K-4 General Console (DCN) Fatal Messages

K-5 General Console (DCN) Information Messages

K-6 General Console (DCN) Warning Messages

K-7 Diagnostic Console (DCP) Error Messages

K-8 Diagnostic Console (DCP) Fatal Message

K-9 Diagnostic Console (DCP) Information Messages
K-10 Diagnostic Console (DCP) Warning Messages

K-11 Error Correction Routine (ECR) Error Messages
K-12 Environmental Monitor Module (EMM) Error Messages
K-13 Environmental Monitor Module (EMM) Fatal Messages
K-14 Hexadecimal Debugger (HEX) Warning Messages

K-15 Macro Control Program (MCP) Error Messages

K-16 Macro Control Program (MCP) Fatal Messages

K-17 Macro Control Program (MCP) Information Messages
K-18 Macro Control Program (MCP) Warning Messages

Table K-2

Console Support Microcode (CSM) Fatal Messages

Header

Message Description

?2CSM-F-ACCVIOQ

?CSM-F-BADIPR

?CSM-F-BDCKSM

?CSM-F-BDVADR

?CSM-F-CF64KB

?CSM-F-CFDRPB

?CSM-F-HERABT

ACV Condition -- The console has no access to any
of the data requested. By raising the PSL
CUR MODE Field Encoding and issuing the command
again, it may be possible to get a successful
response. Also, try using the physical address
with memory management turned off. If the problem
persists, there may be a fault in the Access RAM.

Bad IPR Number -- The IPR number argument is
currently unassigned.

Bad Packet Checksum -- The computed checksum of
the RBUF packets does not match the console
checksum. This could be a dual-port RAM, CBus, or
EBox microcode problem. Try reinitializing the
CPU. If that doesn't work, run the MHC diagnostic.

Bad Virtual Address -- The virtual address either
has no translation or a bad translation.

Can't Find 64 KB -- CSM was unable to find a good
64 KB section of memory. There is a good chance
that the MBox/Array either has a serious problem
or it has not been initialized properly.

Can't Find RPB -- CSM was unable to find the
Restart Parameter Block (RPB) in memory. Either
that section of memory was overwritten, the BBU
power to support the Array Refresh was switched
off, or the 10-minute (BBU) Array Refresh limit
expired. In any case, a cold restart is necessary.
Note: This is a normal response if, after a
power-up, the Restart Control switch is in the
RESTART BOOT or RESTART HALT position.

Hardware Error Abort -- During the FIND 64KB
operation, the error handling microcode detected a
hardware-related error causing the FIND 64KB
operation to abort. The machine check stack frame
built by the EHM (ESC: <17:2F> should provide
information about the error). If the error
persists, run the microdiagnostics.

Table K-3 General Console (DCN) Error Messages

Header

Message Description

?DCN-E-BA11lPF

?DCN-E-CSPERR

?DCN-E-DVCERR

?DCN-E-FULERR

BAll Power Failure -- The console detected a BAll
power failure when it read the status of the RLO2.
Check power at the BAll.

"RAM ID" Control Store Parity Error == While in
console I/0 mode, a CS/DRAM parity error was
detected in the RAM specified. Use the VERIFY
command (in debug context) to determine the
good/bad data and take corrective action.

Read/Write Disk Error -- A Read/Write error was
detected while reading or writing a file on the
RL02. Examine the RLV12 control and status
registers for specific details. If the error is
unique to a specific file, reinstall the file from
tape or, if necessary, replace the pack.

"Device Name" Device Full -- The RL02 is full.
This may be due to fragmented files. A file may
need to be deleted or the pack may need to be
rebuilt.

Table

K-4 General Console (DCN) Fatal Messages

Header

Message Description

?DCN-F-ACCERR

?DCN-F-CHNERR

?DCN-F-EIARG

?DCN-F-EOFERR

?DCN-F-INVPD

?DCN-F-TIMEXP

?DCN-F-TIMMAX

"Filename" Illegal Access -- The user does not have
the necessary privileges to access the specified
file (e.g., the file may be read only protected).

Read/Write 10 Channel Invalid - (Software
Problem).
Invalid Argument on "aaaaaa" Call -- (Software
Problem) .
Read/Write End Of File -- The console software

encountered an unexpected EOF while reading a file.
There is something wrong with the file format.
Restore the file from tape.

Invalid Parameter Detected -- (Software Problem).
Timer Either Expired or Not Set -- (Software
Problem).

Maximum Number of Timers Set -- (Software Problem).

K-5

Table K-5

General Console (DCN) Information Messages

Header

Message Description

?DCN-I-CCABRT

?DCN-I-CLKNLK

?DCN-I-CSLFAL

?DCN-I-VERINC

?DCN-I-VFYERC

?DCN-I-VFYERR

<CTRL/C> Abort -- The user typed <CTRL/C> which
interrupted the command in progress.

CPU Clock Frequency Unstable (Not Locked) -- The
system clock is more than 60 ns out phase with the
1 MHz Reference. This message will only occur for
Rev C5 clock modules. Either change to a more
stable clock frequency or use the SET CLOCK FREQ
QUIET command to suppress the message.

"RAM File" Already Loaded =-- The file specified
has already been loaded in the control store or
Dispatch RAM.

"RAM File" Vn Incorrect, Should Have Vn == The
CS/DRAM file just loaded is not compatable with
the revision level of the system (as specified in
the RL02 file, VENUS.REV). This message will also
be displayed if specifying an incorrect filename.
For example, typing the console command LOAD/ECS
CSM040 will result in this message becauss CSM040
is a CSM overlay and not considered part of the
main EBox microcode load file. The console will
still 1load the file, however, but beware of
erroneous responses.

"RAM File" Verify Found "n" Microwords Bad =--
During CS/DRAM verification (using the VERIFY
command), "n" microwords were found to have
errors. Note: the maximum error count displayed
will be 256. If the errors persist, then run the
MHC diagnostic to isolate the fault and then take
corrective action.*

"RAM File" Verification Fails -~ If the console is
in debug mode during CS/DRAM verification, this
message will be displayed followed by the good/bad
data for the first 256 errors.*

*The VERIFY command must be executed in debug context (>>>> VERIFY
or DC>> VERIFY) in order to display the good/bad data. Otherwise,
only the total number of errors will be displayed.

Table

K-6 General Console (DCN) Warning Messages

Header

Message Description

?DCN-W-CLKRER

?DCN-W-COMABT

?DCN-W-COMCWE

?DCN-W-COMERR

?DCN-W-CSLERR

?DCN-W-EIRID

?DCN-W-EISID

?DCN-W-EUREG

?DCN-W-EUSIG

Command Invalid with CPU Clock Running == The CPU
clock must be stopped (i.e., STOP CPU) in order for
the command to execute properly.

Command Procedure Aborted -- The abort flag was set
and an error was detected while executing a command
file. For troubleshooting purposes, this condition
can be bypassed (and force the console to execute
the command file anyway) by using the SET ABORT OFF
command. See the ?DCN-W-COMCWE message next.

Command Procedure Completed with Errors -- The
Abort on Error switch was not set when an error was
detected during command file execution. The

console continued to execute the file, but the
results are unpredictable.

Nesting Depth Exceeded -- The maximum number of
nested command files (4) has been exceeded.

"RAM File" CS Load/Verify Failure (File Bad) -- The
contents of the RAM file specified does not match
the format of the CS/DRAM being loaded. Entering a
command such as "LOAD/ECS MCF.BPN<cr>" would cause
the message because the MCF RAM data format
differs from that of the EBox CS.

Reg_ID Undefined -- The register ID that the user
supplied as a command argument does not exist. Use
the SHOW REGISTERS command to display all defined
registers and register IDs.

SDB_ID Not Found in CAD Tables -- The SDB_ID that
the user supplied as a command argument does not
exist in the CAD tables.*

Register Name Undefined -- The register name that
the user supplied as a command argument has not
been defined. Use the SHOW REGISTERS command to
display all defined registers and register IDs.

Signal Name Not Found in CAD Tables -- The SDB
signal name that the user supplied as a command
argument does not exist in the CAD tables.*

*Check the CONFIG.DAT file to be sure it contains the right CAD
filenames for the revision of the machine. Use the SHOW
CONFIG/ASCII command.

Table K-6 General Console (DCN) Warning Messages (Cont.)
Header Message Description
?DCN-W-EUSYM Symbol Name Not Found in CAD Tables -- The V$

?DCN-W-FILNAM

?DCN-W-INVCLK
?DCN-W-INVRMT

?DCN-W-INVXTL

?DCN-W-OPNERR

?DCN-W-PARSER

?DCN-W-PARSER

?DCN-W-USESTP

symbol that the user supplied as a command argument
does not exist in the CAD tables.*

The "aaaaaa"™ File Not Found -- The file specified
does not exist on the RLO2.

Command Invalid for This Version Clock Module

Command Invalid from Remote Terminal -- The last
command entered cannot be executed from a remote
terminal (e.g., changing the baud rate).

Unassigned Crystal Mnemonic

"Device Name" Too Many Files Opened -- The maximum
number of files that can be opened at the same time
(4) has been exceeded.

Ambiguous Command -- Two or more commands match the
command abbreviation. Be more specific.

Invalid Command -- Either the command was entered
in the wrong context or the command does not exist.
Check for proper context and spelling.

Use INIT/POWER Command to Initialize EMM

*Check the CONFIG.DAT file to be sure it contains the right CAD

filenames for

the revision of the machine. Use the SHOW

CONFIG/ASCII command.

Table K-7 Diagnostic Console (DCP) Error Messages

Header

Message Description

?DCP-E-ALIVEE

Invalid DSM Alive Byte -- This message should
only appear after a START command has been issued
to a diagnostic. It means that the diagnostic
should have finished running its current test, but
has not. The microcode may be hung, or the test
may have gotten into an infinite loop. In either
case, it is a lot like a DSM=-DCP communication
failure and needs to have the same sort of
information collected. The user needs to know what
caused the condition so that it can be fixed. Do
the following.

1. Enable HARDCOPY if a hardcopy terminal is
available.

2. Type STOP CPU.

3. Type MIC. This will cause the current
microsequencer PCs to be typed on the
terminal.

4. Press the space bar 10 more times. This causes
a sequence of microsequencer PCs to be typed.
This helps us to find out what the CPU thinks
it's doing.

5. Press <RETURN>. This gets the user out of MIC
mode.

6. Type RESET.

7. Type START CPU.

8. Type EXAMINE/ESCRATCH 70.

9. Type EXAMINE/ESCRATCH 73.

10. Type SHOW DATA.

11. Now reexecute the command file for the
microdiagnostic that got the error. Type
@EDK--.

12. Type START to see if the diagnostic fails
consistently.

Table K-7

Diagnostic Console (DCP) Error Messages (Cont.)

Header

Message Description

?DCP-E-BADCHK

?DCP-E-CONDER

?DCP-E-ILLDSM
?DCP~-E-INVDAT
?DCP-E-INVDCB
?DCP-E-INVDCI
?DCP-E-INVDID

?DCP-E-NOANSD

13. If the microdiagnostic hangs again, type DIAG

and then reexecute the command file one more
time.

14. Save all of this data and include it with a

problem report.

Bad Chksum -- After six retries, the computed
checksum still did not match the checksum sent
with the DSM message packet. This could be a
dual-port RAM, CBus or EBox microcode problem.
Try reinitializing the CPU. If that doesn't work,
run the MHC diagnostic.

Invalid Conditional Statement (failed to
isolate) *

Invalid DSM Function Code*

Invalid SDB data, Failed to Isclate*
Invalid .DCB Isolation File*

Invalid .DCI Isolation File¥*

Invalid ID (Failed to Isolate)*

DSM-DCP Communication Failure -- This message
means the EBox microsequencer has stopped
listening to the console. The cause of this
condition can be investigated. This could happen
because of programming faults, because the
hardware is not initialized properly, or because
the hardware is broken. This message can occur
at almost any time when the user is at the
console terminal. No matter what the reason, the
cause of the condition must be determined so that
it can be fixed, or another test must be written
to catch the fault earlier in the testing
sequence. Follow the procedure outlined under
?DCP-E-ALIVEE.

*This is most likely a software problem (DSM, DC, or the isolation
file). Ensure that the CPU revision level matches the revision
level in VENUS.REV on the RLO2.

Table K-7

Diagnostic Console (DCP) Error Messages (Cont.)

Header

Message Description

?DCP-E-UMICTP

Unexpected Micro Trap at Vector XX =-- The user
should get this message only after starting a
microdiagnostic. It means there is something
wrong in the hardware that is causing microtraps
in the EBox the current test has not requested
or has tried to force. A fault is in the machine
that should have been caught by a previous
diagnostic, or perhaps the machine has not been
initialized properly. Do the following.

1. Enable HARDCOPY if a hardcopy terminal is
available.

2. Type SHOW SWITCHES.

3. Type SHOW DATA.

4, Type EXAMINE/WBUS 6.

5. Type EXAMINE/WBUS 7.

6. Type EXAMINE/WBUS 9.

7. Type EXAMINE/WBUS 11.

8. Type EXAMINE/WBUS 12.

9. Type EXAMINE/WBUS 13.

10. Type START.
Typing START and causing the tests to be
run again will show the user if the problem

was a one-time event or if the test microcode
has an initialization or setup problem.

Table K-8 Diagnostic Console (DCP) Fatal Message

Header

Message Description

?DCP-F-LDFAIL

DSM Load Failure -- DCP was either unable to load
DSM or unable to start DSM. Reinitalize the CPU and
DC. If the problem persists, run the MHC
Diagnostic.

Table K-9

Diagnostic Console (DCP) Information Messages

Header

Message Description

?DCP-I-BADMWD

?DCP-I-FAPAUS

?DCP-I-PAUSEI

?DCP-I-SWDATA

Stop on Umark Bit -- A micromark bit was detected
while running diagnostics.

Fault Detected, Pausing -- The wuser set the
/FAULT: PAUSE switch and the diagnostic detected a
fault.

Pausing == The user typed <CTRL/P>.
Set Data Command Not Invoked =- The user must first

enter a Set Data command before the SHOW DATA
command .

Table K-10

Diagnostic Console (DCP) Warning Messages

Header

Message Description

?DCP-W-CLKSTP

?DCP-W-DIASTA

?DCP-W-EOTBLE

?DCP-W-LMTRUN

?DCP-W-FAILIS

?DCP-W~ISOEOF

Clock Not Running -- The CPU clock has stopped and

must be started so the command can execute
properly.
Diags Not Started -- The user issued a CONTINUE or

STEP command before starting the diagnostic.

End of Set Data Table Space -- The user has issued
more than the maximum (16) SET DATA commands.

Limit of Set Data ASCII Text, Truncate -- The user
has exceeded the maximum (30) ASCII characters in
a string.

Isolation Algorithm Failed to Isolate -- There is
a problem in the isolation file and the DCP is
unable to execute the isolation algorithm.

End of Isolation File Encountered - DCP
unexpectedly encountered an EOF in an isolation
file. There is something wrong with the isolation
file.

Table K-11

Error Correction Routine (ECR) Error Messages

Header

Message Description

?ECR-E-INTERR

?ECR-E-MBTERR

?ECR-E-MUNREC

?ECR-E-NOECCD

?ECR-E-PCFAIL

?ECR-E-SYNGTR

?ECR-E-SYNZRO

CSPE Interrupt, Code Invalid (0) ~-- The console
was interrupted to correct a CS/DRAM parity error;
when the interrupt code was read, it was zero
which is unassigned. This will result in a KAF. If
the problem persists, the console module or the
EBRE module is the most likely cause (see CL07-CL09
and EBE3).

"RAM ID" Multi-Bit-Error, Uncorrectable -- More
than one bit was found to be in error in the
CS/DRAM specified. This will result in a KAF.*

MCS MBox Not Recoverable -- MBox CS parity errors
are correctable but not recoverable. This will
result in a KAF.

"RAM ID" No ECC Data in Table -- The ECC data
needed to correct the CS/DRAM parity error was not
specified in the corresponding ECC Table. This
will result in a KAF.

"RAM ID" Correction Attempted and Failed -- The
console was unable to correct the CS/DRAM parity
error specified after five attempts. This will
result in a KAF.*

"RAM ID" Syndrome > Ram_Size, Uncorrectable -- The
syndrome generated by the CS/DRAM parity error
specified indicates a nonexistent bit was at fault
(e.g., bit 22 in the IBox DRAM which is only 20
bits wide). This will result in a KAF.*

"RAM ID" Syndrome = 0, Uncorrectable -- Most
likely the CPU detected a transient error
associated with the CS/DRAM specified. That is, a
parity error was detected and latched in the
appropriate CS/DRAM logic, but when the data latch
was read (or the CS RAM re-read) the data was ok.
There is, however, a very low possibility that
double bit error occurred, producing a real 2zero
syndrome. Currently this error will result in a
KAF. In the future, however, the console will
report this as a transient error and the console
will take no further action.

*The console software is being modified to report the following
for uncorrectable CS/DRAM parity errors: "Good Data/Bad Data,
Syndrome, and Address."

Table K-11

Error Correction Routine (ECR) Error Messages (Cont.)

Header

Message Description

?ECR-E-UPCERR

"RAM ID" Can't Read Box Address -- The CS/DRAM
correction routine was wunable to read the
microaddress associated with the error. This will
result in a KAF. This is either an SDB failure or
a failure in the addressing logic associated with
the CS/DRAM specified.

Table K-12

Environmental Monitor Module (EMM) Error Messages

Header

Message Description

? EMM-E-EMMACK
?EMM-E-EMMACL
?EMM-E-EMMAFD
?EMM-E-EMMAFF
?EMM-E-EMMANO
?EMM-E-EMMAOK
?EMM-E-EMMBFD
?EMM-E-EMMBOK
?EMM=E-EMMBUF
?EMM-E-EMMCFD
?EMM-E-EMMCOK
?EMM-E-EMMCOL

?EMM-E-EMMDCL

No TRANSPORT ACK from EMM

EMM_LAT AC_LO failed to deassert
REGULATOR_A OK failed to deassert
AIR_FLOW fault failed to deassert
MODULE_A not ok on EMM powerup
REGULATOR_A is not ok
REGULATOR_B_OK failed to deassert
REGULATOR B is not ok

EMM has no protocol buffer
REGULATOR_C_OK failed to deassert
REGULATOR C is not ok

Data errors (collisions) on EMM bus

EMM_LAT_DC_LO failed to deassert

)

Table K-12

Environmental Monitor Module (EMM)
Error Messages (Cont.)

Header

Message Description

?EMM-E-EMMDED

?EMM-E-EMMDFD
? EMM-E-EMMDOK
?EMM-E-EMMEFD
? EMM-E-EMMEOK
?EMM-E-EMMFFD
?EMM-E-EMMFOK
?EMM-E-EMMHFD
?EMM-E-EMMHOK
?EMM-E-EMMI55
?EMM-E-EMMI65
?EMM-E-EMMINV
?EMM-E-EMMJFD
?EMM-E-EMMJOK
? EMM-E-EMMKAC
? EMM-E-EMMKOK
?EMM-E-EMMLAC

? EMM-E-EMMLOK

Console/EMM communication temporarily suspended _—
Communication with the EMM has been suspended for
30 seconds due to excessive errors with the EMM or
the EMM communication 1link (these errors are
reported prior to the message stating that
communications is suspended) . While EMM
communication is suspended, the ALERT LED will
flash double-time (1/4 second on, 1/4 second off).
After 30 seconds, the console tries to reestablish
communication with the EMM. It will only report
the error once (but the LED will continue to flash
until the link is reestablished).

REGULATOR_D_OK failed to deassert

REGULATOR D is not ok

REGULATOR_E_OK failed to deassert

REGULATOR_E is not ok

REGULATOR_F_OK failed to deassert

REGULATOR_F is not ok

REGULATOR_H_OK failed to deassert

REGULATOR_H is not ok

EMM 5.5 interrupt broken -- Replace EMM

EMM encountered unexpected 6.5 interrupt

Invalid exception code from EMM

REGULATOR_J_OK failed to deassert

REGULATOR_; is not ok

MOD_K_AC_LO is asserted

REGULATOR_K is not ok

MOD_L _AC_LO is asserted

REGULATOR L is not ok

K-15

Table K-12

Environmental Monitor Module (EMM)
Error Messages (Cont.)

Header

Message Description

?EMM-E-EMMNEG

?EMM-E-EMMPER
?EMM-E-EMMRES
?EMM-E-EMMRST
?EMM-E-EMMTRP
?EMM-E-EMMUNK

?EMM-E-EMMURC

EMM rejected command

conditions

request due to present

EMM encountered RAM parity error

No response from EMM

EMM encountered restart 1 instruction

EMM encountered unexpected trap interrupt
EMM encountered unexpected trap to PC 0

Unknown restart code in RTDREG

Table K-13

Environmental Monitor Module (EMM) Fatal Messages

Header

Message Description

?EMM-F-EMMMTL

2EMM-F-EMMTIP

?EMM-F-EMMXTO

EMM protocel message too long -- (Software
Problem) .
EMM transmission already in progress -- (Software

Problem) .

Console-to-EMM protocol message transmit timeout
-- Either the switch controlling BBU power to the
TOY is off or there is a TOY chip problem on the
console module.

K-16

Table K-14

Hexadecimal Debugger (HEX) Warning Messages

Header

Message Description

?HEX-W-ADRFOR

?HEX-W-ANFERR

?HEX-W-CLKRUN

?HEX-W-DATFOR

?HEX-W-INCHNO

?HEX-W-INVRPT

?HEX-W-INVSID

Address field out of range -- The microaddress
specified exceeds the size of the CS or DRAM.*

Microaddress not found in file ~- The microaddress
specified does not exist in the RAM file (e.qg.,
CSM is not included as part of the EBox.BPN
file).* .

Command invalid with CPU clock running -- The CPU
clock must be stopped (STOP CPU) before the
command can be executed properly.*

Data field out of range -- The data specified
exceeds the size of the CS or DRAM.

Invalid channel number -- The SDB control channel
specified does not exist.*

Invalid repeat function -- The command cannot be
executed with the Repeat function.*

Invalid ID or name -- The last SDB ID or SDB name
entered does not exist. Make sure the correct CDF
files are loaded for the CPU revision level (SHOW
CONFIG/ASCII) .*

*Use the console software HELP command or refer to the Console
Software Specification for more details on command usage.

Table K-15 Macro Control Program (MCP) Error Messages

Header

Message Description

?MCP-E-C40ICE

?MCP-E-CBADCK

?MCP-E-CSMLOP

?MCP-E-NOCSMR

?MCP-E-NODATA

?MCP-E-NODATW

?MCP-E-NORPKT

?MCP-E-PK2CNS
?MCP-E-UNEXPD
?MCP-E-UNKCSM

?MCP-E-XCCHKS

CSM040 hung during CPU initialization -- CSM was
unable to initialize the IPRs properly. This
indicates that there is an interaction problem
between the EBox and one of the other boxes. If
the problem persists, run MHC and the
microdiagnostics to isolate the fault. If all else
fails, try single stepping through the CsM
overlay.

CSM sent bad checksum -- The computed checksum did
not match the checksum sent with the last CSM
message. This could be a dual-port RAM, CBus, or
EBox microcode problem. Try reinitializing the
CPU. If that doesn't work, run the MHC diagnostic.

CSMs console loop not running -- The EBox is
either hung or not started. To clear this
condition, either start the CPU (if <CTRL/P> was
typed) or use the INIT/CPU if the EBox is hung.*

No acknowledgment from CSM -- CSM failed to
respond to a request. If this occurred during a
INIT/CPU command, chances are CSM is hung trying
to initialize an IPR.*

CSM sent no data packet -- The command protocol
includes a data packet but CSM failed to send
one.*

CSM sent unexpected data packet -- CSM either sent
an extra or an unexpected data packet when a
packet was not part of the command protocol.+t

No response packet received from CSM -- CSM is
hung trying to perform an initialization.*

CSM pkt2, cntl not set+

CSM sent data for non-data responset

Unknown CSM packet code+

X command cmd_check_sum failure -- The checksum
calculated by MCP did not match the checksum

associated with the command portion of the X
command.

Table K-15 Macro Control Program (MCP) Error Messages (Cont.)

Header

Message Description

?MCP-E-XDCHKS X command data_check_sum failure =-- The checksum

MCP calculated did not match the checksum
associated with the data portion of the X command.

?MCP-E-XRTIMO X command receiver time_out -- Once the X command

has established a link, the console expects a byte
no less than once a second. This message indicates
that the X command has not send a byte during the
last second.

*To determine where CSM is hung, do the following.

7.

Type STOP CPU.

Type MIC. This will cause the current microsequencer PCs
to be typed on the terminal.

Press the space bar 10 more times. A sequence of
microsequencer PCs will be typed out. This helps us to
find out what the CPU thinks its doing.

Press <RETURN>. This gets the user out of MIC mode.

Type UNHANG.

Type @STKFRM. The EHM may have built a machine check
stack frame for this error condition. This command will
dump ESC:17 through 2F.

Refer to the Console Software Spec to determine which CSM
overlay was loaded.

t+These are CSM protocol problems. First try reloading the EBox
microcode:. If that doesn't work, run the microdiagnostics.

Table K-16 Macro Control Program (MCP) Fatal Messages

Header

Message Description

?MCP-F-ABSDED ABus Dead -- Indicates that ABus Dead was detected

while in program I/0 mode.

?MCP-F-INVCSM Invalid CSM overlay number -- (Software Problem).

?MCP-F-PWRFAL Power Fail -- 1Indicates that a Power Fail

condition was detected while in program I/0O mode.

Table K-17

Macro Control Program (MCP) Information Messages

Header

Message Description

?MCP-I-BBUINV

?MCP-I-HDECOL

?MCP-I-MCLDST

?MCP-I-MWRMST

?MCP-I-LARPWR

?MCP-I-NOPAMM

?MCP-I-RPBBSY

2MCP-I-RPBINV

Battery backup unit invalid

Hardware not up to proper ECO level -- According
to the System ID Register (SID) and VENUS.REV the
files on the RL02 are not compatable with the
system. Check the contents of the VENUS.REV file
against the system ID.

Aborting redundant cold-start attempt -- A cold
restart has been attempted and failed. Subsequent
automatic cold restarts are aborted.

Aborting redundant warm-start attempt -- A warm
restart has been attempted and failed. A second
warm restart attempt will be aborted and a cold
restart will be attempted if enabled via the
System Control Panel.

Lost array refresh power (warm-start not possible)
—— Either the BBU is switched off or the 10 minute
time limit expired for the battery backup unit to
supply power to the array refresh circuit. A warm
restart is no longer possible. A cold restart will
be attempted, if enabled via the System Control
Panel.

No physical address memory map

RPB restart-in-progress flag set -- The warm
restart attempt failed. If the Restart Control
Switch is in the correct position, a cold restart
will be attempted.

RPB invalid/not found -- The RPB in memory is
invalid. The warm restart must be aborted. If the
Restart Control Switch is in the correct position,
a cold restart will be attempted.

),

)

Table K-18 Macro Control Program (MCP) Warning Messages

Header

Message Description

?MCP-W-ADROOR Address out of range -- The address specified is

outside the range for examine/deposit commands.*

?MCP-W-DATOOR Data out of range -- The data specified exceeds 32

bits.*

?MCP-W-INVIPR Invalid IPR number -- The IPR number argument is

currently unassigned.*

?MCP-W-INVRRW Read or write not allowed -- The command specified

is not appropriate because the IPR is either read
or write only.*

?MCP-W-XINCOM X command in .com file invalid =-- X commands

cannot be executed in a command file.*

*Use the console software HELP command or refer to the Console
Software Specification for more details on command usage.

K.4

KEEP ALIVE FAIL MESSAGES

The program module MCPSNP, the KAF snapshot routine, provides the
messages described below. It first prints the following banner.

"Attempting to save machine state due to:"

One of the following reason messages is appended to the banner.

1.

DOUBLE ESCRATCH PARITY ERROR (KAF Reason Code: 18) --
The Error Handling Microcode (EHM) determined that there
was a parity error in both copies of the EBox scratchpad
RAMs. This condition probably occurred when the EHM was
trying to correct a GPR parity error by copying the good
GPR to the bad GPR. This is a nonrecoverable error
condition. The EHM responded to this error condition by
looping at EBox UPC 20, which resulted in this KAF.

This is a sticky problem. There is a good chance that
the GPR parity error will once again be detected when the
KAF routine uses CSM to read the EBox scratchpad RAMs.
If that is the case, then the Escratch record of the Snap
file will contain the contents of the Escratch up to the
point where the parity error occurred. The remainder of
that section will contain all 1ls (FFF...). In addition
to being unable to copy some or all of the Escratch, the
KAF routine will be unable to copy the CPU IPRs, the
PAMM, the top 64 longwords on the interrupt stack, and
the SBIA/Nexus registers. Table K-19 1ists the probable
cause of this fault.

K-21

Table K-19 Double Escratch Parity Error Fault (KAF)

Module Probability RAMs (GPRs)
L0209/EDP High E500, ES501, E502, E503
E613, E614, E615, E617
E712, E713, E714, E715
E812, E813, E814, E815
E903, E907
L0219/EBE Low
2. MACHINE DOUBLE ERROR (KAF Reason Code: 19) -- EHM was in
the process of handling an error when a second
EBox-related error was detected. This is a
nonrecoverable error condition. The EHM responded to
this error condition by looping at EBox UPC 21, which
resulted in this KAF.
The user should contact the RDC and request they analyze
the Snap file. Meanwhile, if possible, use VSRBLD to
translate the Snap file. Otherwise, translate the Snap
file manually. The ESC should contain a partial machine
check stack frame for the first error. Beware, however,
the EHM over wrote the following Escratch locations with
status from the second error.
ESC: 12 (Trap Vector)
ESC: 15 (EBCS)
ESC: 19 (VMQ)
ESC: 2F (PSL)
3. WBUS PARITY ERROR (KAF Reason Code: 1A) -- The EBox

updated all copies of the GPRs with bad parity. This is
a nonrecoverable error condition. The EHM responded to
this error condition by looping at EBox UPC 24, which
resulted in this KAF.

The symptoms indicate that the parity calculated on the
WBus data did not match the parity calculated at the
output of the WREG. Most likely, the IBox or FBox is
either contaminating the WBus or one of the parity
generators is bad. Table K-20 lists the most probable
causes of WBus parity errors.

K-22

Table K-20 WBus Parity Error Faults (KAF)

Module Probability
L0209/EDP High
L0219/EBE High
L0206/1IDP Low
L0212/FBA Low
L0223/FTM Low (FBox Terminator)
4. CPU ERROR HALT (KAF Reason Code: 1B) =-- The KAF

condition was initiated by the Console Support Microcode
(CSM) . The specific reason for the KAF is contained in
the Master Header Record Byte 13 (CSM Status Word Entry
Code). See list below.

a. Code=0 -- CSM could not be forced to run by the
console program after the KAF. The EBox microcode
may have been corrupted, so reinitialize the system.
If that doesn't work, run the microdiagnostics.

b. Code=4 -- Interrupt Stack not valid. The CPU was
processing an interrupt or an exception, but when it
attempted to push error status information on the
interrupt stack, it discovered that the interrupt
stack was mapped NO ACCESS or NOT VALID. This
generally indicates that the CPU got into 1loop
handling an interrupt or exception, causing the
interrupt stack to overflow to a page mapped NO
ACCESS or NOT VALID.

Translate the Snap file. Look at the last 64
longwords on the interrupt stack. That may provide a
clue to the loop that the CPU was in. Also, look at
the contents of the CSLINT register. If the CPU was
in an interrupt loop it may be possible to get some
idea of the source. Finally, look at EHSR and the
machine check section of the Escratch record to
determine if the CPU was handling an error.

K-23

Cs

Code=5 —-- Non-Ebox or VMS ENTERED double error.
There are two ways this condition can occur.

(1) If the EHM was processing an error and a second
(non-EBox) error was detected, the EHM will call
CSM with a code of 5 in CSM.STATUS. 1In this
case, there will be a partially built stack frame
(for the first error) in the Escratch. The
vector address in EHSR will identify the port
that reported the second error.

(2) If the VMS machine check handler was handling an
error and a second error was detected, the EHM
will build a stack frame for the second error and
then call CSM with a code of 5 in CSM.STATUS. 1In
this case, the first machine check stack frame
will be on the interrupt stack, and the second
machine check stack frame in the Escratch.

Code=6 -- Kernel mode HALT. The processor executed a
HALT instruction while in kernel mode. Use the PC
and the interrupt stack to determine the reason.

Code=7 -- SCB vector with <1:0> = 3. The vector code
field in the system control block <1:0> was equal to
3, which is a reserved code. Either the SCB was
overwritten or a wrong vector address was generated.

Code=8 =-- SCB vector with <1:0> = 2. The vector code
field in the system control block <1:0> was equal to
2, which means service this event in Writable Control
Store (WCS). However, the WCS either does not exist
or was not loaded. The result of the operation is a
HALT. Again, either the SCB was overwritten or a
wrong vector address was generated.

Code=9 -- Pending error on HALT. The CPU was in the
process of handling an error condition when P was
typed on the console. The interrupt stack, the
Machine Check section of the Escratch, and the
contents of ERSR indicate the type of error the CPU
was processing when P was typed.

Code=A -- CHMx with IS = 1. The CPU executed a
change mode instruction when PSL <26> (interrupt
stack) was set.

Code=B —-- CHMx vector <1:0> not 0. The CPU executed
a change mode instruction and the SCB vector code
<1:0> was not equal to zero.

UNCORRECTABLE CS PARITY ERROR (KAF Reason Code: 1C) ==
The console was unable to correct a control store or
Dispatch RAM for one of the reasons shown in Table K-21.

K-24

Table K-21 Uncorrectable CS Parity Error Faults (KAF)

Reason Description
INTERR CSPE interrupt, code invalid (0)
MBTERR "RAM ID" multi-bit-error, uncorrectable
MUNREC MCS MBox not recoverable
NOECCD "RAM ID" no ECC data in table
PCFAIL "RAM ID" correction attempted and failed
SYNGTR "RAM ID" syndrome > ram_size, uncorrectable
SYNZRO "RAM ID" syndrome = 0, uncorrectable
UPCERR "RAM ID" can't read box address
NOTE
Refer to Table K-11 for a description of
uncorrectable control store and dispatch
parity errors. Examine the contents of
CSES to determine the RAM, address, and
syndrome. Then refer to the RAM callout
tables in the section on stack frame
analysis to identify the failing RAM.

6. POWER SYSTEM FAILURE (DC LOW) (KAF Reason Code: 1D) --
During a normal power failure, ac low will precede dc low
by approximately 10 ms. This allows VMS enough time to
sweep the cache, save the state of the GPRs, CPU
registers, etc. However, if a DC regulator fails
(resulting in dc low only), then this message is printed
and a KAF results. Review the EMM record of the Snap
file to determine the exact cause of the failure.

7. UNKNOWN MACHINE HANG (KAF Reason Code: 1E) =-- The KAF

timer expired and the KAF routine read the EBox UPC and
the CSM status word, but was unable to determine the
cause of the KAF. Most likely, the system is stalled or
hung in a loop waiting for some event to occur.

Contact the RDC and request they analyze the Snap file.
Meanwhile, if possible, use VSRBLD to translate the Snap
file or translate the snap file manually. The ESC may
contain a partial machine check stack frame.

There are two additional messages displayed by the KAF
routine, as described below.

1. Both Snap files still valid -- The KAF routine was called
to capture (snapshot) the state of the system but both
Snap files were still valid. That is, they still
contained status captured during the previous two KAF
conditions. As a result, the console will not capture
the state of the machine. Instead, it will attempt to
restart CSM at 100D and call the reboot routine.

2. SNAPx.DAT created -- Currently there two Snap filenames
used by the console: SNAP1.DAT and SNAP2.DAT2. This
message shows the name of the Snap file that the KAF
routine created as a result of the KAF condition.

APPENDIX L
GLOSSARY OF TERMS

The following terms and mnemonics are used throughout the manual
for simplicity of expression. This appendix defines the meaning
of each term or mnemonic.

CBus -- The CPU bus is a 32x8-bit dual access RAM used for
CPU/console communication. The CBus RAM is the means by which the
RX, TX, STX, and TODR register functions are provided to the CPU.

CCS -- Console Command Strings are diagnostic commands issued from

the VAX processor, under program control, to the console program.
The console interprets the string as a series of console commands
to be executed.

CIO mode -- Console I/O mode. One of two modes that the console
program can be running in (see also PIO mode). In CIO mode, the

console program accepts command input from the LCL and RD terminal
ports.

CPU -- In this document, CPU refers to the VAX central processor
running macroinstructions.

CSM -- Console Support Microcode running in the EBox while the
console program is in CIO mode (MACRO context) provides the
console program access to various address spaces in the CPU.

DSM -- Diagnostic Support Microcode runs in the EBox while the
console program is in CIO mode (DIAGNOSTIC context) and provides
the console access to various address spaces in the CPU.

EMM -- Environmental Monitoring Module. This microprocessor-
controlled unit is part of the power system. It communicates to
the console program to provide control and status of the power
system.

EMM port -- This is a PCI port used for EMM/console communication.
FRU -- Field Replaceable Unit. Refers to a module, subassembly,

cable, or circuit component that can easily be replaced to repair
a hardware problem.

KAF -- Refers to a CPU Keep Alive Failure. This is a condition
detected in PIO mode where the CPU stops executing instructions.
In most cases, the only recourse for the console program is to
reinitialize and reboot the CPU. A restart of the CPU is
attempted if the KAF was one of those that was defined as a CPU
ERROR HALT in Digital Standard 032.

keyword -- A keyword is an argument on a console command line
(that is not a switch).

LCL port -- This is a PCI port used for console communications
with the local terminal device.

LCL terminal -- The terminal device connected to the LCL port.

logical register -- A set of visibility bits grouped together to
form a register. The EXAM/SDB command is one way of displaying
the state of a logical register.

MPS -- Modular Power System.

PAMM -- The Physical Address Memory Map is a RAM in the MBox that
is initialized by the INIT/PAMM command. The PAMM assigns memory

arrays and I/0 adapters to specific ranges of physical memory
addresses.

PCI -- Programmable Communications Interface (generic term for
USART) .

PIO mode -- Program I/O mode. One of two modes that the console
program can be running in (see also CIO mode). In PIO mode, the
console is a dedicated I/O device to the CPU.

QBA -- The Q-Bus Adapter interfaces the 16-bit Q-Bus with the
8-bit console memory bus, and also performs the necessary
handshaking with the Q-Bus device (RLV12 controller) for DMA and
register transfers.

RD port -- This is the PCI port used for console communications
with the remote (RDY) terminal device.

RD terminal -- The terminal device connected to the remote port.
Note that this connection could be made through a modem.

register ID -- A unique 16-bit number (with the most significant
bit set) assigned to a logical register. May be used as an
argument to the EXAMINE/SDB command, but intended as an "tag" used
internally by the console program.

SDB -- The Serial Diagnostic Bus provides the console with
visibility into the CPU. It is also used for loading control
stores and state information into the CPU.

)

SDB ID -- A unique 16-bit number (with the most significant bit
clear) assigned by the Chaser utility to single visibility signal.

snapshot -- The process of the console collecting data from the
CPU after a KAF and saving it on the console's disk.

TODR -- The Time-Of-Day Register is a 32-bit integer in the CBus
that the console increments once each 10 ms to provide the CPU
with Time-of-Year information.

TOY == Time-Of-Year, in terms of 10 ms increments from the
beginning of the year.

UPC -- Short for micro-PC.
visibility register -- See logical register.

VTERM -- Visibility Terminator. Special logic device used to
terminate up to 8 ECL signals and provide visibility to each bit.

J

