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1l INTRODUCTION

Footnotes may indicate why certain decisions were made, describe
unresolved issues, or provide hardware implementation guidelines.
This information is for Digital use only.

1.1 PURPOSE

The purpose of this standard is to define the architecture and
requirements for the VAXBI bus so that all hardware design and
implementation is compatible and so that software can be written
for conforming hardware.

1.2 SCOPE

This standard applies to all nodes and systems using the VAXBI
bus. :

1.3 RESPONSIBILITIES

1.3.1 MSB Systems Architecture

It is the responsibility of MSB Systems Architecture to:

0o Be responsible for the technical accuracy of the
specifications.

0 Review change requests to the document and accept or
reject those requests.

0 Grant exceptions as necessary to options that do not
conform to VAXBI requirements.

1.3.2 VAXBI Certification Group

It is the responsibility of the VAXBI Certification Group (of
Mid-Range Systems Evaluation Engineering) to:

o Certify that options designed to be incorporated into a
VAXBI system meet the stated requirements.

2 ECO PROCESS FOR DEC STD 057 VAXBI STANDARD

For information on this see Appendix F of the the VAXBI standard.
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PREFACE

This document describes and specifies the VAXBI bus. It serves as the
reference document for designers who are designing to the bus. The
manual defines all aspects of the bus, including protocol,
architecture, and bus components.

INTENDED AUDIENCE

The VAXBI Standard provides information needed by all engineering
disciplines, from system architecture to mechanical packaging. The
Reading Path section at the end of the Preface 1lists which chapters
will be of most interest to particular disciplines.

STRUCTURE OF THIS DOCUMENT

The VAXBI Standard has four major parts:

PART ONE Bus Description and Requirements
PART TWO The BIIC
PART THREE Bus Support Components

- PART FOUR Application Notes

Chapter 1 provides an overview of the VAXBI bus and the primary
interface to the bus, the BIIC. The chapter describes the major
features of the bus and introduces the terms used in this document. A
glossary appears at the end of the manual.

The chapters in each part are summarized below.

PART ONE Bus Description and Requirements
Chapter 2 describes the partitioning and use of VAXBI address space.
Chapter 3 describes the VAXBI protocol. The chapter explains how

nodes arbitrate for use of the bus and then defines the cycles of a
transaction. :
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Chapter 4 defines the signals on the VAXBI bus.

Chapter 5 describes the transactions that the VAXBI bus supports and
gives requirements for their use. The chapter explains how single-
and multi-responder transactions differ and provides background on the
rationale for defining the different kinds of transactions.

Chapter 6 defines initialization requirements for systems and for
individual nodes.

Chapter 7 defines the VAXBI registers. A subset of these registers is
required by all nodes; the use of the other registers depends on the
node class.

Chapter 8 provides an architectural framework for how requirements on
nodes depend on the node class. The chapter categorizes nodes into
three classes: processors, memories, and adapters.

Chapter 9 describes the VAXBI console protocol which provides for
communication among processors on a VAXBI bus.

Chapter 10 discusses bus bandwidth and the effects on bus access
latency and interrupt latency.

Chapter 11 discusses the following features that contribute to the
efficient functioning of VAXBI systems: self-test, error checking,
and stopping a node.

Chapter 12 is the electrical specification for the signals on the
VAXBI bus.

Chapter 13 defines the physical requirements that VAXBI modules,
cages, and other subassembly components must meet.

PART TWO The BIIC

Chapter 14 gives an overview of the BIIC (the bus interconnect
interface chip) that serves as the primary interface between the VAXBI

bus and the user interface logic of a node.

Chapter 15 deals with the BIIC signals but concentrates on the BCI
signals, those that connect the BIIC and the user interface logic.

Chapter 16 gives requirements for the use of BIIC registers. - The
descriptions of the registers appear in Chapter 7.

Chapter 17 describes the BIIC’'s diagnostic facilities: self-test,
error detection, and error recovery.
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Chapter 18 gives a detailed 'description of BIIC operation. The
chapter explains what the BIIC does on power-up, what the BIIC retry
state is, and what the role of the BIIC is in each type of
transaction.

Chapter 19 gives BIIC packaging information.

Chapter 20 gives the electrical specifications for the BIIC.

Chapter 21 consists of 28 functional timing diagrams of various types
of transactions and sequences as implemented by the BIIC.

PART THREE Bus Support Components

Chapter 22 is the specification for the VAXBI clock driver.

Chapter 23 is the specification for the VAXBI clock receiver.

PART FOUR Application Notes

Some information that appears in these notes is Eequired for the
impiementation of some functions on the VAXBI bus. :

Note 1 describes various types of adapters and the kinds of functions
they perform.

Note 2 explains how the VAXBI provides for caching in multiprocessor
systems. The VAXBI requirements primarily apply to systems with
write-through cache. The note also gives suggestions for designing
systems with write-back cache.

Note 3 offers strategies for using the BIIC registers. The strategies
should be helpful to node designers and software users of the VAXBI
bus. '

Note 4 discusses the intended goals of self-test and comments on the
implementation of self-test for various lengths of self-test.

Note 5 describes use of the RETRY response code and how to avoid or
deal with extraneous retry timeouts.

Note 6 describes the use of the VAXBI clock receiver. It also
presents a suggested method of generating a family of clock waveforms
for use by VAXBI node logic.

Note 7 discusses the power sequence timing from the BCI viewpoint.
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Note 8 discusses the bandwidth that can be achieved by the master port
and slave port resident on a node using the BIIC.

Note 9 describes use of the RXCD Register when using diagnostics in
read-only memory in a VAXBI node.

Note 10 describes the preferred use for the DREV field of the Device
Register.

READING PATH

This document is a compendium of VAXBI system requirements that cover
a wide range of engineering disciplines to assure a high level of
compatibility between nodes. A thorough knowledge of this entire
document by all readers is beneficial to the success of any design.
However, some readers may want to concentrate on certain sections of
the manual that are of greater importance to their task and their area
of expertise. The following list suggests areas of the specifications
that may warrant more of an in-depth understanding by engineers in
certain fields of expertise:

Svstem architects --
Chapters 1, 2, 3, 4, 5, 6,
Application Notes 1, 2, 3, §5,
Appendixes C, D, F

Node logic designers --
Chapters 1, 2, 3, 4, 5, 6, 12, 14, 15, 16, 18, 20, 21, 23
Application Notes 1, 3, 4, 5, 6, 7, 10
Appendixes C, E

System programmers --
Chapters 1, 2, 6, 7
Application Notes 3, 9, 10
Appendixes C, D, E

System mechanical engineers --
Chapter 13

Node module layout designers --
Chapters 1, 13, 19

Maintainability engineers --
Chapters 1, 3, 4, 5, 6, 7
Application Notes 3, 4, 1
Appendixes C, D, E

11
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’

Diagnostic programmers --

Chapters 1, 2, 5, 6, 7, 11, 17, 18
Application Notes 1, 3, 9
Appendixes C, D, E

System power supply designers --
Chapters 1, 6, 13

ASSOCIATED DOCUMENTS

VAX-11 Architecture Reference Manual

VAXBI Designer’s Notebook (EK-VBIDS-RM)

VAXBI Options Handbook (EB-27271-49)

Module Laydut Database Package. (BLVBI-BA) Includes
drawings and magnetic tapes.
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CHAPTER 1

OVERVIEW OF THE VAXBI BUS AND THE BIIC

1.1 DIGITAL’S COMMITMENT TO FUTURE COMPUTING NEEDS

Digital introduced 1its first 32-bit computer in 1978, the VAX
computer. Wwith its 32-bit architecture, the VAX computer quickly
became the industry standard for minicomputers. Since then VAX
computers have increased in speed, power, and reliability. At the
heart of the VAX computer family is its architecture, which offers
power and extensibility.

. Advancing technology offers new ways of solving computing problems,
/mxhbut Digital will continue to maintain its commitment to customers who
‘ have invested in Digital hardware and software. Over the years

Digital has adhered to its standard of compatibility, first ensuring
that PDP-1l users could migrate into the VAX family and now using the
VAX architecture as the foundation for new, more powerful systems.

In developing new systems, Digital formulated an interconnect strategy
to offer solutions for the needs of future generations of computers.
Part of Digital’s overall interconnect strategy was to develop the
VAXBI[TM]* bus. The VAXBI system uses state-of-the-art integrated

™ circuit technology and has the flexibility to incorporate the
anticipated advances in systems and logic technology.

The VAXBI Standard defines all aspects of VAXBI operation required to
ensure compatibility. This includes logical bus protocol, electrical
characteristics, mechanical components, and higher-level system
architectural requirements. '

The VAXBI design provides for the evolution in computing styles.
Growth of distributed processing in the next decade will be based
largely on progressive development in I/O architectures. Cooperative
performance of distributed computing resources and their ability to
expand and diversify can be enhanced by the hardware interconnects
that link their components at all levels, from individual terminals to
networks. 1In pparticular, system integrators and designers of 1I/0

™ *VAXBI is a trademark of Digital Equipment Corporation.

1-1
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devices will be looking for superior functionality and compatibility
throughout the interconnect hierarchy of distributed processing
systems. The VAXBI bus provides for a diversity of computing
resources. A single VAXBI bus can accommodate a high-speed processor
with a private memory, several processors that may share memory and
I/0 devices, and single board computers. The VAXBI protocol provides
for communication among them all.

Digital has designed a custom integrated circuit that implements the
VAXBI protocol, including all required bus error detection and error
logging functions. Therefore, instead of developing the complex
circuitry required to implement a bus protocol, node designers can
devote their efforts to the requirements of their specific
application.

The rest of this chapter describes the main features of VAXBI systems
and defines the terms used to describe the operation of the bus.
Section 1.2 introduces the bus and summarizes the VAXBI addressing
capability and the peak transfer rate. Section 1.3 presents the
transactions supported by the VAXBI bus. Section 1.4 describes the
BIIC, the control chip that is the primary interface to the VAXBI bus.
Section 1.5 describes the BCI, the interconnect to the wuser logic.
And, finally, Section 1.6 presents some typical configurations of
systems using the VAXBI bus.

1.2 DESCRIPTION OF THE VAXBI BUS

The VAXBI bus is a 32-bit synchronous, wire-ORed bus used to join a
processor to I/O <controllers, I/O bus adapters, memories, and other
processors. Its characteristics are low cost, high bandwidth, a large
addressing range, and high data integrity. The VAXBI bus is the
interconnect successor to the UNIBUS for VAX computer systems.

Arbitration for use of the VAXBI bus is distributed among all the
users of the bus, so no processor needs to be dedicated to controlling
bus use. The distributed design of arbitration maximizes the use of
multiple processors so systems can be configured to meet a variety of
needs. Each user on the VAXBI bus is called a node. A single VAXBI
bus can service 16 nodes, which can be processors, memory, and
adapters. An adapter is a node that connects other = buses,
communication lines, and peripheral devices to the VAXBI bus. Each of
the 16 nodes can control the bus, and the slot placement has no effect
on the relative priority of the node. A node receives its node ID, a
number from 0 to 15, from a plug on the VAXBI backplane slot into
which the node module is inserted. (Chapter 13 specifies the
mechanical characteristics of VAXBI components.)

Arbitration logic, which is distributed among all the nodes, is based
on a dual round-robin priority scheme within the system. When all

1-2
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nodes arbitrate in dual round-robin mode, over time each node has
equal access to the bus and after winning an arbitration can becomeé
bus master. The master issues a transaction that is responded to by
one or more slaves.

The VAXBI protocol specifies that arbitration for bus mastership can
take place during an ongoing transaction. The winner of an
arbitration that occurs when a transaction is in process becomes the
pending master. '

1.2.1 Addressing Capability

~~ The VAXBI bus supports 30-bit addressing capability, which provides
' one gigabyte of address space. This address space is split equally
between memory and I/0 space (512 megabytes each) (see Figure 1-1).

Hex Adaress
0000 0000
Memory Soace
512mM8B
27
2000 0000
QO Space

512MB

3FFF FFFF
“.0-001-88

~~ Figure 1-1: VAXBI Bus Address Space

In I/0 space, each node has an 8-Kbyte block of addresses known as its
nodespace. The first 256 bytes of each nodespace, the BIIC CSR space,
are reserved for VAXBI registers. The rest of each nodespace is user
interface CSR space. In addition, each node has 256 Kbytes (called
its node window) and may have another node-specifiable number of
megabytes (called 1its assignable window) in I/O space for use in
mapping addresses to other buses, and so forth (see Figure 1-2).°

The basic unit of data that the VAXBI bus handles is the longword (4
bytes), but transactions can transfer from 1 to 16 bytes.

Chapter 2 describes VAXBI address space.
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| Node 0 Nodespace | ==> VAXBI Registers
I (8 KB) I (256 Bytes)

I . I

I . I

| . I

| Node 15 Nodespace | =-=> VAXBI Registers
I (8 KB) | (256 Bytes)

I I

I . |

I . I

I . |

| Node Window 0 |\

I (256 KB) I

| Node Window 15 |
| (256 KB) I/
2 Assignable Window Space |

l (24 MB) ,

Figure 1-2: VAXBI I/O Address Space

1.2.2 Peak Transfer Rate

Data transmission is at fixed lengths of 4, 8, and 16 bytes (longword,
quadword, and octaword lengths) on naturally aligned addressing
boundaries. Data transferred within these lengths, however, can be
from 1 to 16 bytes in any transaction. As implemented by the BIIC,
the maximum data transfer rate on the VAXBI bus, the bandwidth, for
l6-byte transfers is 13.3 megabytes per second. For 4-byte transfers
the rate is 6.6 megabytes per second. Nodes that are slow responders
can stall data cycles of a transaction so that the attempted transfer
will be repeated.

Chapter 10 describes VAXBI bus performance, and Application Note 8
explains how the bandwidth is determined for nodes using the BIIC.
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1.2.3 VAXBI Signals

The VAXBI bus has 52 signal lines, 44 of which connect to the BIIC.
Four signal 1lines are for «clock signals, and the remaining 4 go
elsewhere on the board. The signals can be divided by function into
four categories:

o Data Path Signals
32 data lines
4 status lines
1 parity line

o Synchronous Control Signals
1 no arbitration line
1 busy line
3 confirmation lines

o Clock Signals
4 lines

o Asynchronous Control Signals
AC line

DC line

reset line

self-test fast line

bad line

spare line

e

The term asserted indicates that a signal line is in the "true" state,
while deasserted indicates a "false" state. Assertion is the
transition from the false to the true state; deassertion 1is the
transition from the true to the false state. When the absolute level
of a signal is specified, the letters H and L indicate a high voltage
level and a low voltage level, respectively.

The VAXBI bus is a synchronous interconnect with bus events occurring
at fixed intervals. Data is clocked onto the bus at the leading edge
of a transmit clock and received and latched with a receive <clock at
the end of a bus cycle. Information processing occurs during the
cycle following the one in which data is transmitted.

Bus arbitration and address and data transmissions are time
multiplexed over 32 data 1lines. Interrupt sequences are performed
with VAXBI transactions which may be directed to a single processor or
to several processors. '

Chapter 4 describes the VAXBI signals.

1-5
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1.2.4 VAXBI Bus Features
The following list is a summary of key VAXBI features:
o Symmetrié and asymmetric multiprocessing.
0o Distributed arbitration.
o Slot interchangeability.
o Standardized interface for all designs.
0 Address capability of 1 gigabyte.
o Up to 16 full master/slave/interrupt type nodes.
o Bandwidth of 13.3 megabytes per second.
o High degree of data integrity.
o Extensive error logging in all nodes.
o Parity on bus data path.

o Extensive error checking provided on-chip. The BIIC provides
for:

o Checking of parity on the data lines

o0 A comparison of data received against data transmitted

0 Protocol checking at all nodes involved in a traﬁsaction
O Worst-case design analyzed.

0 Power-up self-test in all nodes.

1.3 TRANSACTIONS

The VAXBI bus is a nonpended, bus in that only one transaction can be
on the bus at any -given time. However, a node can execute a
transaction without using the bus. This type of operation, called a
loopback transaction, can occur at the same time that the bus is
dedicated to an ongoing VAXBI transaction.

dlilaliltlal1
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Both single- and multi-responder transactions are supported. Every
single-responder command is confirmed with a positive acknowledgment
for command accepted or command retry, a negative acknowledgment for
no responder selected or error detected, or a stall acknowledgment to
delay either of the two positive acknowledgments. Multiple responder
commands are confirmed as command accepted (by at least one responder)
or no responder selected.

Transactions are defined in terms of cycles. The basic bus cycle is
200 nanoseconds.

The VAXBI protocol requires confirmation messages at the end of bus
cycles. Depending on the type of cycle and type of transaction, these
messages give feedback on errors and slave status. Parity checking
monitors the accuracy of data transfer.

The node that gains control of the VAXBI bus for a command transaction
is known as the master. The node that responds is the slave.

The first cycle in a transaction is the command/address cycle, during
which the node that has gained control of the bus transmits the code
for a particular transaction and identifies the node or nodes to
respond. The second cycle in any transaction is given over to
arbitration. An arbitration cycle that occurs when a transaction is
in process is known as an imbedded arbitration cycle. Any nodes other
than the current master can negotiate for control of the bus to carry
out the next transaction.

During the third cycle of a transaction, the slave sends a command
confirmation in response to the command of the first cycle. The slave
sends an ACK if it can respond to the request. If the slave can
respond and the command was a read or write transaction, then the
third cycle is also a data cycle. Data cycles continue until all the
data has been transferred. 1If the slave cannot respond to the command
at this time, it issues a STALL or RETRY command confirmation. Upon
receipt of a RETRY, the master terminates the transaction and reissues
the command at a later time. STALLs delay the continuation of the
transaction until the slave can take action. A node returns a NO ACK
if the command has not been received successfully.

dlilaliltlali
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VAXBI commands are either single-responder commands or multi-responder
commands. The single-responder commands include the following:

o READ

0 RCI (Read with Cache Intent)

o IRCI (Interlock Read with Cache Intent)

O WRITE

0 WCI (Write with Cache Intent)

O WMCI (Write Mask with Cache Intent)

0 UWMCI (Unlock Write Mask with Cache Intent)

0 IDENT (Identify)
The multi-responder commands include:

0 INTR (Interrupt)

o IPINTR (Interprocessor Interrupt)

o INVAL (Invalidate)

o STOP

o BDCST (Broadcast)
The VAXBI protocol provides for the use of caches, so that reads and
writes can be specified depending upon whether data is cached. The
terms read-type and write-type are used to describe all the read and
write transactions. The transactions "with cache intent"” are used
when data may be cached. Nodes monitor the bus to see if any
transactions with cache intent affect the data that they may have in
their cache or in a private memory. If a transaction is specified as
a READ or WRITE transaction (in uppercase), this means that data will
not be cached. Having the READ and WRITE transactions improves system

performance.

The INVAL command is used by processors and adapters to signal other

nodes that they may have cached data that is no longer valid.:

Ordinarily, nodes monitor the bus to see if any transactions with
cache intent affect their cached data. However, nodes that do reads
or writes to a private memory without performing a VAXBI transaction
must have another means of notifying the other nodes that their data
may be invalid. The INVAL command meets this need.

dlilalilt/al1 |
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Interrupts are initiated and carried out over the data path. The INTR
command is wused by nodes to post interrupts. In response, the
interrupted processor sends an IDENT command to request vector
information from the node that issued the INTR. A processor can also
interrupt another processor by sending an IPINTR command.

The BDCST command is reserved for use by Digital. Its operation is
described in Appendix A.

Chapter 5 describes the VAXBI transactions.

1.4 THE BIIC

A node’s primary interface to the VAXBI bus is the BIIC (bus
interconnect interface <chip). Figure 1-3 shows a block diagram of a
VAXBI node. The BIIC is shown as the VAXBI primary interface

(abbreviated VPI) between the VAXBI bus and the user interface logic.

USER INTERFACE BIC *
8CI BUS VAXBI BUS

BC! RQ<1:0> L
BC! MAB L

MASTER B8CI RAK L

PORT BCI NXT L

INTERFACE BCIMOE L

Bl NO ARB L e
Bl CNF<2:0> | [
‘ «
BCI D<31.0> H Bl D<31:0~ L
BC! 1<30> H Bl I<3:0> L ret—
BC! PO H BIPOL [rea——
8Cl Ev<aO> L
- BCIACLOL BIACLOL e

BCiOCLOL BIOCLOL - e

SLAVE

PORT B8CI RS<10> L

INTERFACZ BCI CLE H
BC! SDE L
B8CI SEL L
B8CI SC<20> L

INTERRUPT BCIINT<74> L

" PORT
INTERFACE B8C!I TIME L BC! PHASE L
3 t 3 T
L .
r |

FROM VAXBI CLOCK RECEIVER

MLOOI-a8

Figure 1-3: Block Diagram of VAXBI Node
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The BIIC contains all the logic and registers needed for a node to
respond to transactions on the VAXBI bus. In addition, the user
interface -- that is, all the logic exclusive of the BIIC -- can
request that the BIIC initiate a transaction. The BCI (backplane
interconnect chip interface) provides for all communication between
the BIIC and the wuser interface. Since any node can act as either
master or as slave, the BCI is represented as having a master port and
a slave port. The master port consists of the signal lines used to
generate transactions, and the slave port consists of the signal lines
used to respond to transactions. The BCI also has an interrupt port,
signal lines used in generating interrupt transactions.

Transactions that involve two different nodes are internode
transactions, while those that are confined to the same node are
intranode transactions. Intranode transactions can be VAXBI

transactions (that 1is, the master port issues a transaction on the
VAXBI bus), or they can be loopback transactions (the VAXBI bus is not
used). Loopback transactions can occur concurrently with VAXBI
transactions.

The type of request is determined by a request code from the user
interface logic. Certain transactions can be initiated by the user
interface logic setting a force bit in the BIIC. These transactions
are known as BIIC-generated transactions.

The BIIC is described in Part Two of this manual.

1.5 DESCRIPTION OF THE BCI
1.5.1 How the BCI Relates to the VAXBI Bus

The BCI, the bus between the BIIC and the wuser interface, has 64
signal lines. The data path signals of the VAXBI bus and the BCI have
a one-to-one correspondence except that the VAXBI signals are low true
while the BCI signals are high true. Both buses also have power
signal lines, but the remaining lines of the BCI serve functions
different from those of the VAXBI bus. The BCI has separate interrupt
lines, unlike the VAXBI bus which uses the data and information lines
for sending interrupts. The remaining lines serve as the
communication path between the BIIC and the master port interface and
the slave port interface.
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1.5.2 BCI Signals

The BCI has 64 signal lines. The signals can be divided by function
into seven categories:

o Data Path Signals
32 data lines
4 status lines
1 parity line

o Master Signals
2 request lines
1 master abort line
1 request acknowledgment line
1 data ready line
1 master data enable line

o Slave Signals

response lines

command latch enable line
slave data enable line
select line

select code lines

WHR BN

o Interrupt Signals '
4 interrupt request lines

o Transaction Status Signals
5 event code lines

0 Power Status Signals
1 AC line
1l DC line

o Clock Signals
2 timing signals

Chapter 15 describes the BCI signals.

1.6 SYSTEM CONFIGURATIONS

The VAXBI bus connects processors, I/O controllers, I/0 bus adapters,

and memory. Because of the potential overlap in functions among
processors, adapters, and memory, it is important to know the VAXBI
requirements for various classes of nodes. The requirements are

designed to ensure that VAXBI nodes will be compatible in the types of
configurations for which the VAXBI bus and VAXBI nodes are intended.
The descriptions of various types of configurations follow.

1-11
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See Chapter 8 for a description of node classes and the VAXBI
requirements that each class must meet.

1.6.1 Low-End System Configurations

Figures 1-4 and 1-5 show the VAXBI bus in low-end configurations. The
VAXBI can be used in low-end systems either as an I/0O bus or as both
memory bus and I/0 bus.

Figure 1-4 shows a configuration in which the VAXBI bus is wused both
as memory bus and I/0 bus. Such a system would probably include a
mass storage adapter for disk storage and a multipurpose
communications adapter.

Figure 1-5 shows a configuration in which the VAXBI bus is used only
as an I/0 bus. With a single board computer (SBC) the processor and
memory have a separate memory bus (MB), and the VAXBI bus is used only
as an I/O bus. This figure also shows a different approach to mass
storage and input/output. A single adapter provides access to disks
and tapes and to a local area network (LAN).

PRQCESSOR MEMORY

if
A A
=y .-;-:;-_?

T vaxer ToL

=

MASS COMMUNI-
STORAGE CATIONS
ADAPTER ADAPTER
OISKS, TAPES TERMINALS
OO0
Figure 1-4: Small System Configuration with One Processor
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| ¢ ':,
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|
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|
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|
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NETWORK
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Figure 1-5: Stand-Alone Single Board Computer Configuration

1.6.2 Multiprocessor System Configurations

Figures 1-6 and 1-7 are extensions of the configurations described in
the last section; these extensions provide greater computing power.

One way to increase computing power is to add processors. Figure 1-6
shows a multiprocessor system configuration that uses the VAXBI bus as
a memory bus. The software may operate this configuration in
"master-slave" mode or in "symmetric multiprocessing" mode:

o In master-slave mode, the master processor runs the operating
system and manages the other processors, which are called
"attached processors." Each processor may have its own console
terminal, or there may be a console terminal at the master
processor only, which can be used to control any of the
processors.

o In symmetric multiprocessing mode, a distributed operating
system 1is used, different parts of which may be executing on
different processors at various times. Again, each processc.
may have 1its own console terminal, or only one of them may
have a console terminal.
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Computing power can also be increased by adding SBCs. Figure 1-7
shows a VAXBI bus with two SBCs. Such a system can be operated in
master-slave mode or in symmetric multiprocessing mode, as described
above. This system can also be operated as a cluster of separate,
independent processors, each running its own operating system,
communicating through shared memory space.

SBCs can also be mixed in with processors and memories on a single
VAXBI bus. Whether one should add SBCs or more processors depends on
the amount of interprocessor communication expected. If processors
primarily will access memory in their own node, system performance is
likely to be better by using SBCs than by using processors that must
use the VAXBI bus to access memory. However, if interprocessor
communication is expected to be heavy, system performance will be
better when processors have more direct access to the VAXBI bus than
that provided by SBCs.

PROCESSOR MEMORY PROCESSOR

DISKS. TAPES TEAMINALS

ML

Figure 1-6: Multiprocessor Configuration
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Figure 1-7: Multiprocessor SBC Configuration

1.6.3 Midrange and High-End System Configurations

With more powerful processors, it becomes necessary to improve memory
access times by having a dedicated memory interconnect. In such
systems the VAXBI bus becomes purely an I/O bus. Such systems can
support more input/output than the low-end configurations, and will
probably use a local area network adapter instead of the multipurpose
input/output adapter. Figure 1-8 shows a midrange system
configuration. .
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High-end systems can wuse multiple processors on the memory
interconnect as shown in Figure 1-9. 1In this configuration the VAXBI
bus is part of an I/0 subsystem. High-end systems can also require
more I/O traffic than can be supported by a single VAXBI bus, in which
case several VAXBI buses may be connected to the same memory
interconnect. Such a configuration is shown in Figure 1-10.

PROCESSOR

IEMOHY BUS

(-
"\'"n‘- \-‘ *'2 g

MASS '
| IASS  _ NETWORK |
MEMCRY STORAGE .

L ADAPTER ADAPTER |
DISKS. TAPES LOCAL AREA NETWCRK

OGO

Figure 1-8: Midrange System Configuration
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Figure 1-9: Multiprocessor High-End System Configuration
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Figure 1-10: Multiprocessor High-End System Configuration with
Multiple VAXBI Buses

1.6.4 Clusters and Networking

A system -- whether a low-end system or a high-end system -- can be
connected to other systems by a Computer Interconnect (CI), forming a
cluster. In Figure 1-11 a VAXBI system with two SBCs is part of a
cluster, which might be wused in a real-time process control
environment, with process control input/output connected by a
multifunction adapter. Mass storage facilities are provided solely
through the CI.

1-18
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A system, at any performance level, can also be connected to other
systems into a 1local area network through a network adapter. For
example, in the high-end system shown in Figure 1-10, each VAXBI bus
has a local area network adapter for attachment of terminals, servers
such as print and file servers, and other computer systems.
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Configuration of a Cluster Node
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Figure 1-11:
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CHAPTER 2

VAXBI ADDRESS SPACE

This chapter describes the partitioning of VAXBI address space and how
to use the space. The VAXBI bus has 2**30 bytes of address space,
which is divided into memory space and I/0 space. All addresses are
given in hexadecimal notation.

During the first cycle of read-type, write-type, and INVAL
transactions, a 30-bit physical byte address is transmitted on the B:
D<29:0> L lines. We will refer to this address as A<29:0>. When
A<29> is a zero, the 512-megabyte memory space is accessed, and when
A<29> is a one, the 512-megabyte I/0O space is accessed. During the
same cycle, D<31:30> indicate the length of the transfer.

2.1 ALLOCATION OF MEMORY SPACE

All memory locations (from 0000 0000 through 1FFF FFFF) are addressed
using memory space addresses (A<29> is a zero). Addresses on the
VAXBI bus are physical rather than virtual addresses. In other words,
any virtual-to-physical translation is performed before the address is
transmitted on the VAXBI bus.

Information stored in memory locations can also be stored in a cache
and used many times without an access to the actual memory location.
Although cache contents may be valid or invalid, memory locations
always contain valid information -- they never contain obsolete
information (see Application Note 2 for more information on caches).

- VAXBI memory is assigned addresses starting at 0000 0000.
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2.2 ALLOCATION OF I/O SPACE

I1/0 space (from 2000 0000 through 3FFF FFFF) is sparsely filled. In
1/0 space addresses, A<29> is a one. Figure 2-1 shows the breakdown
of VAXBI I/0 address space. Figure 2-2 summarizes the addressing of
I/0 space.

Two blocks of I/O space are partitioned according to node 1ID. (The
node ID is provided by individual ID plugs on the VAXBI backplane.)

o Nodespace. At the low end of I/O space are 16 address blocks
of 8 Kbytes each, called "nodespace," one of which is assigned
to each node based on its node 1ID. Each node’s nodespace
consists of BIIC CSR space (the first 256 bytes) and user
interface CSR space (the remainder of the 8K nodespace). The
BIIC CSR space contains VAXBI registers (see Figure 2-3).

o Node Window Space. Starting at address 2040 0000 are 16
address blocks of 256 Kbytes each, called "node window space."
Node window space can be used by adapters to map VAXBI
transactions onto a target bus.

Another region of I/0O space starts at address 2080 0000, runs through
address 21FF FFFF, and 1is referred to as "assignable window space".
Each node can require that a single n-megabyte block within this
address region (n being a positive integer between 1 and 24 inclusive)
be allocated to it. This block 1is referred to as the node’s
"assignable window." For restrictions governing -this allocation, see
Section 2.2.5, Assignable Window Space.

The VAXBI architecture defines the use of all of I/0 space. There is
an addressing convention for multiple VAXBI buses that uses the
address bits A<28:25>.* These four bits can define the mapping
mechanism for access of up to 16 VAXBI buses. Therefore, these four
bits must be cleared before the address is issued on the VAXBI bus.
For this reason, the VAXBI address range 2200 0000 through 3FFF FFFF
is RESERVED. This allocation also limits the available I/O space to
32 megabytes.

*VAX 8800 systems follow this addressing convention.

2-2
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Hex Address

——— ————— ————— ——— —— . . . - ———— — — — - ————— — —————

| Node 0 Nodespace | <==-=- 2000 0000
| (8 KB) | 2000 1FFF
I . I
I . I
I . I
| Node 15 Nodespace | <==== 2001 EOQO0O
| (8 KB) | 2001 FFFF
| Multicast Space | <==== 2002 0000
| (128 KB) | 2003 FFFF
| Node Private Space | <===-= 2004 0000
| (3840 KB) | 203F FFFF
| Node Window 0 | <==== 2040 0000
| (256 KB) | - 2043 FFFF
I I
| I
I I
| Node Window 15 | <==== 207C 0000
| (256 KB) | 207F FFFF
| Assignable Window Space | <===- 2080 0000
| (24 MB) | 21FF FFFF
| RESERVED | <===- 2200 0000
| (480 MB) I
| (for multiple VAXBI systems) | 3FFF FFFF

Figure 2-1: VAXBI I/0O Address Space
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Figure 2-2: Addressing of I/0O Space
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31C CSA SFaCs 3
( 7% BYTES) VAXBI REGISTERS
NQDESPACE <
(8 XKBYTES) USER INTERFACE

CSR SPACE

Figure 2-3: Nodespace Allocation

2.2.1 Nodespace

The address range 2000 0000 through 2001 FFFF contains 16 address
blocks of 8 Kbytes each. A node’'s nodespace assignment is based on
the node’s ID (0 to 15). The starting address of nodespaces for nodes
0 through 15 is 2000 0000 plus 8K times the node ID. We will use "bb"
to indicate the base address of a particular node’s nodespace.

2.2.1.1 BIIC CSR Space - The first 256 bytes of each node’s nodespace
are reserved for VAXBI registers.

2.2.1.2 User Interface CSR Space - Within user interface CSR space
the use of two locations is defined.

Location bb + 100 is reserved for the Slave-Only Status Register
(SOSR), which is used by those nodes that do not implement the Broke
bit in the VAXBICSR. This location is not reserved for other nodes.
(See Section 7.16 for the register description and Chapter 11 for am
explanation of the register’s use in node self-test.)

Location bb + 200 is reserved for the Receive Console Data (RXC™)
Register. This register must be implemented by nodes capable o:r
performing console terminal transactions. Nodes that do not implement
a VAXBI console must respond to reads to that location with either a
NO ACK confirmation or a longword in which the RXCD Busy 1 bit is set.
(See Section 7.17 for the register description and Section 9.2 for an
explanation of the register’s use in the VAXBI console protocol.)
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2.2.2 Multicast Space

Multicast space consists of the range of addresses 2002 0000 through
2003 FFFF. Multicast space is reserved for use by Digital.

A VAXBI transaction to multicast space can be used to target more than
one VAXBI node. Since the full read- and write-type protocols cannot
support multiple targets, certain restrictions must be applied to the
use of this space. Multicast space can also be used for situations in
which a function resides in different nodes at different times. The
appropriate node can be accessed with a multicast space address that
is node independent. The node that possesses the function at the
given time will respond to a transaction that uses that address.

2.2.3 Node Private Space

Node private space consists of the range of addresses 2004 0000
through 203F FFFF. Locations beginning at 2004 0000 are used for
storage of bootstrap firmware and software. VAXBI nodes are not
permitted to 1issue or - respond to VAXBI transactions targeting
locations in node private space. For programmable VAXBI nodes, this
restriction may be interpreted as a restriction on the software and/or
firmware rather than a requirement for a hardware check that ensures
that such accesses cannot happen.

2.2.4 Node wWindow Space

The address range 2040 0000 through 207F FFFF contains 16 address
blocks of 256 Kbytes each, which can be used by bus adapters to map
VAXBI transactions onto a target bus. )

A node’s window space assignment is based on its node ID. A<21:18> in
an I/0 space address specifies the node window of a particular node.
Nodes are not required to implement the address locations in the node
window allocated to them.
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2.2.5 Assignable Window Space

The address range 2080 0000 through 21FF FFFF can be used by bus
adapters to map VAXBI transactions onto a target bus, or for other
designer-determined purposes.

A contiguous range of one or more naturally aligned megabytes within
assignable window space can be statically allocated to a particular
node by the 0S (operating system). The range associated with a node
is referred to as that node’s "assignable window."

Node designers must request the number of megabytes needed by the node
for its assignable window; this number can be any integer between 1
and 24 inclusive. This size must be a constant determined by the
device type code of the node. So that other nodes that request an
assignable window are not crowded out, only the exact number of
megabytes needed should be specified (for instance, the number should
not be rounded up to a power of 2). However, in predicting whether a
given combination of nodes can be configured, it must be assumed that
the 0S can round this up to a power of 2 anyway. Any node requesting
more than 16 megabytes will be allocated the full 24 megabytes of
assignable window space.

Any node requesting the allocation of an assignable window must not
require a particular starting address, but must allow its starting
address to be assigned by the O0s. However, the node designer. is
allowed to require "alignment." When alignment is required, the 0S
must align the starting address of the assignable window at an address
that is a multiple of the smallest k such that:

1. k >= max(the requested size, 1 megabyte), and
2. k is a power of 2.

However, if more than 16 megabytes are requested, the entire 24
megabytes of assignable window space will be allocated to the node.

The purpose of the alignment rule is to allow the node designer some
economy in address decoding.

In predicting whether a given combination of nodes can be configured,
it must be assumed that the O0S can perform the allocation as if
alignment has been specified for every requesting node.

An example: .

A node designer needs a 5-megabyte assignable window and requires
alignment. The OS must then align the starting address of this
node on an 8-megabyte boundary. This restricts the possible

starting addresses to 2080 0000, 2100 0000, and 2180 0000. The OS
can allocate exactly 5 megabytes to the adapter, or it can round up

2-7
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to the next power of 2 and allocate 8 megabytes. 1In the latter
case, the adapter’s assignable window would span one of these three
address ranges:

o 2080 0000 to 20FF FFFF
o 2100 0000 to 217F FFFF
o 2180 0000 to 21FF FFFF

The reason for requiring -separate specification of window size and
alignment is to make possible a set of address assignments that
otherwise might be impossible.

An example:

A second adapter (reference previous example) requires a 2-megabyte
assignable window with no alignment restriction. The second
adapter can be mapped into the last 2 megabytes of the 8-megabyte
address range that the first adapter is mapped into.

Note that configuration problems can arise in allocating assignable
windows when more than one node requires an assignable window. . The
likelihood and severity of configuration problems increases with both
the size of the requested window and the number of nodes requesting an
assignable window.

A node is not required to implement address locatlons in an assignable
window allocated to that node.

2.3 BIIC RESTRICTIONS

The BIIC can be configured to respond to accesses to any combination
of the following address spaces:

o The node’s nodespace
o The space defined by the node’s Starting and Ending Address
Registers. (For example, this space could be this node’s node
window or a region in memory space.)
o Multicast space
Because a BIIC has only one pair of Starting and Ending Address
Registers, it cannot be set to allow a node to respond to both its
node window (or an assignable window) and a region of memory space.
Response to accesses to multicast space can be disabled through a bit

in the BCI Control and Status Register, as can accesses to the user
interface CSR space portion of nodespace.

2-8
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CHAPTER 3

VAXBI PROTOCOL AND CYCLE TYPES

Section 3.1 describes how nodes are identified and the use of the node
ID. Section 3.2 describes how nodes arbitrate for control of the bus
and explains the priority scheme. Section 3.3 gives an overview of
the types of VAXBI cycles.

3.1 NODE IDENTIFICATION

Each node that interfaces to the VAXBI bus has an identification
number (0 to 15) called the "node ID." The node ID is provided by
individual ID plugs on the backplane. This 1ID code determines bus
priority, interrupt sublevel priority, and the location of the node’s
registers. Lower number .IDs have higher priorities.

3.2 ARBITRATION

Arbitration logic is distributed among all VAXBI nodes. To become bus
master, a node arbitrates by asserting one of the 32 data lines during
an "arbitration cycle." During this cycle the node determines if there
are any lower number data lines asserted. If not, that node wins the
bus and may send command/address information when the' current bus
transaction (if one exists) has completed.

The BI NO ARB L line controls access to the bus data path for
arbitration. Arbitration can occur in any cycle following t
deasserted state of BI NO ARB L. Arbitration cycles can occur during
and outside of bus transactions. :

After a master sends the command/address, nodes require the next cycle
to decode addresses. The VAXBI protocol allows use of this cycle for
arbitration. Within a transaction this cycle is called an "imbedded
arbitration cycle." A master cannot arbitrate in the imbedded
arbitration cycle of its own transaction.

dlilaliltiali ¥




Digital Internal Use Only
VAXBI PROTOCOL AND CYCLE TYPES

During imbedded arbitration cycles, the master of the current
transaction transmits its encoded ID on the BI I<3:0> L lines; parity
is generated by the master for these 1lines and 1is checked by all
nodes. Nodes use this encoded ID information to calculate arbitration
priority.

3.2.1 Arbitration Modes

The VAXBI protocol defines three arbitration modes that a node can be
assigned: :

o Dual round-robin
o Fixed-high priority

o Fixed-low priority

3.2.1.1 sSetting the Mode - These modes are determined by a two-bit
field (see Table 3-1) within the VAXBI Control and Status Register
(see Section 7.2). Any combination of arbitration modes can coexist
among nodes on the VAXBI bus; however, fixed-high and fixed-low
priority arbitration modes are reserved for use by Digital. A node’s
arbitration mode can be changed during system operation. However, all
nodes must default to the dual round-robin arbitration mode at
power-up time. Arbitration can also be disabled.=*

Table 3-1: Arbitration Codes-

————————— - ——— - — - —— - — - — - —— — — —— . -~ -

————————— — - — — - - — i ————— —— . ———— o———————————

0 0 Dual round-robin arbitration
0 1 Fixed-high priority (RESERVED)
1 0 Fixed-low priority (RESERVED)
1 1 Disable arbitration (RESERVED)

- ———————— ————— v ——————————— o —— - ———_—— ————

*Arbitration must be disabled on a target node before issuing a node
reset to that target node.
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'
3.2.1.2 Two Priority Levels - Arbitration on the VAXBI bus is
performed in two priority levels for each node. During each imbedded
arbitration cycle, all nodes are required to update their arbitration
priority based on the arbitration mode and the current master’s ID.
Low-priority nodes assert the bit corresponding to their node ID on BI
D<31:16> L where D<16> corresponds to ID 0, and bit D<31> corresponds
- to ID 15. High-priority nodes assert the bit corresponding to their
node ID on BI D<15:0> L during the arbitration cycle. The relative
position within the low- or high-priority word is the same. Figure
3-1 shows the mapping of node ID to arbitration priority on the 32
data lines. At power-up all nodes must default to the 1low-priority
word.
o 1 PI% -] __61s 87 ]
ISEM%!JeYZiHiIOiQ I! 7i 5|5 4|3 !2 l'l IOiYSiul;TlilZ’n 10‘9! 8 T' L] 5"’ 3! 2‘ 1 ,0
Low Hign || Low Hign
Prionty Priority /| Priority Priorityy
Low=rionty Word Hign—-Pnonty Wora
MLO-015-08
Figure 3-1: Node ID and Arbitration
7~

3.2.1.3 Dual round-robin - The dual round-robin arbitration mode

operates as follows. A node will arbitrate on the low-priority word

for the next arbitration cycle if its ID is less than or equal (that

is, equal or higher priority) to the node ID of the previous bus

master. A node will arbitratc on the high-priority word if its node

ID is greater (that 1is, lower priority) than the node ID of the
»~~, previous bus master.

If all nodes arbitrate in dual round-robin mode, then over time each
has equal access to the bus. The dual round-robin mode is important,
for example, in multiprocessor configurations. In these systems a
fixed-priority scheme could cause extremely long bus latency times for
some nodes that were denied bus access by several processors executing
in tight instruction loops. (Chapter 10 describes performance
differences between a simple round-robin and a dual round-robin.)

3.2.1.4 Fixed-Low Priority - When a node is set to arbitrate at a

fixed-low priority, it will win the bus a smaller percentage of the

time than with the dual round-robin mode. Since this mode can coexist

with other arbitration modes, it may be advantageous to use it in a
o~ system with nodes that are relatively latency insensitive.
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3.2.1.5 Fixed-High Priority - When a node is set to arbitrate at a
fixed-high priority, it will win the bus a greater percentage of the
time than if the arbitration mode were dual round-robin. Nodes. with
critical access times can benefit by having a fixed-high priority.

3.2.1.6 Restricted Use of Arbitration Modes - The use of arbitration
modes other than dual round-robin mode is prohibited. The other modes
are reserved for use by Digital.

3.3 TRANSACTION CYCLES

All VAXBI transactions have three types of cycles: command/address,
imbedded arbitration, and data. Fiqure 3-2 shows the basic format of
VAXBI transactions.

COMMAND/ IMESDDED
ADDRESS ARBITRATION . co:ngs C‘i,‘;’;
(C-A) CYCLE (IA) CYCLE =

Figure 3-2: Format of VAXBI Transactions

The basic operation of the VAXBI bus is controlled by the BI NO ARB L
and BI BSY L lines. These lines are used to detect the occurrence of
VAXBI transaction cycles.

3.3.1 Command/Address Cycle

The: command/address cycle is the first cycle of all VAXBI
transactions. During this cycle the master transmits a 4-bit command
code on the BI I<3:0> L lines and information required to select the
appropriate slave on the BI D<31:0> L lines. This selection
information can take many forms. Each transaction type uses only one

form of selection information. The transactions and their:

corresponding selection information form are shown in Table 3-2.
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One form of selection information is a 30-bit address, accompanied by
a 2-bit length code. This form is used by all read-type, write-type,
and INVAL transactions. The selection information can also take the
form of a 16-bit destination mask in which each bit corresponds to a
particular node ID. This form of selection allows for from 1 to 16
slaves to be involved in the transaction. The destination mask is
used for all multi-responder transactions (except INVAL). The IPINTR
transaction uses the destination mask along with the decoded master ID
to select the proper slave(s). The IDENT transaction uses a level
field as the slave selection information.

Nodes identify the command/address cycle by detecting the assertion of

BI BSY L in a «cycle following one in which BI NO ARB L was in the
asserted state.

Table 3-2: Command/Address Format by Transaction

——————— ———— ——— - —— - —— - - -~ - —————— - — - - - - —— — — ——— . - — v — - -

Transaction BI D<31:16> L BI D<15:0> L
Read-type Length code and 30-bit address
Write-type Length code and 30-bit address
INVAL Length code and 30-bit address
IPINTR Decoded master ID Destination mask
INTR Level Destination mask
STOP RESERVED Destination mask
BDCST RESERVED Destination mask
IDENT Level RESERVED

3.3.2 Imbedded Arbitration Cycle

The second cycle of a transaction is called the "imbedded arbitration
cycle." During this cycle the master transmits its encoded ID on the
BI I<3:0> L lines, and the VAXBI data path 1is available for
arbitration by other nodes (except in burst mode).

3.3.3 Data Cycles

Data cycles follow the imbedded arbitration cycle. All transactions
include at least one data cycle. A data cycle is a cycle in which the
VAXBI data path is reserved for transferring data (such as read or
write data, as opposed to command/address or arbitration information)
between the master and slave(s). Table 3-3 shows the type of data
transferred during data cycles of the different kinds of transactions.
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The number of data cycles in a read- or write-type transaction depends
on both the length of the transfer and the number of STALL responses
issued by the slave. For IDENT transactions the number of data cycles
depends only on the number of STALLs issued by the slave. All
multi-responder transactions (except for BDCST) have only a single
data cycle (this data cycle is currently a RESERVED cycle). For BDCST
transactions the number of data cycles depends only on the length of
the transfer. (BDCST data cycles cannot be stalled.)

Table 3-3: Data Transferred During Data Cycles

Transaction BI D<31:0> L BI I<3:0> L
Read-type Read data Read status
WRITE Write data RESERVED
WCI Write data RESERVED
WMC1I Write data Write mask
UWMCI Write data Write mask
INVAL RESERVED RESERVED
IPINTR RESERVED RESERVED
INTR RESERVED RESERVED
STOP RESERVED RESERVED
BDCST BDCST data RESERVED
IDENT Interrupt vector Vector status

T — ——————————— - ———— — —————— - — . ——— -~ —— - ———— - -
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CHAPTER 4

VAXBI SIGNALS

The VAXBI bus consists of 52 signals. As shown in Figure 4-1, these
lines can be divided by function into four categories: :

o 37 data path signals
o 5 synchronous control signals
o 4 clock signals

0o 6 asynchronous control signals

All signal lines except the asynchronous control signals are

synchronous and are asserted on a transmit clock’s leading edge.
Table 4-1 briefly describes the VAXBI signals.

For a given line, each VAXBI open drain or open collector driver is
electrically connected. This type of connection produces a wired-OR
signal. That is, since VAXBI signals are defined to assert low true,
if any VAXBI driver on a particular 1line asserts, then the
corresponding VAXBI signal as observed at every VAXBI node tied to
that line is said to be asserted. Conversely, no VAXBI signal can be
said to be deasserted unless all drivers on that particular 1line are
deasserted. When no drivers are asserted, a terminator network
defaults a line to the deasserted state.

Also included on the VAXBI bus are power and ground lines. Each slot
in a VAXBI system provides access to its own unique backplane ID plug.
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oD open drain
oc open collector
DECL differential ECL
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Table 4-1: VAXBI Signals
Number/
Signal Name Type Description

BI D<31:0> L 32/0D Used for the transfer of addresses and data and for
arbitration.

BI I<3:0> L 4/0D Carry commands, encoded master IDs, read status codes, and
write masks.

BI PO L 1/0D Carries the parity for the D and I lines; asserted if the
number of asserted bits on the D and I lines is an even
number (ODD parity).

BI NO ARB L 1/0D Used to inhibit arbitration on the BI D lines; also asserted
during BIIC self-test to prevent other nodes from starting
transactions until all nodes are ready to participate.

BI BSY L 1/0D Used to indicate that a transaction is in progress.

BI CNF<2:0> L 3/0D Used to send responses for command and data cycles.

BI ACLO L ) 1/0D Used with BI DC LO L to perform power sequences.

BIDCLOL 1/0D Used with BI AC LO L to perform power sequences.

BI TIME + 2/DECL A 20 MHz clock reference used with BI PHASE +/-

BI TIME - to generate all required timing signals.

I PHASE + 2/DECL A 5 MHz clock reference used with BI TIME +/-

BI PHASE - to generate all required timing signals.

" BI STF L 1/0C A static control line used to enable a faster VAXBI system
: self-test. .

BI BAD L 1/0C Used for reporting node failures.

BI RESET L 1/0C Used for initiating a VAXBI system reset.

BI SPARE Is 1/- Reserved for use by DIGITAL.

Key to abbreviations:
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4.1 DATA PATH SIGNALS

The VAXBI data path signals include:

o BI D«<31:0> L -- data lines
o BI I<3:0> L -- information lines
o BI PO L -- parity line

All arbitration and transfers of commands, addresses, and data occur
over these signal lines. These lines carry different information
depending on the particular cycle and transaction type. See Chapter 5
for details on the use of these lines.

4.1.1 BI D<31:0> L

These are the VAXBI data lines. All address and data transfers and
arbitration sequences occur on these lines.

4.1.2 BI I<3:0> L

These lines carry commands, encoded master IDs, read status codes, and
write masks.

4.1.3 BI PO L

This signal carries the parity of the BI D<31:0> L and BI 1I<3:0> L
lines. (See Section 11.2.1.1 on parity checking and generation.)

4.2 SYNCHRONOUS CONTROL SIGNALS
The VAXBI synchronous control signals include::
o BI NO ARB L
o BI BSY L
o BI CNF<2:0> L
BI NO ARB L and BI BSY L are the primary controi signals on the VAXBI

bus. The BI CNF<2:0> L lines carry confirmation codes that provide
"handshakes" between the master and slave nodes.

4-4
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BI NO ARB L (No Arbitration)

NO ARB L signal is used to control access to the VAXBI data
for arbitration. If BI NO ARB L is asserted in a given VAXBI
then nodes may not arbitrate during the next VAXBI cycle.
monitor the BI NO ARB L signal so that data and command/address

information do not contend with arbitration information.

The BI

o}

o

NO ARB L signal is asserted by the following:
Nodes arbitrating for the bus during the arbitration cycle

The pending bus master from the «cycle after it wins the
arbitration until it becomes bus master

The bus master during the following cycles of its transaction:

Transaction Length Cycles
Longword Imbedded ARB
Quadword Imbedded ARB and following cycle
Octaword Imbedded ARB through the cycle after

the second ACK data cycle
The slave for all data cycles except the last
All potential slaves for the third (decoded master 1ID) cycle
of an IDENT command and for the IDENT arbitration cycle of an
IDENT command :

Nodes doing loopback transactions (see Section 4.2.3.2)

The bus master during its command/address cycle to prevent bus
arbitration from occurring, so it <can start another bus

transaction following the current one. This mode of
operation, called "burst mode," 1is reserved for wuse by
Digital.

Nodes during their power-up self-test, wuntil the VAXBI
registers can be accessed ‘
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4.2.2 BI BSY L (Busy)

The BI BSY L signal is used to provide the orderly transition of bus
mastership from one node to another. Nodes monitor the BI BSY L
signal to determine the action that should be taken during the
following cycle. The node that won the last arbitration may become
bus master in the cycle following one in which it detects the
deasserted state of BI BSY L (deassertion of BI BSY L means a
transaction has ended). The new master asserts BI BSY L on the first
cycle of the new transaction.

The BI BSY L signal is asserted by the following:

o The bus master during the following cycles of its transaction:

Transaction Length Cycles
Longword Command/address, imbedded ARB
Quadword Command/address, imbedded ARB, and
: following cycle
Octaword Command/address, imbedded ARB

through the cycle after the
second ACK data cycle

© A node to delay the start of the next bus transaction until it
is prepared to respond to another bus transaction. A timeout
limits any node from extending BI BSY L in this way for more
than 127 consecutive cycles. Cycles of this type are referred
to as "busy extension cycles." Nodes should not extend BI BSY
L for more than 16 consecutive cycles. (Section 10.2.1
explains these requirements.)

o The slave for all data cycles except the last

o Nodes doing loopback transactions (see Section 4.2.3.2)
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~
4.2.3 Use of BI NO ARB L and BI BSY L
Figure 4-2 shows which nodes assert BI NO ARB L and BI BSY L during
each cycle of a transaction. Figure 4-3 shows the state sequences of
BI NO ARB L and BI BSY L that can occur.
[LAST | LAST
ACK STALL| ACK
: CYCLE ARB | CA | 1A |DATA DATA |DATA | @A
BINO ARB L :
wssensaty: N | N i F
Asbitraung Noges ‘
Pending Master
ﬂ ) Master
Slave
BI8SYL .
assened By: \. { | —
Arpitrating Noges
Pending Master
P Master
Slave
O-oreas
Figure 4-2: Transaction Showing BI NO ARB L and BI BSY L
o
o)
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ARB

OR
POWER-UP :
01

c 8
IOLE QR
COMMANO LAST DATA
ADORESS WITHOUT
10 PENDING MASTER
1" -

PENDING

MASTER 1

a1

G
BURST MODE kbt
COMMAND / WITHOUT
o PENDING MASTER

10

o}
IMBEDDED
RSt ey [
FROM C OR G} KEY:
% B8OTH NO ARB/BSY LOW ASSERTED

MLO- 1 43-88

Figure 4-3: State Sequences of BI NO ARB L and BI BSY L

4.2.3.1 Arbitration State - Figure 4-4 shows the state diagram for a
node’s arbitration control circuitry. Each state represents one bus
cycle. The BI NO ARB L signal is asserted in all states except the
idle state.

When in the idle state, a node waits for a request to transfer
information over the bus. When a request is received, the node enters
the arbitration cycle state as soon as the data lines are free, as
indicated by a deasserted BI NO ARB L signal. The node then asserts
the bit corresponding to its node ID in either the low-priority word
or the high-priority word. The node compares the received data lines
with the bit that it asserted. If the node is not the highest
priority, it returns to the idle state and waits for the next
arbitration cycle. 1If it is the highest priority, and if no bus

4-8
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transaction is in progress (as indicated by a deasserted BI BSY L
signal), it enters the master state. If a bus transaction is in
progress, the node goes into the pending master state and waits for
the bus to become available.

During the first cycle of a node’s bus transaction, the node is in the
master state. The BI BSY L signal is asserted, along with the data
and information lines that carry the command and address. Control is
passed to the master control circuitry. The request condition is
cleared during this state.

REQ
' l
IOLE NO ARB & REQ
l NO ARB & REQ
A
LOSE WIN & BSY
ARBITRATION ——————-1
l PENDING )
! WIN & BSY MASTER Bsy
504 |
MASTER
MO0

Figure 4-4: Arbitration State Diagram

4.2.3.2 Loopback Transactions - To perform loopback transactions, a
node must monitor the state of BI NO ARB L and BI BSY L. A node can
start a loopback transaction only if there is no chance that it will
be selected by a VAXBI transaction. This is ensured by requiring that
nodes only start loopback transactions when the next cycle cannot be a
VAXBI command/address cycle.
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In the following cases the next cycle cannot be a VAXBI
command/address cycle:

o BI NO ARB L is deasserted. (indicates that no node is
arbitrating and that there is no pending master).

o BI BSY L is asserted (indicates that a transaction is on the
VAXBI bus; as long as the transaction is not targeted at this
node, it may initiate a loopback transaction).

See Section 4.2.2 for restrictions on asserting BI BSY L.

4.2.4 BI CNF<2:0> L (Confirmation)

The confirmation signal lines (BI CNF<2:0> L) are used to provide
"handshakes" between the master and slave nodes. These handshakes
reflect detected errors and the current status of the slave. (Table
4-2 lists the response codes.)

During a transaction a node must first respond to the command (Section
4.2.4.1 describes the command responses). For read- and write-type
and IDENT transactions, the slave must respond during each data cycle
following the command confirmation cycle (Section 4.2.4.2 describes
the data responses). Table 4-3 summarizes the use of the CNF codes.
Note that error feedback occurs two cycles after an error occurs.
During the two cycles following a read-type, write-type, or IDENT
transaction, the receiver of the data confirms its proper receipt.

The CNF lines are not parity checked. However, the response codes are
assigned so that bad data - is never interpreted as good data for
single-bit failure cases (see Table 4-2).

Table 4-2: Response Codes

——— ————————— — - ——— ————————

BI CNF<2:0> L
2'1 Description

————————— ———— ————— ————————

o

Illegal
STALL

RETRY .
Illegal

————————————— ———————— - —— ——— — —
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4.2.4.1 Command Responses - The ACK, NO ACK, RETRY, and STALL
responses are permitted for single-responder commands. The slave
sends the command confirmation response during the third cycle of all
transactions, except for IDENTs. Command responses for IDENT
transactions are sent in the fifth cycle.

Only the ACK and NO ACK responses are permitted for multi-responder
commands (INTR, IPINTR, INVAL, STOP, and BDCST). An ACK response
indicates that at least one node has responded to the command.

ACK (Acknowledge) Response -- The node selected to respond to a
command returns ACK to indicate that it is capable of executing the
command at this time. For multi-responder commands, the receipt of an
ACK response indicates that at least one node has been selected by the
current transaction.

Masters always presume acknowledgment and send data for write-type anc
BDCST commands.

NO-ACK (No Acknowledgment) Response -- The NO ACK response to commands
indicates that no node has been selected. Either no node is available
or an error has occurred during the command/address cycle. The
deasserted state of the three confirmation lines produces the NO ACK
code. )

RETRY Response -- If a node cannot immediately execute the command
sent to it, it returns the RETRY response. A response of this type
may be expected from a node:

o That is still locked from an IRCI cbmmand
o That has been locked from another port

o That is a bus adapter whose target bus is busy and it is
waiting for a transfer path to the VAXBI (the deadlock case)

o That must perform a long internal sequence in response to a
STOP command

o That must perform a long internal initialization sequence
following the deassertion of BI DC LO L

A node should not return a RETRY response if it will be busy for a
short period of time such as during a memory refresh or the completion
of a memory write access. The STALL response is the proper action for
those cases.
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All masters are required to implement a retry timeout. If a master
cannot complete a transaction within 4096 attempts, it must log this
as an error condition.

Application Note 5 discusses use of the RETRY response code.

STALL Response -- The STALL response from a node indicates that it
needs additional time. It may need more time to acknowledge the
command sent to it, to return the first data word on read-type
commands or vector data on an IDENT command, or to accept data words
on write-type commands. The STALL response is not permitted for
multi-responder commands. A node may not send a STALL response to
delay the recognition of proper address range. Therefore, a node can
use STALL preceding a NO ACK response only when an address allocated
to the node does not correspond to an implemented register or memory
location.

The STALL response can be sent by the following:

o Nodes that take longer than one cycle to perform a read or a
write

o Memories that are selected during a refresh sequence

0 Memories that are to receive write data, when their write
buffer is full

o Adapters that need to synchronize with the protocol of another
bus

An ACK, NO ACK, RETRY, or ano*her STALL response is permitted after a
STALL single-responder command confirmation.

All nodes must implement a stall timeout that will force a slave node
to release the bus if the node attempts to stall for more than 127
consecutive cycles. At a stall timeout, the slave sets the STALL
Timeout bit in the Bus Error Register and deasserts all bus lines.
The master interprets the deasserted CNF lines as a NO ACK response
and terminates its involvement in the transaction.

4.2.4.2 Data Responses - A slave must transmit an ACK, NO ACK, or
STALL response for each data cycle after the command confirmation
cycle of data transfer commands (STALL, however, is not permitted for
BDCST). During the two cycles following the last data cycle of a data
transfer command, the node(s) receiving the data must respond with
either an ACK or a NO ACK.
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ACK Data Response -- The slave or slaves send the ACK response during
data cycles to indicate that no error has been detected and that the
cycle is not to be stalled.

An ACK response is also returned by the node receiving the data during
each of the two cycles following the last data cycle of a successful
transaction. These ACK responses are sent by the master for read-type
and IDENT transactions and by the slave(s) for write-type and BDCST
transactions. :

‘Receipt of the final ACK response indicates to the node that
transmitted the data that the transaction has completed successfully.

NO ACK Data Response -- The NO ACK response indicates that an error
has been detected. The response is returned by either the master or
slave when an error in a transaction 1is discovered. A node that
detects an error must transmit only NO ACK responses for the remainder
of the transaction.

STALL Data Response -- A slave can send a STALL response to delay the
transmission of data. The cycle is repeated until the STALL response
is removed.

During read-type transactions, a slave can stall any data cycle by
returning a STALL response in place of the data. The vector cycle
during an IDENT transaction can be stalled in the same manner. For
read-type transactions, the master inhibits a parity check on STALL
data cycles, since the BI I<3:0> L and BI D<31:0> L 1lines are
UNDEFINED fields during these cycles. For write-type transactions,
however, slaves must check pa-ity on STALL data cycles. The STALL
response is not permitted for BDCST data cycles.

The master deasserts BI BSY L and BI NO ARB L on the 1last expected
cycle of a bus transaction. It has no way of knowing whether that
cycle may be stalled. However, the VAXBI bus will remain dedicated to
this transaction, since the slave asserts BI BSY L and BI NO ARB L for
all STALL data cycles, as well as all ACK data cycles except the last.

All nodes must implement a stall timeout that will force a slave node
to release the bus if the node attempts to stall for more than 127
consecutive cycles. At a stall timeout the slave node sets the STALL
Timeout bit in the Bus Error Register and deasserts all bus lines.
The master interprets the deasserted CNF lines as a NO ACK response
and terminates its involvement in the transaction.
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- - - - - - - -~ - - - -~ -~ — - - - - -

Multiple-Responder Transactions (except BDCST)

C/A | IA | Dl |
Confirmation Type CR
Brror Feedback C/A
Slave Status Dl
Source S
Permitted Response AN

Write~Type Transaction (and BDCST) *

Octaword Length

C/A | IA | D1 | D2 | D3 | D4 | { |
Confirmation Type CR DR DR DR DR DR
Error Feedback C/A NA D1 D2 D3 D4
Slave Status D1 D2 D3 D4 NA NA
Source s s s s s s
Permitted Response ASRN ASN ASN ASN AN AN

Quadword Length

c/A | IA | D1l | D2 | | | | |
Coanfirmation Type : CR DR DR DR
Error Feedback Cc/A NA D1 D2 .
Slave Status Dl D2 NA NA .
Source S s S S
Permitted Response ASRN ASN AN AN

Longwérd Length

C/A | IA | D1 | | | | | |
Confirmation Type CR DR DR
Error Feedback C/A NA D1
Slave Status D1 NA NA
Source S S s
Permitted Response ASRN AN AN

*The CNF codes are used similarly for write-type and BDCST transactions except that the STALL
response is not permitted for BDCST transactions.

Abbreviations for each category:
Confirmation Type: CR = command response, DR = data response.
Error Feedback: The cycle for whick the error feedback is given; for example,
C/A = command/address, D1 = the first data cycle. NA = not applicable.
Slave Status: The cycle for which the slave is reporting its status. NA = not applicable.
Source: S (slave) and M (master) identify the node sending the CNF code.
Permitted Response: A = ACK, N = NO ACK, S = STALL, R = RETRY.

N
I

14
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Table 4-3: Meaning and Use of Response (CNF) Codes (Cont.)

- - - - - -

Read-Type Transactions

Octaword Length .
C/A | IA | D1 | D2 | D3 | D4 | |

Confirmation Type CR DR DR DR DR DR
Error Feedback C/A NA NA NA D1-D3 D4
Slave Status D1l D2 D3 D4 NA NA
Source s s S S M M
Permitted Response ASRN ASN ASN ASN AN (1) AN (1)

Quadword Length

C/A | IA | D1 | D2 | | | |

Confirmation Type CR DR DR DR
Error Feedback C/A NA D1 D2
Slave Status D1 D2 NA NA
Source S s M M
Permitted Response ASRN ASN AN (1) AN (1)

Longword Length with STALLs

STALL STALL ACK

¢/a | I~ | DL | Dl | D1 .| I I
Confirmation Type CR CR CR DR DR
Error Feedback C/A NA D1 NA NA
Slave Status D1 D1 D1l NA NA
Source s S S M M
Permitted Response ASRN ASRN ASRN AN (1) AN (1)
IDENT Transaction

IDENT

C/A | IA | DMID | ARB | VECTOR | | {
Confirmation Type CR DR DR
Error Feedback C/A NA C/A,DMID NA VECTOR
Slave Status D1 D1 VECTOR NA NA
Source S S ) s M M
Permitted Response - - ASRN AN (2) AN (2)

-

NOTES

1. The master sends an ACK only if it did not detect a transmit
check error during C/A and data cycles.

2. The master sends an ACK only if it did not detect a transmit
check error during C/A and DMID cycles.
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4.3 CLOCK SIGNALS /

The VAXBI clock signals include:
o BI TIME + and BI TIME -
o BI PHASE + and BI PHASE -

See Chapter 12, Electrical Specification, for detailed clock
specifications.

4.3.1 BI TIME + and BI TIME -
The BI TIME + and BI TIME - signals are a pair of 20 MHz differential
ECL square waves that are input to a clock receiver at each node.

These signals and BI PHASE +/- provide the reference for timing at
each node.

4.3.2 BI PHASE + and BI PHASE -
The BI PHASE + and BI PHASE - signals are a pair of 5 MHz differential
ECL square waves that are input to a clock receiver at each node.

These signals and BI TIME +/- provide the reference for timing at each
node.

4.4 ASYNCHRONOUS CONTROL SIGNAL§

The following control signals are asynchronous to the VAXBI clock
signals:

o BI AC LO L
o BI DC LO L
o BI RESET L
o BI STF L
‘0o BI BAD L
o BI SPARE L'

- These signals are not limited to VAXBI backplane and cable extensions
and may be extended off the backplane to other points in the system.
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The BI AC LO L and BI DC LO L signals are used to control power-up and
power-down sequences, which guarantee sufficient time for the system
to store (on power-down) and then retrieve (on power-up) the
parameters required for continued operation. In the descriptions of
these signals, the term "DC power" is used to indicate only that DC
power which may cause bus control 1logic, drivers, receivers, and
terminators to cease to meet their electrical specifications, thereby
rendering the bus inoperable. The DC power tolerance requirements are
in Section 13.1.8. The BI RESET L signal is used with the BI AC LO L
and BI DC LO L signals .to provide the facility for simulating a
power-up initialization in the system. (See Chapter 6,
Initialization, for a detailed description on the use of these
signals.)

The BI STF L signal is used to control the length of self-test. The
BI BAD L signal is used to indicate various node failures.

4.4.1 BI AC LO L

The BI AC LO L signal is asserted when the 1line voltage is below
minimum specifications. The deassertion of BI AC LO L indicates that
processors and adapters may access memory and begin execution. The
full description of BI AC LO L appears in Section 6.3.

©

4.4.2 BI DC,LO L

The BI DC LO L signal warns of the impending loss of DC power and is
used for initialization on power restoration. Specifically, a node
must use the BI DC LO L signal to force 1its <circuitry into an
initialized state. VAXBI node designs must not use other reset
methods such as the "RC time constant type." Following the deassertion
of BI DC LO L, nodes run their internal self-tests. The full
description of BI DC LO L appears in Section 6.4.

4.4.3 BI RESET L

The BI RESET L signal is asserted by nodes that need to initialize the
system to the power-up state. BI RESET L is received by a device
called a "reset module" which, following the assertion of BI RESET L,
sequences BI AC LO L and BI DC LO L just as in the case of a true
power-down/power-up sequence. See Sections 6.2.2 and ' 6.5 for more
detail on BI RESET L and its use with reset modules.

dlilaliltlalI S8 :




Digital Internal Use Only
VAXBI SIGNALS

4.4.4 BI STF L (Self-Test Fast)
The BI STF L signal is used to control the length of self-test. If BI
STF L is in the asserted state when BI DC LO L is asserted, nodes will

execute a fast self-test. (See Section 11.1.5 and Application Note 4
for details on the use of this signal.)

4.4.5 BI BAD L

The BI BAD L signal is used for reporting the failure of a node in a
VAXBI system. BI BAD L is asserted by a node if it fails its
self-test or if the node fails any time after the power-up self-test.
The BI BAD L signal may be synchronously or asynchronously asserted.
BI BAD L is deasserted only when all nodes have passed self-test.

(See Section 11.1.4 and Application Note 4 for details on the use of
this signal.)

4.4.6 BI SPARE L

The BI SPARE L signal is reserved for use by Digital.
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CHAPTER 5

VAXBI TRANSACTIONS

This chapter describes the transactions that the VAXBI bus supports
and gives requirements for their use. Section 5.1 defines the twc
major classes of transactions. Section 5.2 discusses how the VAXB]
bus provides for interprocessor communication. Section 5.3 firs
presents general information needed for understanding the transaction
that perform data transfers. The transactions themselves are the.
presented in the following order: the write-type transactions (WRITE,
WCI, WMCI, and UWMCI) and then the read-type transactions (READ, RCI,
and IRCI). The INVAL transaction is included with the data transfe:
transactions. Section 5.4 discusses the transactions that support
interrupts: INTR, IDENT, and IPINTR. Finally, Section 5.5 deals wit!
the STOP transaction, which 1is wused for diagnosing node and bu
failures.

5.1 SINGLE-RESPONDER AND MULTI-RESPONDER TRANSACTIONS

VAXBI transactions can be directed at one node -- single-responde:
transactions -- or at multiple nodes -- multi-responder transactions.

Single-responder transactions cause data to be transferred between ¢
master and a single slave. The master targets a node to be slave by
means of a 30-bit address. The node at that address wuses othe:
information transmitted during the command/address cycle (command anc
data length) in determining if it will become slave.

Multi-responder transactions can be directed at more than one node a-

allow for more than one responder. The master sends a destinatio:
mask instead of an address. These multi-responder transactions are
INTR, IPINTR, INVAL, STOP, and BDCST. INTRs are generated by means of
a command message from an interrupting master to an interrupt fielding
slave or set of slaves. The IPINTR command is used to interrupt other
processors. The INVAL command is used to notify nodes with cache
memory that they may have cached data that is no longer valid. The
STOP command is used for error diagnosis. The BDCST command, which is
reserved for wuse by Digital, permits the systemwide broadcast of
information (see Appendix A for a description of the BDCST command).

dlilliltiali
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Table 5-1 lists the VAXBI command codes.

Table 5-1: VAXBI Command Codes

- ———————— —— — O —— o —— — — ————— —————— . - - v— — —— —— - - - — - —— — - — —— - - o~ —————— ——— o -

3210 Type Name Description

HHHH - - RESERVED

HHHL SR* READ

HHLH SR IRCI Interlock Read with Cache Intent
HHLL SR RCI Read with Cache Intent

HLHH SR WRITE

HLHL SR WCI Write with Cache Intent

HLULH SR UWMCI Unlock Write Mask with Cache Intent
HLLL SR WMCI Write Mask with Cache Intent

L HHH MR INTR Interrupt

LHHYL SR IDENT Identify

LHLH —_— - - RESERVED

LHLL - - RESERVED

L LHH MR STOP

LLHL MR INVAL Invalidate

L LLH MR BDCST** Broadcast (RESERVED)

LLLL MR IPINTR Interprocessor Interrupt

*SR = single responder; MR = multi-responder.

**See Appendix A.

5.2 INTERPROCESSOR COMMUNICATION

The 1interlock transactions (IRCI and UWMCI) and interprocessor
~interrupts (IPINTRs) support interprocessor communication. Interlock
commands allow processors to communicate by exchanging messages
deposited in a shared memory. Accesses to the shared memory must be
synchronized because one processor’s memory accesses may be
interspersed in time with another processor’s accesses to the same
locations. Software-level synchronization is wusually achieved with
the wuse of indivisible operations such as the VAX interlock and queue
instructions. These operations are implemented by wusing the VAXBI
interlock transactions IRCI and UWMCI.
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. 5.2.1 1IPINTR Transactions

Interprocessor interrupts, in which one processor interrupts the
other, is a simpler method of interprocessor communication. A
combination of shared memory and interprocessor interrupts can also be
used. For example, one processor can deposit a message in a specific
area of shared memory and then notify the other processor by sending
an IPINTR transaction. (See Section 5.4.3 for details on the IPINTR
transaction.)

5.2.2 VAXBI Requirements for Interlock Transactions

Processor nodes and adapters use the VAXBI interlock transactions IRCI
and UWMCI to carry out indivisible operations. The interlock feature
of these transactions must be implemented for all memory space
addresses but may or may not be implemented for I/O space addresses.
When the interlock feature is not implemented, IRCI must have the same
effect as READ and RCI, and UWMCI must have the same effect as WCI,
WMCI, and WRITE (with the possible exception of the write mask).

An IRCI transaction that "locks" a block of addresses must always be
pairted with a subsequent UWMCI transaction that "unlocks" the block.
A node must issue a UWMCI transaction as soon as possible after
issuing an 1IRCI. If another VAXBI node issues an IRCI to a locked
location, that node will receive a RETRY response. If the node
continues to repeat the transaction and the lock is not cleared, a
retry timeout error will occur.

Note that, in the case of VAX queues, a secondary lock exists in the
queue header. The secondary- -lock should be examined with an IRCI and
set with a UWMCI before the queue is manipulated. After the secondary
lock is set,  processing 'of the queue can be performed without using
the interlock transactions. The timing consideration therefore
applies only to the time required to set the secondary lock, without
waiting to determine if the secondary lock was originally set. .This
can help reduce the time between the IRCI and the UWMCI.

In memory space, read- and write-type transactions other than IRCI and
UWMCI, such as RCI and WMCI, must not be affected by the lock and must
be able to proceed unhindered. Since the block is 1locked only to
nodes issuing IRCI transactions, whether a large or small block is
locked in general should not affect system operation. In 1I,/0 space,
whether any transaction type is affected by the lock is implementation
dependent.
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The length of a block of data fetched from memory may differ from that
requested by a node in an IRCI transaction because of cacheing
requirements. For example, a processor with cache may have filled a
cache block that is longer than the length of the block to be unlocked
by the UWMCI, and the address of the block to be wunlocked may be
different from that given in the IRCI. The master must comply with
the following rules; the slave need not check for compliance.

0 The length of a UWMCI transaction can be less than the length
of the IRCI transaction, but it cannot be greater.

o The UWMCI transaction must wunlock the block of addresses
locked by the IRCI transaction.

o The address of the UWMCI transaction must be within the
address range of the IRCI transaction; it does not have to be
the same.

One processor may use IRCIs of one length while another processor uses
IRCIs of a different length.* For all processors to be compatible, the
following must be observed:

o In memory space, an IRCI must lock a naturally aligned block
that is at least an octaword long.**

© In I/O space, an IRCI locks as little as an aligned longword,
except when the location is in a word-accessible or
byte-accessible adapter, in which case IRCI locks as little as
an aligned word or byte respectively. (See Section 5.3.1,
Address Interpretation, for the meaning of word-accessible and
byte-accessible adapters.) For example, the UNIBUS adapter is
a word-accessible adapter.

The IRCI transaction also sets the Unlock Write Pending (UWP) bit of
the VAXBI Control and Status Register (VAXBICSR) at the issuing node.
A UWMCI clears this bit. If a UWMCI is issued and the UWP bit is not
set (that 1is, an IRCI had not been issued), the Interlock Sequence
Error (ISE) bit is set in the node’s Bus Error Register. Setting of
the ISE bit generates an error interrupt if the Hard Error Interrupt
Enable bit is set in the VAXBICSR register. The UWMCI transaction is

*For example, the KA820 processor uses octaword IRCIs (because of its
cache) while the KA800 processor uses longword IRCIs.

**In MS820 series memories, the lock will lock the entire memory node.

5-4
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carried out regardless of whether the UWP bit is set. IRCI and UWMCI
transactions should always be issued in pairs, and such pairs should
not be nested, because of the uncertainty as to the extent of the
block that is locked by any one IRCI.

VAX interlock instructions are not the only VAX instructions that
generate VAXBI interlock transactions: byte- and word-length modify
type instructions in 1I/0O space may also generate interlock
transactions. All these instructions generate IRCI/UWMCI pairs.

5.3 TRANSACTIONS TO SUPPORT DATA TRANSFER

This section describes the read-type and write-type commands and the
INVAL command. During a command/address cycle the data lines specify
the number of bytes being transferred (on BI D<31:30> L; see Table
5-2) and a 30-bit address (on BI D<29:0> L). The low address of the
block of data transferred is always a multiple of the size of the
block of data, in bytes. Note that during read-type transactions, the
address supplied during the command/address cycle is not always the
low address of the block of data transferred. (See Section 5.3.1.1.)
The information lines (BI I<3:0> L) carry the VAXBI " command code
during the command/address cycle (see Table 5-1).

Table 5-2: Data Length Codes

————————————— - ——— ———————— - —— — ——————— — -, -~

31 30 Data Length

H H RESERVED

H L Longword (LW) 4 bytes
L H Quadword (QW) 8 bytes
L L Octaword (OW) 16 bytes

————————— —————— - ——————————— - ———— - ——— ———— ——— ——-—

5.3.1 Address Interpretation

The following two subsections give rules for data transmission based
on the transaction type, address space, data 1length field, and
low-order address bits. Figure 5-1 shows longword and'byte references
in an octaword block. -
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The abbreviations used in Tables 5-3 and 5-4 are explained below:

ALL

NWS

WS

/B

/W

/L

All address space; includes all of I/O and memory space.

Non-window space; includes all I/0 addresses that are not in
node window space as well as all memory space addresses.

Node window space.

The node is byte-accessible; that 1is, longword read-type
commands are treated by the node as reads of single bytes.

The node is word-accessible; that 1is, 1longword read-type
commands are treated by the node as reads of single words.

The node is longword-accessible, that is, the smallest unit
that can be read from the node with a VAXBI read-type
transaction is a longword. Nodes that are not explicitly
specified as byte- or word-accessible are
longword-accessible.

An X in the address field indicates that the master can
drive any data on these lines during the command/address
cycle.

A dash in a received address entry indicates bits that the
slave must ignore for a particular transaction length. A
dash in returned read data indicates bytes that must be
ignored by the master (that is, the bytes contain undefined
data). :

An apostrophe indicctes concatenation.

5-6
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31 ' 0
01 = | 83 82 g1 80
[
02 = 87 86 8s B4
D3 = an ) 810 B9 B8
D4 = 81s 814 813 812
MO-02048

Address of BO is:

A<29:2>'00 for longword data length
A<29:3>'000 for quadword data length -
A<29:4>'0000 for octaword data length

Figure 5-1: Longword and Byte References in an Octaword Block

5.3.1.1 Read-Type Transactions - Table 5-3 describes the rules for
address interpretation for VAXBI read-type transactions. The order in
which the longwords of data are returned is shown in the last column.

No masters may generate the RESERVED (H H) data length code, and the
response by nodes that receive the RESERVED data length code is
implementation dependent.

The slave to a read-type transaction transmits the addressed 1longword
of data first. The way 1in which the remaining longwords .are
transmitted depends on the address that was transmitted. In most
cases, the address transmitted during a read-type transaction will be
data-length aligned (for example, if the transaction is of octaword
length and address bits A<3:0> = 0000). 1In these cases, the remaining
longwords (one for quadword and three for octaword length
transactions) will be transmitted in ascending address order.
However, if the initially addressed 1longword was not data-length
aligned (for example, an octaword transaction with address bits
A<3:0> = 1000), then the remaining longwords will be transmitted in
ascending address order until the top of the data-length aligned block
is reached, at which time a "wrap" will occur, and the next
transferred longword will be 1located at the base address of the
data-length aligned block. Longwords are then transferred in
ascending address order until the entire block has been transferred.
A read-type transaction in which the address 1is not data-length
aligned is called a "wrapped read."
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No slave should rely on masters having the capability to perform
quadword or octaword transactions to any part of VAXBI address space.

Table 5-3:  Read-Type Transaction Address Interpretation
Data Address Transmitted Received Order of the Returned
Length Space Address Address Data (first to last)
ow ALL  A<29:4>'00XX  A<29:4>'00-- D1, D2, D3, D4

ow ALL A<29:4>'01XX A<29:4>'01-- D2, D3, D4, D1

ow ALL A<29:4>710XX A<29:4>'10-- D3, D4, D1, D2

ow ALL A<29:4>711XX A<29:4>'11-- D4, D1, D2, D3

ow ALL A<29:3>'0XX A<29:3>'0-- D1, D2

QW ALL A<29:3>71XX A<29:3>71-- D2, D1

LW NWS A<29:2>"XX A<29:2>'—- D1 (B3,B2,B1,B0)
LW WS/L A<29:2>"XX A<29:2>' -- Dl (B3,B2,B1,B0)
LW WS/W A<29:2>'0X A<29:2>'0- D1 (XX,XX,Bl,BO)
LW WS /W A<29:2>'1X A<29:2>'1- D1 (B3,B2,XX,XX)
LW WS/B A<29:2>'00 A<29:2>'00 D1 (XX,XX,XX,B0)
LW WS/B A<29:2>701 A<29:2>'01 D1 (XX,XX,Bl,XX)
LW WS/B A<29:2>'10 A<29:2>'10 D1 (XX,B2,XX,XX)
LW WS/B A<29:2>"11 A<29:2>'11 D1 (B3,XX,XX,XX)

S S T T T S S i e o . . s o . o . o v —— ————— ——— ——. —— . - —_—— o~ —— . —

*The slave must respond with a NO ACK.

5.3.1.2
address

interpretation

Write-Type Transacticns - Table 5-4 describes the
for VAXBI write-type transactions.

rules

in which the longwords of data are transmitted is shown in the

column.

No masters may generate the RESERVED (H H) data length code,
receive the

response

by nodes

that

implementation dependent.

.and

RESERVED data length code is

VAXBI writes transmit write data in ascending address order (that
there are no wrapped writes on the VAXBI bus).

masters must not issue

equal to

No slave should rely on
quadword or octaword transactions to any part of VAXBI address space.
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Write-Type Transaction Address Interpretation

————————— - — - ——— —— ————— — - - — —————————— . - — — — - — - — — - ———— — — —_——— ——————

Transmitted

Address

Received
Address

Order of the Transmitted
Data (first to last)

————— —————— - — T — —— - — -, - — - — . ——— ———— - — ———— - — - — — - — - —— - —— —— - ——

Table 5-4:
Data Address
Length Space
(0]7] ALL
(07 ALL
LW NWS
LW WS/L
LW WS,/W
LW WS/W
LW WS/B
LW WS/B
LW WS/B
LW WS/B

A<29:4>'00XX

A<29:3>’ 0XX

A<29:2>"XX
A<29:2>'XX
A<29:2>'0X
A<29:2>'1X
A<29:2>'00
A<29:2>'01
A<29:2>'10
A<29:2>'11

A<29:4>'00-
A<29:3>'0--

A<29:2>"--
A<29:2>"—-
A<29:2>'0-
A<29:2>'1-
A<29:2>'00
A<29:2>'01
A<29:2>'10
A<29:2>'11

- Dl' Dz, D3' D4

D1, D2

Dl (B3,B2,B1,B0)
pl (--,--,B1,B0)
Dl (B3,B2,--,--)
Dl (-—'--,"",BO)
D1 (""r""uBlr"‘)
D1 (_—IBZI_-I--)
D1 (B3,--,--,--)

—— ——————— ——— -~ —— — - - — - — - —— - - - - — - - — - — - — — — — ——— ———— -~ ——— - —— -

*The slave must respond with a NO ACK.

' 5.3.2

In a multiprocessing system in which data from memory is

Cacheing and the VAXBI Bus

cached, the

danger exists that the data in the cache will be "stale," that is, not

up to date. In a VAXBI system, it 1is required that memory must
contain the up-to-date copy of the data.
To provide for the cacheing of data, the VAXBI protocol specifie:

various kinds of reads and vrites.
transfers will involve caches.

for use with caches, while

The assumption is that most dat:
RCI and IRCI are the read transaction:
WCI, UWMCI, and WMCI are the write
transactions for use with caches. The INVAL transaction 1is wused tc
notify nodes that the data in their caches might be invalid. The
following discussion describes the way in which these transactions are
used. '
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To ensure that data in caches that may have become stale are marked
invalid, each VAXBI node that caches data must monitor all VAXBI
write-type transactions, and if such a transaction is directed to a
location that 1is <cached at the node, then the cached data must be
marked invalid.* If the node cannot mark the cached data invalid
within the time it takes the monitored transaction to complete, the

node must extend the monitored transaction by asserting the BI BSY L

signal as described in Section 4.2.2.

Because VAXBI nodes are not permitted to cache VAXBI I/0 space data,
there is no need to provide for invalidating I/O space locations. The
discussion below regarding invalidation of cached data therefore
pertains only to VAXBI memory space data. To emphasize the difference
between those VAXBI nodes that implement memory locations and those
that cache data, the former will be referred to as "memory VAXBI
nodes" and the latter as "cache VAXBI nodes," respectively, since they
are the memory nodes and cache nodes of the data transfer
transactions. When memory is located at the cache node, the rules
below do not apply to the node as memory node because they assume that
the memory node cannot learn of actions at the cache node except
through VAXBI transactions.

By monitoring all VAXBI write-type transactions, cache VAXBI nodes can
ensure that, should a memory location be updated through a VAXBI

transaction, the cached data will always be marked invalid. Should
the memory location be updated without the use of a VAXBI transaction,
however, this monitoring activity cannot detect the update. Such

updating of a memory location is referred to as a "local write." To
ensure that stale data is marked 1invalid, memory VAXBI nodes must
issue INVAL transactions for a set of locations when the locations are
updated with a local write, provided that the data could have been
cached. :

To reduce the number of INVAL transactions that have to be issued,
cache VAXBI nodes should use the READ and WRITE transactions instead
of the RCI and WCI transactions when they read or write data that they
do not cache. As long as the READ transaction is not used, VAXBI
nodes are allowed to cache any memory space data returned on read-type

transactions unless the data is returned with one of the "don’t cache"

status codes (see Section 5.3.4). If a "don’t cache" status code is
returned, the memory node will not issue an INVAL transaction when it
is updated with a local write, so the data must not be cached.

————————————— -

*In fact, the node could update its cache, rather than just
invalidate, if the write-type command is with cache intent.

5-10
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In contrast to the case of reads, VAXBI nodes are not allowed to cache
data when they write data to a memory location unless at the time of
the write they have been holding a valid cached copy of the original
contents of that location. This is referred to as the "no write
allocate" rule. Because of this rule, it is sufficient that "don't
cache" be returned only on read-type transactions. Without this rule,
the bus protocol would have to support a "don't cache" indication to
be returned on write-type transactions. Cache nodes would then have
to implement the cache in such a way that the data is not cached in
case the "don’t cache" indication is returned; this would be awkward
since writes are often pipelined.

To take advantage of the READ and WRITE transactions, a memory VAXBI
node can implement a "cached bit" for each memory location. The
"cached bit" is originally cleared, and is set 'if the location is read
with an RCI or an IRCI transaction, indicating that the data in the
location might be cached. The bit is not set on a READ transaction
since the data 1is not <cached, and 1is not set on a write-type
transaction because the "no write allocate" rule guarantees that the
data is cached only if it had already been cached on an earlier RCI or
IRCI transaction and was still valid. 1If the location is written with
a local write while the cached bit is set, the memory VAXBI node must.
issue an INVAL transaction for the location. If the location is
written with a local write while the cached bit is cleared, however,
the memory VAXBI node need not issue the INVAL transaction. The
cached bit can be <cleared if the location is written with a WRITE
transaction (but not if the location is written with a WCI, WMCI, or
UWMCI transaction), and is cleared when an INVAL transaction is issued
for the location.

It may not be feasible to implement a cached bit for each memory
location. Instead, a cached-bit can be implemented for a large block
of memory locations. This bit would be set if any 1locations 1in the
block are accessed with an RCI or IRCI transaction. (If "don’t cache"
status is returned on receipt of IRCI transactions, the cached bit
need be- set only on RCI transactions.) In such a case it is probably
not worthwhile to ever clear the bit. Should the bit ever be set,
INVAL transactions must be issued on each local write to any memory
location in the block of locations. However, if the bit is never set,
INVAL transactions need not be issued. Not setting the bit is useful
when the node can be used both in configurations where cache nodes
occur and in configurations where they do not occur. 1In the latter
case better performance can be obtained because INVAL transactions
need never be issued.
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Rather than implement cached bits, memory VAXBI nodes can simply issue
INVAL transactions on all local writes. This alternative is desirable
when local writes are rare. Or memory VAXBI nodes can avoid ever
issuing INVAL transactions on local writes, by returning "don’t cache"
status on RCI and IRCI transactions (and, optionally, also on READ
transactions). This alternative is desirable when defeating the cache
at the memory VAXBI node is judged to have a small performance impact.
Application Note 2 provides an expanded discussSion on the use of the
various alternatives.

The rules are summarized below.

o Nodes while not cacheing data should issue READ and WRITE
commands on the VAXBI bus to access locations not in local
memory (that is, memory which is not part of the node itself).

0 Nodes while cacheing data must use cache-intent read- and
write-type commands on the VAXBI bus to access locations not
in local memory.

o Nodes that cache data must monitor the VAXBI bus; locations
designated in write-type commands and INVAL commands must be
invalidated.

0 Nodes must not cache any data returned with a "don't cache"
status.*

O Nodes must not cache data on a write transaction unless, just
before the data is written, the cache contained valid data for
the location. This rule is known as "no write allocates."

0 Nodes that respond to read- and write-type commands to memory
space must either (a) issue INVAL commands on writes to local
memory or (b) return "don’'t cache" status to RCI and IRCI
commands if writes to local memory are possible to the
specified locations. It is optional for these nodes to return
"don’t cache" status to other read-type commands.

o Reads to I/O space and all interlock reads must not result in
cache hits. Even if the data being read has been cached
locally, the cached data must be ignored on these transactions
and a VAXBI read-type transaction must be generated.

Note that memory nodes accessible only through the VAXBI bus do not

have to return "don’'t cache" status or issue INVAL commands, because
local writes are not possible.

*The KA820 processor has an exception to this rule.

5-12
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When applied to specific cases, the rules 1listed above can be
simplified as follows:

o A node with no local memoty (although, of course, it may have
a cache) has no need to issue INVAL commands.

o A node with no cache memory should not issue cache intent
commands.

0 A node with local memory need not record whether RCI or WCI
transactions have been issued to locations in the local memory
since the last write-type transaction. 1If this information is
not recorded, either all accesses to local memory receive
"don’t cache" confirmations or all local writes generate INVAL
commands.

5.3.3 Write Mask

During data cycles of WMCI and UWMCI transactions, the BI I<3:0> L
lines carry a write mask. When a bit in the mask is set to a one, the
corresponding byte is to be modified by the contents of the data
lines. Table 5-5 shows which byte of the VAXBI data lines is written
to when the information lines are asserted.

In memory space, the exact bytes corresponding to the mask bits that
are set must be written, for any combination of mask bits. In_ node
window space, byte- and word-accessible nodes ignore the write mask
bits for the bytes or word, respectively, not addressed by the
low-order address bits. In the rest of I/0 space, the effect of the
mask bits 1is implementation dependent. See Section 5.3.1.2 for more
details.

The BI I<3:0> L lines are an UNDEFINED field during data cycles of
write-type transactions that do not use a mask.

Table 5-5: Write Mask Codes

Signal Byte to
Asserted Be Written
BI I<3> ‘BI D<31:24> L

L

L BI D<23:16> L
BI I<1> L BI D<15:8> L

L BI D<7:0> L

————————————— - — o —————————— - —— - -
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5.3.4 Read Status

The BI I<3:0> L lines are used to transmit a read status code during
each ACK data cycle of read-type and IDENT transactions. The slave
sends the code describing the type of data that is being returned to
the master. Both the slave and master continue the bus transaction
regardless of the status. Table 5-6 lists the read status codes.

Note that there are two versions for each of the three types of
status. One version is for data that can be cached, and the other is
for data that must not be cached. Because the slave can make this
restriction, the number of INVALs can be reduced.

Table 5-6: Read Status Codes

- ————— - — — —— —— — - — ——— — - - — - - ——— —— v ———— - — - ——

——— ————— ———— . — - — o ———— " - ——— - — - - — . —— — ——— ———— - ——

HH RESERVED

HL Read Data

L H " Corrected Read Data
L L Read Data Substitute

H RESERVED

L Read Data/Don’'t Cache

H Corrected Read Data/Don’t Cache

L Read Data Substitute/Don’t Cache
*Bit <2> is RESERVED. Slaves must drive this 1line
to H for all status types, ond masters must ignore
the state of this line.

The Read Data status code indicates that data is being returned
without error.

The Corrected Read Data status code indicates that the data being
returned has been corrected. :

The Read Data Substitute status code warns that the data that was
accessed contained an wuncorrectable error. If possible, the data
lines should contain the uncorrected data.

The master’s response to RESERVED status codes should be the same as
that to Read Data Substitute.

Parity must be generated, regardless of the data and status returned.

Blilolilelali
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5.3.5 Write-Type Transactions
WRITE

The WRITE transaction is used to transfer data from a master to a
slave when the master does not cache the data (see Figure 5-2*).
During the command/address cycle, the master sends the data 1length
(longword, quadword, or octaword) on BI D<31:30> L, the address on BI
D<29:0> L, and the command on BI I<3:0> L. Parity is generated by the
master and is checked by all nodes. BI BSY L is asserted until the
last ACK data cycle. BI NO ARB L is deasserted for the C/A cycle but
then is asserted, along with BI BSY L, until BI BSY L is deasserted.

During the second cycle (imbedded ARB cycle), nodes can arbitrate for
control of the bus for the next transaction. The present master
cannot participate.

The slave sends a command confirmation during the third cycle. This
CNF code provides feedback to the master about errors and about the
slave’s status. Later CNF codes provide information about data cycles
of the transaction. The type of feedback depends upon the cycle and

the type of transaction. Error feedback occurs two cycles after the
cycle being reported. (See Table 4-3 for more information on CNF
codes.)

The master sends write data in the third and succeeding data cycles.
If a slave cannot receive data at the specified time, it can send a
STALL response until it is ready to receive the data. The slave may
stall for at most 127 consecutive cycles (see Section 4.2.4.1, STALL
response). During data cycler the BI 1<3:0> L lines are an UNDEFINED
field in WRITE and WCI transactions, whereas in WMCI and UWMCI
transactions these lines carry the write mask. During all data cycles
the master generates parity, and the slave checks parity.

*The following abbreviations are used in the figures in this chapter
that show the format of VAXBI transactions:

M Master node

S Slave

Ss Slaves

AAN All arbitrating nodes

AN All nodes

APS All potential slaves (only for IDENT, prior to

IDENT ARB selection)
All the CNF codes are listed as they might occur in the specified

cycles. A > in front of a CNF code indicates the CNF code that would
be transmitted during the transaction illustrated.
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Figure 5-2: WRITE and WCI Transactions (octaword length shown)
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WCI (Write with Cache Intent)

The WCI transaction performs a write but the data transferred may be
cached. A node while cacheing must issue a WCI rather than a WRITE tc
alert the slave that the data is being cached. Note that cacheing car
occur only if, just before the write is performed, the cache already
contains valid data for the location written to. Should the same
location in the slave node be written to later without the use of a
VAXBI transaction, the slave must issue an INVAL on the bus. If a
cacheing node cannot determine if data is being cached,* then the
cacheing node must assume that the data is being cached and 1issue a
WCI rather than a WRITE. For example, in the case of a bus adapter,
if a processor on the target bus originated the write, the bus adapter
may not be able to determine if the processor cached the data.

The slave’s response to a WCI command is the same as that to a WRITE
command (see Figure 5-2).

During data cycles the BI I<3:0> L lines are an UNDEFINED field ir
WRITE and WCI transactions, whereas in WMCI and UWMCI transactions
these lines carry the write mask.

*In the sense used here, a cacheing node is any VAXBI node that
behaves like a cacheing processor (when looking into the node from the
VAXBI bus). For example, a DB88 (VAX 8800 system to VAXBI bus
adapter) behaves 1like a cacheing processor even though it really
connects the VAXBI bus to a processor-me