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Preface

Intended Audience

This manual describes the hardware of the PCI I/O subsystem in
AlphaServer 8200 and 8400 systems.  It discusses the operations of the
DWLPA and DWLPB PCI adapters, and provides detailed information on
the subsystem registers.  The manual is intended for technical profession-
als such as operating system programmers and customer service engi-
neers.  

Document Structure

This manual has six chapters and one appendix:

• Chapter  1,  Overview,  gives an overview of the PCIA adapter.  

• Chapter  2,  Addressing, describes system to PCI and PCI to system
addressing schemes.

• Chapter  3,  Registers, describes each register in the PCIA.

• Chapter 4, Functional Description, discusses CPU and PCI com-
mands and transactions in detail.

• Chapter  5,  Error Handling,  describes errors caused during sub-
system operations. 

• Chapter  6,  PCI to EISA Bridge, describes the PCI to EISA bridge.  

• Appendix A, PCIA Supported Hose Packets, shows the supported
Up and Down Hose data packets.
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Chapter 1

Overview

The PCI adapter (PCIA) module provides a complete PCI and EISA bus
subsystem for systems that implement the TLSB I/O hose interface.  

1.1  Applicable Documents

• Intel 82420/82430 PCIset ISA and EISA Bridges Databook (April 1993)

• AlphaServer 8200 and 8400 documentation

• AlphaServer 2100 documentation

1.2  Features

Software Compatibility - The PCIA is architecturally compatible with
other CPU-PCI, and PCI-EISA bridges, allowing software drivers to run on
the TLSB platforms with no modifications.

Hardware Compatibility - The PCIA supports the TLSB hose protocol. 
Direct CSR access to the PCI bus is allowed on the TLSB.

Configurability - As seen from the CPU,  the three PCI buses on the
PCIA share a common I/O address space.  Therefore, flexible address space
assignments meet varying I/O card address space requirements.  There are
12 PCI expansion slots plus one slot for the EISA bridge.  

Scatter/Gather Capability - The DWLPA supports a  32K entry scat-
ter/gather address map RAM  used to translate PCI memory addresses
into TLSB main memory addresses.  DWLPB supports a 128K entry map
RAM.

Performance - To improve the individual DMA transaction performance,
the PCIA implements an on-chip scatter/gather cache and reads of a full
host memory block.  To improve overall DMA throughput, the PCIA imple-
ments three physically separate PCI buses and allows a DMA operation to
be pending simultaneously for each bus.

EISA Support - A dedicated slot is used to support a PCI-EISA bus bridge
module (KFE70), which provides access to an 8-slot EISA bus.  This mod-
ule is the standard I/O module used on AlphaServer 8200 and 8400 sys-
tems.  The EISA bridge includes an Intel 8242 keyboard/mouse controller,
for operating systems that require an integrated keyboard.  The module
also provides a PC-style floppy disk port and PCI-based Ethernet.

Self-Test -  The PCIA does not implement an on-board self-test.  However,
the host CPU diagnoses the module.
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Cache Coherency -  The PCIA does not support any of the PCI cache co-
herency mechanisms required to maintain coherency between TLSB main
memory and memory located on the PCI.

Memory Locks -  Since the TLSB system buses do not provide locks, only
a single, limited case of PCI locking is supported.

PCI Addressing -  The PCIA does not support the 64-bit addressing mode
or the 64-bit data path of the PCI bus.

1.3  TLSB I/O General Description

TLSB systems consist of processor modules, memory modules, and I/O port
modules, as shown in Figure 1-1.  Each I/O module (KFTIA/KFTHA) sup-
ports from 1 to 4 bridges to a remote I/O bus such as XMI, Futurebus+, or
PCI.  The bus bridge, which includes the backplane for the PCI/EISA de-
vices, is housed in a plug-in unit (PIU) in the 8400 or in a PCI shelf in the
8200.  The bridge is connected to the I/O port module by a pair of cables
called a hose.  One cable of the pair carries data and control to the bridge
(the Down Hose), and the other carries traffic from the bridge (the Up
Hose).  

The I/O module converts between transactions on the system bus and hose
data packets as interpreted by the I/O bridges.   The remote bus address
spaces are made visible to the CPU through either I/O mailboxes (XMI and
Futurebus+) or as a direct CSR space (PCI).  The I/O module does not at-
tempt to maintain coherency between system memory and any memory on
its I/O adapters. 

Figure 1-1 I/O System Block Diagram

TLSB
I/O Port
Module

I/O Bus
Bridge

I/O Bus
Bridge

I/O Bus
Bridge

I/O Bus
Bridge

TLSB  Bus

I/O Bus 0 I/O Bus 1 I/O Bus 2 I/O Bus 3

BX-0432-94
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1.4  PCIA General Description

The PCI bus bridge is located on the PCIA.  From the CPU viewpoint, the
PCI side of the bridge appears as a single, logical PCI bus.  The bus sup-
ports up to 15 PCI devices.  Some of these devices can be placed in the 12
PCI expansion slots on the PCIA motherboard.  Others are embedded PCI
options on the PCI-EISA bridge module (also called the standard I/O mod-
ule).  From the CPU, the logical PCI appears to have one set of address
spaces.

For electrical and performance reasons, the logical PCI is implemented as
three physical PCI buses.  Adjacent groups of four devices are physically
on the same PCI segment and can communicate as peers.  The 12 PCI ex-
pansion slots are divided evenly, with 4 slots on each physical bus.  Each
bus operates at 33 MHz and supports a 32-bit data path and 32-bit ad-
dresses, for a raw bus bandwidth of 120 Mbytes/sec.  Figure 1-2 shows the
physical layout of the PCIA module.

The PCI-EISA bridge (standard I/O module) occupies a special slot on one
of the physical buses and when installed all of the slots of that physical
segment are dedicated to the EISA bus.  Eight of the expansion slots in-
clude two sets of connectors and can be used for either PCI or EISA mod-
ules.  The bridge is implemented using the Intel PCEB/ESC (Mercury)
chipset and provides a single 33 Mbyte/sec EISA bus using the 8 slots with
EISA connectors.  

Figure 1-2 PCIA Module Physical Layout

The PCIA provides access to all three PCI address spaces: memory space,
I/O space, and configuration space.  All are accessible using sparse address

1

PCI-EISA Bridge Slot
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Convert HPC
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mapping that allows for byte access.  PCI memory space is also accessible
by dense mapping that supports cache block sized bursts. 

From the system bus side of the PCIA,  a single logical PCI with one set of
address spaces is seen.  This logical view exists only from the CPU.  From
the PCI side of the PCIA, three physical PCI bus segments exist.  Individ-
ual PCI bus masters see only the address spaces local to their physical PCI
segment.  PCI devices on the same physical bus communicate as peers
without involving the PCIA.  All three segments normally are configured to
see the same view of system memory.  

Each of the three physical PCI bus segments is controlled by a PCI bus in-
terface gate array (HPC).  Down Hose data from the KFTIA/KFTHA is
sent to each of the HPCs in parallel.  Up Hose data is driven by each HPC
over a tristate bus, UP_BUS<31:0>, to a driver which transmits the data
on to the Up Hose.  Each HPC arbitrates for the use of the UP_BUS when
sending packets over the Up Hose.  The UP_BUS also provides access to
the scatter/gather map RAM and some module-level control registers. 
Each HPC has 16 PCI interrupt inputs, which it prioritizes and sends to
the KFTIA/KFTHA.  Each HPC monitors UP_BUS transactions to main-
tain a consistent count of the number of transactions that the PCIA has
outstanding.  Figure 1-3 shows the PCIA module block diagram.

The EISA bus bridge provides decoding for an 8-bit XBUS, which supports
PC-style floppy, keyboard, and mouse ports on an additional connector
module.  The module also includes an Ethernet port.  Support for these pe-
ripherals is operating system dependent.  Refer to the AlphaServer 2100
and 2200 I/O Specification for additional information.  
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Figure 1-3 PCIA Module Block Diagram

The PCIA motherboard and EISA bridge modules, the standard I/O mod-
ule and the connector module, mount in an enclosure that provides the
card cage for the PCI and EISA option modules.  The enclosure is the same
form factor as a StorageWorks shelf and mounts in a modified version of a
plug-in unit or a rackmount shelf.

1.5  Communication Overview

The PCIA hardware communicates with the I/O port using four types of
transactions:  DMA, mailbox, CSR, and interrupt.

1.5.1  DMA Transactions

All DMA transactions access the PCIA as a PCI target.  PCI memory
transactions are forwarded to the I/O port if they access one of the address
ranges specified by a set of DMA window registers.  If required, the PCI
DMA address is translated to a system memory address by scatter/gather
address mapping.   The PCIA can generate DMA read and masked/un-
masked write transactions to the I/O port.  The PCIA responds to multiple
PCI memory read transactions by prefetching a programmable number of
cache blocks.  The PCIA generates an interlocked read transaction to the
I/O port in response to a PCI DMA read with PCI lock asserted.  

PCI-EISA
Bridge

HPC 1 HPC 2

Serial
EEPROM

Module
CSRs

Map
RAM

Up Hose
Arbitration

HPC 0

PCI Slots 0-3 PCI Slots 4-7 PCI Slots 8-11

Up Hose Down Hose

BX-0433-95
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DMA write transactions are received from the PCI in a store and forward
manner.  The PCIA generates masked octaword or hexword writes, or un-
masked double hexword writes to the I/O port.  Each HPC contains two
PCI DMA write buffers allowing one transaction’s write data to be trans-
ferred over the Up Hose while another PCI DMA command is being re-
ceived from the PCI bus. All DMA read transactions are the size of the sys-
tem memory block. Memory block sizes of 32 and 64 bytes are supported. 
DMA read commands sent to the I/O port are tagged with an HPC ID code. 
Read return data received over the Down Hose bus is identified by its tag
and buffered by the appropriate HPC.  Each HPC contains one 64-byte
read return buffer.  The buffer is filled from the hose until a cut-through
threshold is reached, at which point  the HPC begins transferring data on
the PCI.  The PCI transfer proceeds in parallel with the remainder of the
hose transfer.

1.5.2  Mailbox Transactions

All mailbox transactions are executed by the PCIA hardware as a PCI
master.  Mailbox transactions forwarded from the I/O port can access a
PCI I/O card on the PCI bus, a PCIA CSR, or the map RAM.  Mailbox
transactions to PCI memory or I/O space on the PCI bus are sent to all
three PCI buses, but only one bus responds to the transaction.

Mailbox transactions are byte, word, tribyte, longword, or quadword in
length.  A Mailbox Command packet is received by the PCIA on the Down
Hose.  Each of the HPCs decodes the command although only one will exe-
cute it.  After executing the mailbox read or write command, the executing
HPC returns a Mailbox Status packet to the I/O port over the Up Hose. 
Data is included in the Up Hose packet if the command was a mailbox
read.

Mailbox transactions are used for diagnostic and initialization purposes.
Although the PCIA can buffer up to four mailbox transactions, it can exe-
cute only one transaction at a time.  The I/O port sends one mailbox trans-
action at a time to the PCIA. 

1.5.3  CSR Transactions

All CSR commands are issued by the CPU and the transactions are exe-
cuted by the PCIA as a PCI master.  CSR transactions can access a loca-
tion on the PCI bus, a PCIA CSR,  or the map RAM.  CSR transactions to
PCI memory or I/O space on the PCI bus are sent to all three PCI buses,
with only one bus actually responding to the transaction.

CSR transactions are byte, word, tribyte, longword, quadword, or hexword
in length.  Byte, word, tribyte, longword, and quadword transfers are sup-
ported through a sparse CPU-to-PCI address mapping.  Hexword transfers
are supported through dense CPU-to-PCI address mapping.  Byte, word,
tribyte, and longword transfers result in a PCI cycle burst length of one. 
Quadword transfers result in a PCI cycle burst length of two.  Hexword
transfers result in a PCI cycle burst length of eight.  See Chapter 2 for a
description of PCI sparse and dense address spaces.

Each HPC decodes the CSR command although only one HPC executes it. 
After executing the CSR read or write command, the HPC returns a CSR
status packet to the TIOP over the Up Hose.  Data is included in the Up
Hose packet if the command was a CSR read.
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The DWLPA can buffer four CSR transactions while the DWPLB can
buffer six CSR transactions.  The buffering reduces the I/O port wait time
between the end of one transaction on the PCI bus and the start of the next
transaction on the PCI bus.  

1.5.4  Interrupt Transactions

Interrupts are handled by all three of the physical PCI buses.  Each HPC
accepts 16 PCI device interrupt inputs from the bus it interfaces to.  Each
HPC has 17 programmable interrupt vector registers.  Sixteen of the
registers hold hardware device interrupt vectors, and one register holds an
error interrupt vector.

The interrupts are latched and prioritized in the HPC.  The HPC generates
an INTR/IDENT by accessing the CSR that contains the selected inter-
rupt’s vector and merging it with a programmable device IPL.  The
INTR/IDENT is then sent to the I/O port over the Up Hose.

All PCI device interrupts are issued as INTR/IDENTs at the same inter-
rupt priority level.  No prioritization is provided between interrupts gener-
ated on different PCI buses.  Normal Up Hose arbitration is used to select
the order in which HPCs issue INTR/IDENTS to the Up Hose.  All HPCs
monitor the outstanding INTR/IDENTs and inhibit issuing INTR/IDENTs
at the outstanding IPLs until an interrupt status packet for that IPL is re-
turned on the Down Hose.
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Chapter 2

Addressing

2.1  TLSB System Addressing

The AlphaServer 8200/8400 system bus (TLSB) supports up to 1 terabyte
(40 bits) of physical address space.  All system memory resides on the
TLSB in the lower 512 gigabytes.  The system provides direct I/O space ac-
cess through the upper 512 gigabytes.  Up to three KFTHA I/O modules
are supported, although TLSB systems can be configured with as many as
five KFTHAs.  I/O space is divided among the five TLSB nodes that can
contain I/O port modules.   Within each node I/O space, the address space
is divided among the four I/O port hoses.  The various address spaces cre-
ated by this scheme are known as window spaces.  Table 2-1 gives the map
of TLSB address space.  Table 2-2 shows how each node I/O address space
is assigned to four hoses.  The System Bus Address portion of Figure 2-1
shows the window space.

Table 2-1 TLSB Address Map

TLSB ADDR<39:0> Description

00 0000 0000 - 7F FFFF FFFF TLSB memory space
80 0000 0000 - 8F FFFF FFFF I/O space for node 4 
90 0000 0000 - 9F FFFF FFFF I/O space for node 5 
A0 0000 0000 - AF FFFF FFFF I/O space for node 6 
B0 0000 0000 - BF FFFF FFFF I/O space for node 7 
C0 0000 0000 - CF FFFF FFFF I/O space for node 8 
D0 0000 0000 - DF FFFF FFFF Reserved
E0 0000 0000 - EF FFFF FFFF Reserved
F0 0000 0000 - FF FFFF FFFF TLSB CSR space/CPU private space
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Table 2-2 I/O Node Space Assignment

2.2  System Bus to PCI Addressing

A PCIA consumes 16 Gbytes (34 bits) of system I/O address space, which it
uses to provide four mappings of a single 4-Gbyte PCI address space.  Mul-
tiple mappings are required because the PCI uses multiple transaction
types and sizes which cannot be directly expressed by an Alpha CPU.  The
cycle types and transaction sizes are encoded in the I/O space addresses
generated by the CPU.

Although the PCIA supports three electrically distinct PCI bus segments,
it presents a single logical PCI address space.  A device can be configured
to a given PCI address, independent of which physical PCI bus it is con-
nected to.  This provides for a large number of PCI slots, without splitting
the available system I/O address space into regions too small to provide
useful mappings.  Table 2-3 shows CPU to PCI address mapping for one
PCIA.  The remainder of the chapter provides the details of each mapping. 

It is important to note that this section describes the view of a PCI address
space as seen from the CPU.  The view seen by a PCI device is different
and is described in Section 2.4.  Figure 2-1 shows the view of PCI ad-
dresses, as seen by the CPU.

The responsibility for mapping system (CPU) addresses to PCI addresses
is shared by the PCIA and the I/O module.  This chapter describes the sys-
tem mapping on AlphaServer 8200/8400 systems.  Refer to Chapter 5 and
Appendix A for information on how system addresses are encoded in the
hose protocol. 

Address Range Assignment

x0 0000 0000 - x3 FFFF FFFF I/O space for hose 0

x4 0000 0000 - x7 FFFF FFFF I/O space for hose 1

x8 0000 0000 - xB FFFF FFFF I/O space for hose 2

xC 0000 0000 - xF FFFF FFFF I/O space for hose 3
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Figure 2-1 CPU View of PCI Addresses

Table 2-3 CPU to PCI Address Mapping for a Single PCIA

System Bus Addresses PCI Bus Addresses

Memory
Space
Bit 39=0

I/O Space
Bit 39=1 TLSB Node 4

TLSB Node 5

TLSB Node 6

TLSB Node 7

TLSB Node 8

Reserved

Reserved

CSR Space

Hose0
Addresses
(34 bits)

Hose1
Addresses
(34 bits)

Hose2
Addresses
(34 bits)

Hose3
Addresses
(34 bits)

Memory
Dense

Memory
Sparse

I/O
Sparse

Config

PCIA CSR

PCIA Space

0

4 GB

8 GB

12 GB

14 GB

BX0434-94

0

128 MB

4 GB

0

128 MB

4 GB

PCI
Config
Space

PCI
I/O
Space

PCI
Memory
Space

CPU Address Range PCI Address Range PCI Address Space
x0 0000 0000 - 
x0 FFFF FFFF

0000 0000 - FFFF FFFF PCI memory space - Dense mapping

x1 0000 0000 - 
x1 1FFF FFFF

0000 0000 - 00FF FFFF PCI memory space - Sparse mapping (fixed)

x1 2000 0000 - 
x1 FFFF FFFF

0100 0000 - 07FF FFFF 1 PCI memory space - Sparse mapping  (vari-
able)

x2 0000 0000 - 
x2 1FFF FFFF

0000 0000 - 00FF FFFF PCI I/O space - Sparse mapping (fixed)

x2 2000 0000 - 
x2 FFFF FFFF

0100 0000 - 07FF FFFF 1 PCI I/O space - Sparse mapping (variable)

x3 0000 0000 - 
x3 7FFF FFFF

0000 0000 - 0000 00FF  2 PCI configuration space

x3 8000 0000 - 
x3 FFFF FFFF

N/A PCIA CSRs and Map RAM

 1 Variable under the control of the HAE fields of the CTLx register.  Shown for HAEs = 0.

 2  For each possible PCI device.
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Figure 2-2 shows another view of the CPU to PCI mapping, indicating how
the address bits are decoded.  Note this is a "software" view of the decod-
ing.  It ignores some details of how the low-order address bits are actually
passed from the CPU over the system bus to the I/O port. 

Figure 2-2 CPU to PCI Address Mapping

2.2.1  PCI Memory Space

2.2.1.1 Dense Mapping

Accesses to the first 4 Gbytes of  the PCIA address space are mapped one-
to-one to the combined PCI memory space.  Software can reference only
aligned, longword, and quadword PCI data through the dense mapping, 
since there is no way to encode byte, word, or tribyte references. 

On AlphaServer 8200 and 8400 systems, the KFTIA/KFTHA transfers 32-
byte blocks of data to the PCIA.  The blocks result from merging of CSR
writes in the CPU’s write buffers (32-byte blocks).  Each block of write data
is accompanied by a mask that indicates which longwords in the block con-
tain valid data.

The PCIA transfers a block by generating a burst on the PCI, referencing
each longword within the block and transferring data for the longwords in-
dicated by the mask (enables asserted).  Unmasked longwords are written
in a cycle with all PCI byte enables deasserted.  The following software re-
striction is therefore forced: software must not reference a PCI memory lo-
cation through dense space unless all locations of the 32-byte block con-
taining the data exist and can be accessed without side effects.

For CPU reads directed to the PCI, the PCIA generates a burst on the PCI
for a 32-byte block.  Again, this forces the restriction that all locations of
the 32-byte block containing the data exist and are readable without side
effects.  Although a 32-byte block is read and returned over the system
bus, the CPU determines how much data is used.  For AlphaServer
8200/8400, the read-merge buffer limits the maximum usable data to two
quadwords.

For all dense space transfers, PCI addresses are generated as shown in
Figure 2-3.

39 38 36 35 34 33 32 31 4 3 05

1

2

BXB-0591-94

Byte Aligned I/O Address <26:0> 0 0 0

PCI Address

Space Selection

I/O Port Hose

TBLS Receiving

Node

I/O Select (1 for direct I/O access)

0

Byte Length
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Figure 2-3 Dense Space Address Mapping

2.2.1.2 Sparse Mapping

Accesses to the second 4 Gbytes of the PCIA address space are mapped to
the PCI using a sparse addressing scheme.  The PCI bus is a longword
wide, with four byte enables.  Therefore, access to arbitrary groups of bytes
within a longword is allowed.  The Alpha architecture only provides in-
structions to access aligned longwords and quadwords.  Sparse mapping al-
lows byte, word, tribyte, longword, and quadword accesses to be performed
on the PCI, by encoding the size and position of an access in the low-order
bits of the CPU address.  The PCIA supports the encoding shown in Table
2-4, which is sufficient to produce all the PCI references.

BXB-0545-93

31 05 4

31 05 4

0 0 0 0 0

CPU Address

PCI Address
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Table 2-4 Sparse Access Encoding - PCI Memory Space

Since five address bits are used by access encoding, a 4-Gbyte range of
PCIA address space maps only 128 Mbytes of PCI memory space.   The
lower 512 Mbytes of CPU sparse address space maps directly to the lower
16 Mbytes of PCI memory space using the translation shown in Figure 2-4.

CPU
A<6:5>

CPU
A<4:3>

Transfer
Size

PCIA
<1:0> PCI Byte Enables (C/BE) 

00 00 Byte 00 1110  ( 0 = enabled )
01 00 00 1101
10 00 00 1011
11 00 00 0111
00 01 Word 00 1100
01 01 00 1001
10 01 00 0011
11 01 00 0111 1

00 10 Tribyte 00 1000
01 10 00 0001
10 10 00 0011  1

11 10 00 0111  1

00 11 Longword 00 0000
01 11 00 0001  1

10 11 00 0011  1

11 2 11 Quadword 00 0000 (1st cycle)
0000 (2nd cycle)

1  Software should consider these combinations of CPU<6:3> as undefined.  They are not  re-
quired to produce the same results on all Alpha systems.

2 For quadwords, CPU A<7> must be zero.
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Figure 2-4 Sparse Space Address Mapping (Lower 16 Mbytes)

For the upper 3.5 Gbytes of PCIA space  (CPU A<31:29>  non-zero),  the
translation is modified by supplying an additional five high-order PCI ad-
dress bits obtained from the Memory Hardware Address Extension
(MHAE) field in the PCIx Control Register (CTLx).  This maps an addi-
tional 112 Mbytes of PCI address space, with addresses constructed as
shown in Figure 2-5.

Figure 2-5 Sparse Space Address Mapping (Upper 112 Mbytes)

To perform a byte, word, or tribyte access to PCI memory space, software
must issue an LDL or STL instruction to an address created as described
above.  The longword quantity is transferred from/to the PCI data lines,

BXB-0546-93

31 07 6

31 02 1

0 0 0 0 0

CPU Address

PCI Address

27 26

0 0 0

4 3

Decode

PCI Byte Enables

BXB-0547-93

31 07 6

31 02 1

CPU Address

PCI Address

27 26

0 0 0

4 3

Decode

PCI Byte Enables

HAE Field

4 0
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without any byte shifting.  Software is responsible for positioning the data
in the correct byte lanes, corresponding to the byte enables shown in Table
2-4.  For quadword transfers, software must issue an LDQ or STQ instruc-
tion.  The low longword of the quadword will be written to the specified
PCI address, and the high longword will be written to the next longword
address.

Note that for PCI memory space, the PCI specification requires that PCI
A<1:0> encode the address burst order.  The PCIA always forces these bits
to zero (linear incrementing burst addresses).

2.2.2  PCI I/O Space

Accesses to the third 4 Gbytes of the PCIA address space are sparsely
mapped to the PCI I/O space.  The mapping is identical to that used for
sparse memory space, except for PCI A<1:0>.  Table 2-5 shows the map-
ping for PCI I/O space.

Table 2-5 Sparse Access Encoding - PCI I/O Space

For the upper 3.5 Gbytes of PCIA I/O space (CPU A<31:29> non-zero), the
I/O Hardware Address Extension (IHAE) field of the PCIx Control Register
(CTLx) supplies the upper five bits of the PCI address.  All other aspects of
sparse I/O space are identical to those of sparse memory space.

2.2.3  PCI Configuration Space

The next 2-Gbyte region of PCIA address space provides access to PCI con-
figuration space.  The same sparse mapping used for I/O and memory
space is used here, with the following exceptions:

CPU
A<6:5>

CPU
A<4:3>

Transfer
Size

PCIA
<1:0> PCI Byte Enables (C/BE) 

00 00 Byte 00 1110  ( 0 = enabled )
01 00 01 1101
10 00 10 1011
11 00 11 0111
00 01 Word 00 1100
01 01 01 1001
10 01 10 0011
11 01 011 0111 1

00 10 Tribyte 00 1000
01 10 01 0001
10 10 101 0011  1

11 10 111 0111  1

00 11 Longword 00 0000
01 11 011 0001  1

10 11 101 0011  1

11 11 Quadword 00 0000 (1st cycle PCI A<2> = 0)

0000 (2nd cycle PCI A<2> = 1)
1  Software should consider these combinations of CPU<6:3> as undefined.  They are not  re-
quired to produce the same results on all Alpha systems.
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• PCI ADDR<1:0> control the type of configuration cycle being per-
formed.  These bits are supplied by bits in the CTLx CSRs.

• PCI ADDR<31:26> are always zero.    

Each PCI device has a 256-byte region for its configuration registers.  For a
PCI device on one of the PCIA’s  bus segments (that is, not on a bridged
bus),  the configuration registers are referenced with a Type 0 configura-
tion cycle (PCI ADDR<1:0> = 0), using addresses constructed as shown in
Figure 2-6.

Figure 2-6 PCI Configuration Space Addressing - Type 0 Addresses

BXB-0548-93

31 07 6

31 02 1

CPU Address

PCI Address

0 0 0

16 15

Decode

PCI Byte Enables

0 0 00 0 00 0

4 313 1224 23

8 7

0 0 00 0 00 0 0 0 00 0

19 18 11 10

Device Func Register

CTLx Configuration Cycle Type

Bit 31 = 0
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Table 2-6 PCI Configuration Space - Type 0 Address Fields

PCI device is selected by PCI Address <18:11>.  The resulting memory
map is shown in Table 2-7.  Each HPC can address up to five PCI devices. 
This capability is used to access the PCI devices located on the standard
I/O module, and when the HPC is used in other products.

No slots of PCI bus 0 can contain PCI modules, if the standard I/O module
is installed, because these slots share PCI bus signals with PCI devices on
the standard I/O module.  Those physical backplane positions can still be
used for EISA modules, except for the second slot, which holds the stan-
dard I/O connector module.

Type 0 configuration cycles are sent only on the physical PCI bus segment
containing the selected device. 

CPU Address
Bits

PCI Address
Bits Definition
<31:19> Always zero

<23:16> <18:11> PCI device select.  Each PCI address line <16:11> is physically
tied to one PCI device IDSEL line.

    PCI<18:17> identify the HPC.
                        00 - HPC 0
                        01 - HPC 1
                        10 - HPC 2
                        11 - HPC 3
    PCI<16:11> identify the IDSEL line.

<15:13> <10:8> Device function number
<12:7> <7:2> Configuration register
<6:3> Sparse space encoding of byte enables
<2:0> Must be zero.

<1:0> Configuration cycle type from CTLx register; zero for
Type 0 cycles.



       Addressing   2-11

Table 2-7 Type 0 Configuration Space Address Map

Type 1 configuration cycles (PCI ADDR<1:0>=1) are used to access configu-
ration registers on PCIs bridged from the PCIA.  Type 1 accesses are not
decoded by the PCIA and are sent to all three PCI buses.  Addresses for
type 1 cycles are translated as shown in Figure 2-7.

CPU ADDR<31:0>                              Destination Addressed
Without Standard I/O                        With Standard I/O

0000 0000 - 0000 FFFF Not used Not used
0001 0000 - 0001 FFFF Not used Standard I/O Ethernet port 
0002 0000 - 0003 FFFF Not used Not used
0004 0000 - 0007 FFFF PCI Bus 0 Slot 0 Standard I/O EISA bridge chip
0008 0000 - 000F FFFF PCI Bus 0 Slot 1 Not used
0010 0000 - 001F FFFF PCI Bus 0 Slot 2 Not used
0020 0000 - 003F FFFF PCI Bus 0 Slot 3 Not used
0040 0000 - 0040 FFFF Not used Not used
0041 0000 - 0041 FFFF Not used Not used
0042 0000 - 0043 FFFF Not used Not used
0044 0000 - 0047 FFFF PCI Bus 1 Slot 0 PCI Bus 1 Slot 0
0048 0000 - 004F FFFF PCI Bus 1 Slot 1 PCI Bus 1 Slot 1
0050 0000 - 005F FFFF PCI Bus 1 Slot 2 PCI Bus 1 Slot 2
0060 0000 - 007F FFFF PCI Bus 1 Slot 3 PCI Bus 1 Slot 3
0080 0000 - 0080 FFFF Not used Not used

0081 0000 - 0081 FFFF Not used Not used
0082 0000 - 0083 FFFF Not used Not used 
0084 0000 - 0087 FFFF PCI Bus 2 Slot 0 PCI Bus 2 Slot 0
0088 0000 - 008F FFFF PCI Bus 2 Slot 1 PCI Bus 2 Slot 1
0090 0000 - 009F FFFF PCI Bus 2 Slot 2 PCI Bus 2 Slot 2
00A0 0000 - 00BF FFFF PCI Bus 2 Slot 3 PCI Bus 2 Slot 3
00C1 0000 - 00FF FFFF Not used Not used
0100 0000 - 07FF FFFF Above 4 sub-regions

Wrapped 7 more times
Above 4 sub-regions
Wrapped 7 more times
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Figure 2-7 PCI Configuration Space - Type 1 Address Fields

Table 2-8 PCI Configuration Space Addressing - Type 1 Address Bits

2.2.3.1 PCIA CSR and Map RAM Space

The final 2-Gbyte region of PCIA address space contains the control and
status registers for the PCIA and the map RAM used for address transla-
tion.  References to this region do not result in transactions on the PCI. 
The PCIA registers reside in each of the HPCs and on the PCIA module. 
There is one bank of registers for each HPC as shown in Table 2-9.  The
module registers are addressed through HPC0.

The address translation map RAM consists of 32K longword entries for the
DWLPA and 128K longword entries for the DWLPB.  These entries are
used to perform scatter/gather mapping and to translate 32-bit PCI DMA
addresses into 40-bit TLSB system addresses. The CSR and map RAM re-
gions can be read and written using either longword- or quadword-width
accesses.  Quadword accesses must be aligned on quadword boundaries.

BXB-0550-93

31 07 6

31 02 1

CPU Address

PCI Address

0 0 0

16 15

Decode

PCI Byte Enables

00 0

3 213 12

8 7

0 0 00 0 00 0

16 15 11 10

Device Func Register

CTLx Configuration Cycle Type

Bit 31 = 0

29 28 21 20

24 23

PCI Bus #

CPU Address Bits PCI Address Bits Definition
<31:24> Always zero

<28:21> <23:16> PCI bus number
<20:16> <15:11> PCI device select
<15:13> <10:8> PCI device function number
<12:7> <7:2> Configuration register
<6:3> Sparse space encoding of byte enables
<2:0> Must be zero.

<1:0> Configuration cycle type from CTLx register - one
for Type 1 cycles.
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Table 2-9 PCIA CSR and Map RAM Address Space

2.2.3.2 EISA Subtractive Decode Window

The PCI-EISA bridge uses a technique called subtractive decode to deter-
mine which PCI addresses to forward to the EISA bus.  The PCIA only
supports subtractive decode in the first 8 Mbytes of PCI memory.  There-
fore, all EISA memory space devices must be configured in the first 8
Mbytes of EISA (and therefore PCI) memory space.  When the standard
I/O module (KFE70) is installed, no PCI devices may be configured in the
first 8-Mbyte segment of PCI memory.

2.2.3.3 PCIA Reserved Addresses

The preceding sections describe various address ranges as Reserved.  Also
reserved are addresses in PCI memory, I/O, or configuration space that are
not occupied by any device on the PCI bus. If these addresses are accessed
by a CPU, an error is reported.

On a read to a nonexistent address, the PCIA will return a hose packet
with the error bit set.  The result of this is system dependent.  On
AlphaServer systems,  the I/O port responds by writing to the CSR Read
Return Error Register in TLSB CSR Broadcast space.  This results in a
machine check interrupt being delivered to the CPU through vector 0x660. 
On a write to a nonexistent address, the PCIA reports an interrupt
through the PCIA Error Interrupt Vector.  Refer to Chapter 5 for details on
which HPC determines that an error occurred and what data is captured
in the error CSRs.

2.3  PCI to System Bus Addressing

The PCIA serves as a bridge to allow PCI devices to perform direct memory
access (DMA) to system memory.  A given PCI device sees a single memory
address space, which must contain both system memory and the memory
space registers of other PCI devices.  The PCIA provides three programma-
ble address windows to make system memory addresses visible from the
PCI.  Memory space references generated by a PCI bus master that fall
within these windows are translated and forwarded up the hose to the sys-
tem memory bus.  Memory references that do not hit in the windows are
not forwarded, and may be decoded by another PCI target device on the

CPU Address<31:0> Destination Addressed
8000 0000 - 801F FFFF HPC 0 CSRs
8020 0000 - 803F FFFF HPC 1 CSRs
8040 0000 - 805F FFFF HPC 2 CSRs
8060 0000 - 807F FFFF Reserved.  

Access causes PCIA Illegal CSR Error 
8080 0000 - 80FF FFFF Module CSRs.  Writes to unused addresses ig-

nored, reads return the PRESENT register.
8100 0000 - 81FF FFFF Map RAM
8200 0000 - 83FF FFFF Reserved
8400 0000 - FFFF FFFF Aliased copies of 8000 0000 - 83FF FFFF
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same physical PCI bus segment.  The PCIA does not forward memory ref-
erences from one PCI bus segment to the other two.

Figure 2-8 shows a possible view of the system address space, as seen by a
PCI device.  The shaded regions are only accessible by devices on the same
PCI physical segment.  The unshaded regions indicate where PCI memory
space accesses are forwarded to system memory space, either directly or
through the scatter/gather address map.  The exact mapping of PCI to sys-
tem memory regions is dependent on the programming of the address win-
dow registers.  The registers should be programmed identically in each
HPC, producing the same mapping from each PCI physical segment.

Figure 2-8 PCI Device View of System Address Space 

2.3.1  PC Compatibility Holes

Certain EISA devices respond to hardwired memory space addresses.  PCI
memory references to those addresses must not be forwarded to main
memory.  These nonforwarding regions are called "PC compatibility holes."
There is typically one fixed hole covering the range 512 Kbytes to 1 Mbyte,
and one variable hole in the range between 1 Mbyte and 16 Mbytes.  Soft-
ware defines the location of the holes by excluding the necessary regions
from the DMA address windows.  Address regions that do not hit in an ad-
dress window are ignored by the PCIA and may be responded to by a PCI
or EISA device.

BX-0436-95

Scatter/Gather

 Address Map

System Memory

 Address Space

PCI Physical Segments 

  (PCI Memory Space)
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Figure 2-9 shows how the PCI memory space might be programmed.  PC
compatibility holes are created by placing PCI local address space over the
appropriate region.  DMA normally takes place through the third (mapped)
window to allow all of system memory to be addressed.

Figure 2-9 PCI Memory Space, Including Compatibility Holes

2.3.2  DMA Address Windows

Each address window is specified by three registers, a Window Base
(WBASEx), Window Mask (WMASKx), and a Translated Base (TBASEx)
register.  Refer to Chapter 3 for the format of these registers.  For normal
operation, the corresponding registers in each HPC must be programmed
identically.  This causes system memory to appear at the same address
range for every PCI device.

The Window Mask Registers provide a mask that selects the size of the
windowed region.  The size must be one of the values shown in Table 2-10.

Table 2-10 PCI Window Mask Values

Direct Mapped
Window

to System Memory

Direct Mapped
Window

to System Memory

Direct Mapped
Window

to System Memory

PCI Address (hex)

0000 0000

0080 0000

0100 0000

4000 0000

8000 0000

F000 0000

FFFF FFFF

Created by

WBASEx = 3
WMASKx = 0007 F000
TBASEx = 0

WBASEx = 4000 0002
WMASKx = 3FFF 0000
TBASEx = 0

WBASEx = F000 0003
WMASKx = 0FFF 0000
TBASEx = 0

BX-0435-94

PCI local address space

PCI local address space

PCI local address space
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The Window Base Registers indicate the starting PCI address of the win-
dow.  The address must be aligned on a natural boundary for the size of
the window.  For example, the base address for an 8-Mbyte window must
specify an address that is an even multiple of 8 Mbytes.  A Window Base
Register contains an enable bit that enables translation and forwarding for
the corresponding window.  The Window Base Register also contains a 
Scatter/Gather enable bit that controls how the translation is done.

When a PCI address hits in the window, the PCIA generates a translated
address using the Translated Base Register.  If the Scatter/Gather enable
bit is clear, a direct translation is performed using the mapping shown in
Figure 2-10.  The low-order bit of the Translated Base Register is ignored,
and the remaining bits are concatenated with the offset within the window
to form a 40-bit system bus address.

In Figure 2-10 the value of n is controlled by the Window Mask value.  For
example, to create a 1-Mbyte window starting at 0010 0000 and ending at
001F FFFF, the following values would be programmed into the registers
named: 

WMASK value:000F 0000   (n = 19)
WBASE value: 0010 0000
TBASE value: 0000 0010

PCI DMA addresses in this range will be forwarded to main memory,
translated to the CPU address range 00 0080 0000 to 00 008F FFFF. 

If the Scatter/Gather bit is set, the PCI address is interpreted as a page
plus offset address, using an 8-Kbyte page size.  The page portion of the
address is used to index into the address translation map RAM, which pro-
vides a translated page number.  The translation is shown in Figure 2-11. 
If the translation points to map a RAM entry that is marked as invalid, an
error is reported. 

WMASK<31:0> Size of Window
0000 0000 64 kilobytes
0001 0000 128 kilobytes
0003 0000 256 kilobytes
0007 0000 512 kilobytes
000F 0000 1 megabyte
001F 0000 2 megabytes
003F 0000 4 megabytes
007F 0000 8 megabytes
00FF 0000 16 megabytes
01FF 0000 32 megabytes
03FF 0000 64 megabytes
07FF 0000 128 megabytes
0FFF 0000 256 megabytes
1FFF 0000 512 megabytes
3FFF 0000 1 gigabyte
7FFF 0000 2 gigabytes
FFFF 0000 4 gigabytes
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Figure 2-10 Direct DMA Address Translation

Figure 2-11 Mapped DMA Address Translation for DWLPA and DWLPB with TBIT=0

31

0 Translated Base Register 0

Offset from Window Base

0

n+1 n31

0

0

0

39 - n

BXB-0560-94

39 n+1 n

PCI DMA Address

System Memory Address

Byte loc. in page

0

13 1231 0

BXB-0561-93

39

PCI DMA Address

System Memory Address

13 12

Map RAM

Page

Number
Page

Number
Page

Number

Page

Number

Index into MAP

28 27

Unused

Page Number from MAP

Byte loc. in page

<27:1>
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Figure 2-12 Mapped DMA Address Translation for DWLPB with TBIT=1

Byte loc. in page

0

13 1231 0

BXB-0561A-93

39

PCI DMA Address

System Memory Address

13 12

Map RAM

Page

Number
Page

Number
Page

Number

Page

Number

Index into MAP

30 29

Unused

Page Number from MAP

Byte loc. in page

<27:1>
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Chapter 3

Registers

The control and status registers for the PCI adapter are implemented by
three HPCs and are on the PCIA module.  The registers are accessible at
addresses in the range used for PCI configuration space access.  Each of
the three HPC chips has a set of these registers.  In general, the registers
implemented in an HPC control one PCI bus.   Since the registers are all
aligned longwords in a sparse space, the addresses shown below would be
OR’ed with A<6:0>=0011000=0x18 when referenced.
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Table 3-1 PCIA Registers

CPU Addr <33:0> Register Name Mnemonic
3 8000 0000 PCI 0 Bus Control Register CTL0
3 8000 0080 PCI 0 Master Retry Limit MRETRY0
3 8000 0100 PCI 0 General Purpose Register GPR0
3 8000 0180 PCI 0 Error Summary Register ERR0
3 8000 0200 PCI 0 Failing Address Register FADR0
3 8000 0280 PCI 0 Interrupt Mask Register IMASK0
3 8000 0300 PCI 0 Diagnostic Register DIAG0
3 8000 0380 PCI 0 Interrupt Pending Register IPEND0
3 8000 0400 PCI 0 Interrupt in Progress Register IPROG0
3 8000 0480 PCI 0 Window Mask Register A WMASK_A0
3 8000 0500 PCI 0 Window Base Register A WBASE_A0
3 8000 0580 PCI 0 Translated Base Register A TBASE_A0
3 8000 0600 PCI 0 Window Mask Register B WMASK_B0
3 8000 0680 PCI 0 Window Base Register B WBASE_B0
3 8000 0700 PCI 0 Translated Base Register B TBASE_B0
3 8000 0780 PCI 0 Window Mask Register C WMASK_C0
3 8000 0800 PCI 0 Window Base Register C WBASE_C0
3 8000 0880 PCI 0 Translated Base Register C TBASE_C0
3 8000 0900 PCI 0 Error Interrupt Vector Register ERRVEC0
3 8000 0980 -  3 8000 0FFF Reserved
3 8000 1000 -  3 8000 17FF PCI 0 Device Interrupt Vector Registers DEVVEC0
3 8000 1800 -  3 8000 1FFF Reserved
3 8000 2000 PCIA Special Cycle Register SCYCLE
3 8000 2080 PCIA Interrupt Acknowledge Register IACK
3 8000 2100 -  3 801F FFFF Reserved
3 8020 0000 PCI 1 Bus Control Register CTL1
3 8020 0080 PCI 1 Master Retry Limit RETRY1
3 8020 0100 PCI 1 General Purpose Register GPR1
3 8020 0180 PCI 1 Error Summary Register ERR1
3 8020 0200 PCI 1 Failing Address Register FADR1
3 8020 0280 PCI 1 Interrupt Mask Register IMASK1
3 8020 0300 PCI 1 Diagnostic Register DIAG1
3 8020 0380 PCI 1 Interrupt Pending Register IPEND1
3 8020 0400 PCI 1 Interrupt in Progress Register IPROG1
3 8020 0480 PCI 1 Window Mask Register A WMASK_A1
3 8020 0500 PCI 1 Window Base Register A WBASE_A1
3 8020 0580 PCI 1 Translated Base Register  A TBASE_A1
3 8020 0600 PCI 1 Window Mask Register B WMASK_B1
3 8020 0680 PCI 1 Window Base Register B WBASE_B1
3 8020 0700 PCI 1 Translated Base Register B TBASE_B1
3 8020 0780 PCI 1 Window Mask Register C WMASK_C1
3 8020 0800 PCI 1 Window Base Register C  WBASE_C1
3 8020 0880 PCI 1 Translated Base Register C TBASE_C1
3 8020 0900 PCI 1 Error Interrupt Vector Register  ERRVEC1
3 8020 0980 -  3 8020 0FFF Reserved
3 8020 1000 -  3 8020 17FF PCI 1 Device Interrupt Vector Registers DEVVEC1
3 8020 1800 -  3 803F FFFF Reserved
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Table 3-1       PCIA Registers (Continued)

CPU Addr <33:0> Register Name Mnemonic
3 8040 0000 PCI 2 Bus Control Register CTL2
3 8040 0080 PCI 2 Master Retry Limit MRETRY2
3 8040 0100 PCI 2 General Purpose Register GPR2
3 8040 0180 PCI 2 Error Summary Register ERR2
3 8040 0200 PCI 2 Failing Address Register FADR2
3 8040 0280 PCI 2 Interrupt Mask Register IMASK2
3 8040 0300 PCI 2 Diagnostic Register DIAG2
3 8040 0380 PCI 2 Interrupt Pending Register IPEND2
3 8040 0400 PCI 2 Interrupt in Progress Registers IPROG2
3 8040 0480 PCI 2 Window Mask Register A WMASK2
3 8040 0500 PCI 2 Window Base Register A WBASE2_A1
3 8040 0580 PCI 2 Translated Base Register A TBASE2_A1
3 8040 0600 PCI 2 Window Mask Register B WMASK_B1
3 8040 0680 PCI 2 Window Base Register B WBASE_B1
3 8040 0700 PCI 2 Translated Base Register B TBASE_B1
3 8040 0780 PCI 2 Window Mask Register C WMASK_C1
3 8040 0800 PCI 2 Window Base Register C WBASE_C1
3 8040 0880 PCI 2 Translated Base Register C TBASE_C1
3 8040 0900 PCI 2 Error Interrupt Vector  Register ERRVEC2
3 8040 0980 -  3 8040 0FFF Reserved
3 8040 1000 -  3 8040 17FF PCI 2 Device Interrupt Vector Registers DEVVEC2
3 8040 1800 -  3 807F FFFF Reserved
3 8080 0000 PCIA Slot Present Register PRESENT
3 8080 0080 -  3 809F FFFF Aliases of PRESENT
3 80A0 0000 PCIA TBIT Register TBIT
3 80A0 0080 -  3 80BF FFFF Aliases of TBIT
3 80C0 0000 PCIA Module Control Register MCTL
3 80C0 0080 - 3 80DF FFFF Aliases of MCTL
3 80E0 0000 PCIA Information Base Repair Register IBR
3 80E0 0080 -  3 80FF FFFF Aliases of IBR
3 8100 0000 -  3 813F FFFF Address Map RAM, 128 KB (32K entries)

DWLPA: DMA_ADDR<29:28>=00,01,10,11
DWLPB: DMA_ADDR<29:28>=00

3 8140 0000 -  3 817F FFFF Address Map RAM, 128 KB (32K entries)
DWLPA: DMA_ADDR<29:28>=00,01,10,11
(3 8100 0000 area aliased)
DWLPB: DMA_ADDR<29:28>=01

3 8180 0000 -  3 81BF FFFF Address Map RAM, 128 KB (32K entries)
DWLPA: DMA_ADDR<29:28>=00,01,10,11
(3 8100 0000 area aliased)
DWLPB: DMA_ADDR<29:28>=10

3 81C0 0000 -  3 81FF FFFF Address Map RAM, 128 KB (32K entries)
DWLPA: DMA_ADDR<29:28>=00,01,10,11
(3 8100 0000 area aliased)
DWLPB: DMA_ADDR<29:28>=11

3 8200 0000 -  3 83FF FFFF Reserved.  1 MB (byte accesses only)
3 8400 0000 -  3 FFFF FFFF Aliases of 3 8000 0000 to 3 83FF FFFF
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The register descriptions use notations as defined in Table 3-2.

Table 3-2 Register Bit Types

NOTE:  Except as noted in Table 3-1 access to regions marked "Reserved" results in
a PCIA illegal CSR address error.

The hardware initialization values of the bits and bit fields are given next
to the type of the bit.

Type of Bit Description

R/W Read/write.

RO Read only.  Writes ignored.  The value is only changed by
hardware.

WO Write only.  Read value not defined. 

R/W1C Read.  Write one to clear. 

MBZ Fields marked MBZ (Must Be Zero) are currently unused. 
When writing, such fields should be written with zeros. 
When reading, the contents of such fields should be treated
as unpredictable.
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SCYCLE — PCIA Special Cycle Register 

Table 3-3 SCYCLE Register Bit Definitions

Address
Access

3 8000 2000
WO

The SCYCLE register is used to perform a PCI special cycle bus
transaction.  A value written to this register is transmitted on all
three PCI buses using a PCI special cycle.

31 0

BXB-0541-93

PCI Data for Special Cycle

Bit(s) Type Description
<31:0> WO Special Cycle Data.  Data to be transmitted during the special cycle.
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IACK — PCIA Interrupt Acknowledge Register 

Table 3-4 IACK Register Bit Definitions

Address
Access

3  8000 2080
RO

When an EISA interrupt occurs, the IACK register is used to per-
form a PCI Interrupt Acknowledge bus transaction.  Reading this
register causes an IACK transaction on the PCI bus.  The interrupt
vector is returned by the PCI/EISA bridge.

31 0

BXB-0542-93

PCI Data from IACK Cycle

Bit(s) Type Description
<31:0> RO Interrupt Acknowledge Data.  Data received during the Interrupt Ac-

knowledge cycle.
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PRESENT — PCIA Slot Present Register 

Address
Access

3 8080 0000
RO

The PRESENT register indicates the presence and power require-
ments of each PCI module on the PCI as well as the revision level
of the PCIA.  The register allows firmware to implement configura-
tion restrictions.  Operating system software should not use this
register to size the PCI, since the correspondence between devices
and slots is configuration dependent.  To size the PCI space, use
PCI configuration space; do not use this register.

31 28 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 4 3 08 7 6 5 12

MBZ

BXB-0526Ê-93

29

Revision

PCI 2 Slot  3

PCI 2 Slot  2

PCI 2 Slot  1

PCI 2 Slot  0



 PCI 1 Slot  3

PCI 1 Slot  2

PCI 1 Slot  1

PCI 1 Slot  0



 PCI 0 Slot  3

PCI 0 Slot  2

PCI 0 Slot  1

PCI 0 Slot  0





STD  I/O Pres
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Table 3-5 PRESENT Register Bit Definitions

Bit(s) Type Description
<31:19> RO Reserved.  Must be zero.

<28:25> RO Module Revision.  Identifies the revision of the PCIA module.

<24> RO Standard I/O Present.  When set, this bit indicates that a standard I/O
EISA bridge module is in the dedicated slot.  The bit is clear if the module is
not installed.

<23:22> RO Contents of PCI 2 - Slot 3.  These bits indicate if a module is present in the
slot and its power requirements.  The encoding of these fields is based on the
corresponding PCI bus signals:

Field Value PCI Module

00
01
10
11

No module present
25 watt module present
15 watt module present
7.5 watt module present

<21:20> RO Contents of PCI 2 - Slot 2
<19:18> RO Contents of PCI 2 - Slot 1
<17:16> RO Contents of PCI 2 - Slot 0
<15:14> RO Contents of PCI 1 - Slot 3
<13:12> RO Contents of PCI 1 - Slot 2
<11:10> RO Contents of PCI 1 - Slot 1
<9:8> RO Contents of PCI 1 - Slot 0
<7:6> RO Contents of PCI 0 - Slot 3
<5:4> RO Contents of PCI 0 - Slot 2
<3:2> RO Contents of PCI 0 - Slot 1
<1:0> RO Contents of PCI 0 - Slot 0
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TBIT — PCIA TBIT Register 

Table 3-6 TBIT Register Bit Definitions

Address
Access

3 80A0 0000
WO, 0

The TBIT register allows selection of a 128-entry map RAM on the
DWLPB motherboard without an update of the operating system. 
On power-up, TBIT<0>=0 masks out DMA_ADDR<29:28> and
CPU_ADDR<23:22> to the map RAM.   This register reads an alias
of the PRESENT register.

31 01

MBZ

BXB-0524A-96

TBIT

Bit(s) Type Description

<31:1> MBZ Reserved.   Write as zero.  

<0> WO, 0 Enable New Map.  Selects the 512KB  or 128KB map RAM on the
DWLPB module.  Not implemented on the DWLPA.

If zero, a 128KB map RAM is selected on the DWLPB as follows:

DMA_ADDR
<29:28>

CPU Address (128KB Areas)
(TBIT<0>=0)

00,01,10,11
00,01,10,11

00,01,10,11

00,01,10,11

3 8100 0000 -  3 813F FFFF
3 8140 0000 -  3 817F FFFF
(3 8100 0000 area aliased)
3 8180 0000 -  3 81BF FFFF
(3 8100 0000 area aliased)
3 81C0 0000 -  3 8FFF FFFF
(3 8100 0000 area aliased)
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Table 3-6  TBIT Register Bit Definitions (Continued)
Bit(s) Type Description

<0> WO, 0 When one, a 512KB map RAM is selected on the DWLPB as follows:

DMA_ADDR
<29:28>

CPU Address (128KB Areas)
(TBIT<0>=1)

00
01
10
11

3 8100 0000 -  3 813F FFFF
3 8140 0000 -  3 817F FFFF
3 8180 0000 -  3 81BF FFFF
3 81C0 0000 -  3 8FFF FFFF
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MCTL — PCIA Module Control Register 

Table 3-7 MCTL Register Bit Definitions

Address
Access

3 80C0 0000
WO, 0

The MCTL register provides control bits that affect the entire
PCIA module. This register reads an alias of the PRESENT regis-
ter.

31 01

MBZ

BXB-0524-93

Module Self-Test Passed LED

Bit(s) Type Description

<31:1> MBZ Reserved.   Write as zero.  

<0> WO, 0 Module Self-Test Passed LED.  If this bit is set, the module self-test
passed LED is lit.  If this bit is clear, the LED is not lit.
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IBR — PCIA Information Base Repair Register

Table 3-8 IBR Register Bit Definitions

Address
Access

3 80E0 0000
R/W

The IBR register provides access to the serial EEPROM used to
store the module serial number and repair information.  To access
the EEPROM, software updates the IBR register to transfer com-
mand, address, and data to and from the device.  Writing an alter-
nating one and zero pattern to the Serial EEPROM Clock bit imple-
ments the serial data clock used for the EEPROM protocol.  

Command, address, and write data are serially transferred to the
EEPROM by writing to the Transmit Data bit in conjunction with
the Clock bit.  EEPROM read data and responses are read serially
from the Receive Data bit in accordance with the Clock bit.  When
receiving EEPROM read data and responses, the Transmit Data bit
must be set to one.

31 3 012

MBZ

BXB-0525-93

Serial EEPROM Clock

Serial EEPROM Transmit Data

Serial EEPROM Receive Data

Bit(s) Type Description
<31:3> MBZ Reserved.  Write as zero.  When read, returns bits <31:3> of PRESENT.
<2> R/W, 0 Serial EEPROM Clock.  This bit is used to control the clock input to the

serial EEPROM.  When this bit is set, the EEPROM serial clock input is
forced high.  When this bit is cleared, the serial clock input is forced low.

<1> R/W, 1 Serial EEPROM Transmit Data.  This bit is used to control the data in-
put line to the serial EEPROM.  When this bit is set, the line is asserted
high; when the bit is clear, the line is asserted low.

<0> RO, 1 Serial EEPROM Receive Data.  This bit is used to read the value of the
EEPROM serial data line.  Bit <1> must be set in order to receive data on
this line.
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CTLx — PCIx Bus Control Register

Table 3-9 CTLx Register Bit Definitions

Address
Access

3 80x0 0000
R/W

The CTLx register contains read/write control bits for one HPC
and its corresponding PCI bus.  There are three such registers, one
for each PCI.  Each must be programmed identically in all HPCs on
the same hose before access to PCI devices is attempted.  

31 27 26 25 24 23 22 21 20 19 18 14 13 9 4 3 08 7 12

MBZ

BXB-0528-96

Map RAM Sz
Up Hose Buffers


MRM Prefetch Size

MRM Enable


MRM Arb

�PCI	 Cut Through Threshold

PCI Reset


Memory Block Size

Configuration Cycle Type

HAE Disable

Memory Space HAE


I/O Space HAE

PCI Cut Through Enable

29 28

PCI Arb Ctrl

Bit(s) Type Description
<31:29> RO, 0 Reserved.  Must be zero.
<28:27> R/W, 0 PCI Arbitration Control.  These bits are initialized to zero and select the

round robin mode for arbitration.  These bits must be written as zeros. 
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Table 3-9    CTLx Register Bit Definitions (Continued)

Bit(s) Type Description
<26:25> R/W, 0 Scatter/Gather Map RAM Size.  These bits must be set to indicate the

size of the scatter/gather map RAM attached to the PCIA.  The possible val-
ues are:

CTLx<26:25> Map RAM Size

00
01
10
11

128 KB (32K entries – DWLPA)
256 KB (64K entries)
Disable S/G cache in HPC
512 KB (128K entries – DWLPB)

<24:23> R/W, 01 I/O Port Up Hose Buffers.  These bits must be programmed to indicate the
number of buffers available for Up Hose packets in the I/O port at the TLSB
end of the hose.  The possible values are:

This field defaults to 01, which is safe for all implementations.  Software
must  program this field to 11 (3 buffers) to obtain full PCIA performance.

CTLx<26:25> Up Hose Buffers

00
01
10
11

4 buffers
1 buffer
2 buffers
3 buffers (KFTHA and KFTIA)

<22> R/W, 0 Memory Read Multiple Prefetch Size.  This bit controls the number of
cache blocks the PCIA prefetches in response to a DMA memory read multi-
ple transaction on the PCI.  If set, the PCIA fetches 4 cache blocks in addi-
tion to the originally requested block.  If clear, the PCIA fetches two addi-
tional blocks.  This bit is ignored if bit <21> is clear.

<21> R/W, 0 Memory Read Multiple Enable.  When this bit is set, the PCIA responds
to a PCI memory read multiple transaction by prefetching additional cache
blocks of data from main memory.  If this bit is clear, a memory read multi-
ple transaction is handled the same as a PCI memory read. 

By default, memory read multiple support is disabled.  Enabling it increases
throughput for the requesting device, at the cost of increased latency for
other devices on the bus.  Normally, software should enable this function by
setting this bit.

<20> R/W, 0 Memory Read Multiple Arbitration.  When this bit is set, an HPC trans-
mits all Up Hose packets associated with a memory read multiple transac-
tion after successful arbitration for the PCIA UP BUS.  Both the initial read
and all prefetch packets are transmitted.  If this bit is clear, an HPC trans-
mits only one Up Hose packet per successful arbitration.  If bit <21> is clear,
this bit is ignored, and only one Up Hose packet is transmitted per arbitra-
tion.
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Table 3-9    CTLx Register Bit Definitions (Continued)

Bit(s) Type Description
<19> R/W, 0 Hardware Address Extension Disable.  This bit disables the use of the

Memory Space and I/O Space Hardware Address Extensions.  When this bit
is zero, the PCIA uses the HAE values to map sparse space addresses. When
this bit is one, the PCIA ignores the HAE values and uses the addresses di-
rectly as passed in the hose packets.  This allows the system bus interface to
implement a different size sparse mapping, by providing its own HAE
registers.

<18:14> R/W, 0 Memory Space Hardware Address Extension.  This field provides an ex-
tension for sparse space mapping of PCI memory space.  When CPU address
bits <31:29> are non-zero, this field supplies PCI Address bits <31:27>.

<13:9> R/W, 0 I/O Space Hardware Address Extension.  This field provides an exten-
sion for the sparse mapping of  PCI I/O space.  When CPU address bits
<31:29> are non-zero, this field supplies PCI address bits <31:27>. 

<8> R/W, 0 PCI Cut-through Enable.  Setting this bit enables cut through of DMA
read data transfers.  If this bit is clear, DMA read transfers are buffered in
the PCIA before it is transmitted on the PCI.  Software should set this bit for
normal operation.

<7:4> R/W, 0 PCI Cut-through Threshold.  This field sets the number of longwords of
DMA read data the PCIA will buffer before beginning to transmit data on
the PCI.  This only affects transfers not aligned on 64-byte boundaries.  Soft-
ware should initialize this field to zero for normal operation.

<3> WO, 0 PCI Reset.  When this bit is set, the PCIA asserts PCI_RESET_L to reset
the PCI bus.  The signal is deasserted when the bit is cleared.  Software
must time the assertion of this bit to assert reset for at least 1 ms.  

<2> R/W, 0 Memory Block Size.  This bit selects the maximum size of a DMA read or
write transfer.  When clear, the PCIA allows DMA transfers of up to 64 bytes
before disconnecting.  When set, the PCIA limits DMA transfers to a maxi-
mum of 32 bytes.  

<1:0> R/W, 0 Configuration Cycle Type.  These bits select the type of PCI configuration
cycle to be performed on accesses to configuration space.  They supply bits
<1:0> of the PCI address.   Legal values are:

00 - PCI Type 0 Configuration Cycle 
01 - PCI Type 1 Configuration Cycle
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MRETRYx — PCIx Master Retry Limit Register

Table 3-10 MRETRYx Register Bit Definitions 

Address
Access

3 80x0 0000
R/W

The MRETRY register controls the number of times the PCIA will
attempt to restart a burst transfer that has been disconnected by
the target.  If this count is exceeded, the PCIA reports an error. 
Software must initialize this field to a value of  400000 (hex) before
performing any PCI accesses.  This value corresponds to about 1
second of retries.

31 24 23 0

MBZ Master Retry Limit

BXB-0529-93

Bit(s) Type Description
<31:24> MBZ Reserved.  Must be zero.
<23:0> R/W Master Retry Limit.  This value specifies the number of times the PCIA

will attempt to restart a burst transfer that has been disconnected by the tar-
get.



       Registers   3-17

GPRx — PCIx General Purpose Register 

Table 3-11 GPRx Register Bit Definitions

Address
Access

3 80x0 0100
R/W

The GPR register is available for diagnostics and scratch use. 
Reads and writes to this register have no effect on the PCI bus.

31 0

Read/Write 32-bit value

BX-0461-94

Bit(s) Type Description

<31:0> R/W GPR Contents.  This register can be read or written with any 32-bit value. 
There is no other effect on the HPC or the PCI bus.
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ERRx — PCIx Error Summary Register 

Address
Access

3 80x0 0180
R/W

When a nonfatal error is detected, one or more bits in this register
are set.  An error interrupt is generated only when the first error
bit is set in this register.  No further error interrupts are generated
until all pending errors are handled and the error bits cleared. 

When an error interrupt is received, take the following steps
1. Read the ERRx register to determine the cause of the interrupt.
2. Perform appropriate logging or recovery for the errors indicated
    in the register.
3. Write back the contents of the ERRx register to clear the inter-      
    rupts. 
4. Read the ERRx register again and if bits are set, go to step 2.
5. Return from the interrupt. 
Fatal errors are not reported in this register since PCIA registers
are not accessible following a fatal error.

31 19 18 0

MBZ

BX-0462-94

DMA Map RAM Parity Error
DMA Read Return Parity/Length Error
PCI Disconnected Master Abort Error

CSR Parity Error

PCI SERR_L Error
Incremental Latency Exceeded

PCIA Map RAM Parity Error
PCIA Illegal CSR Address

PCI Nonexistent Address Error
PCI Target Disconnect Error

PCI Target Abort Error
PCI Write Parity Error
PCI Data Parity Error

PCI Address Parity Error
DMA Map RAM Invalid Entry Error

CSR Overrun Error
Mailbox Parity Error

Mailbox Illegal Length Error
Error Summary

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
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Table 3-12 ERRx Register Bit Definitions

Bit(s) Type Description
<31:19> MBZ Reserved.  Must be zero.
<18> R/W1C, 0 PCI SERR_L Error.  This bit is set if any device on the PCI asserts the

PCI SERR_L signal.  This signal is asserted when a PCI device detects an
address parity error or other serious error condition.  

<17> R/W1C, 0 Incremental Latency Exceeded.  This bit is set if the HPC, as a PCI bus
target, delays more than 8 PCI cycle times between supplying contiguous
longwords of a PCI burst transaction.   This bit is a performance monitor-
ing aid and does not indicate an error condition.  The PCIA completes the
transaction normally, and no interrupt is generated.

<16> R/W1C, 0 PCIA Map RAM Parity Error.  A CPU-initiated read of a scatter/gather
map RAM location received data with a parity error.  This bit is set in
ERR0 only.

<15> R/W1C, 0 PCIA Illegal CSR Address.  A command packet was received referencing
a reserved address used for HPC CSRs.  This bit will only be set in register
ERR0.

<14> R/W1C, 0 PCI Nonexistent Address Error.  No PCI device responded when the
HPC issued a valid address cycle.  This bit will only be set in register
ERR0.

<13> R/W1C, 0 PCI Target Disconnect Error.  A PCI target exceeded the limit of target
disconnects specified in the MRETRYx register.

<12> R/W1C, 0 PCI Target Abort Error.  A PCI target issued a target abort to the HPC.

<11> R/W1C, 0 PCI Write Parity Error.  The HPC detected a parity error during a PCI
DMA write data cycle.  The PCIA was the target of the PCI operation.  The
FADRx register is valid when this bit is set.

<10> R/W1C, 0 PCI Data Parity Error.  The HPC detected a parity error while master of
a PCI read data cycle or detected the assertion of the PCI PERR_L signal
during a PCI write data cycle.

<9> R/W1C, 0 PCI Address Parity Error.  The HPC, while a target, detected a parity
error on the PCI during an address phase.  If other devices detect the error,
this bit may be set in conjunction with the PCI SERR_L Error bit <18>. 
The HPC does not assert PCI SERR_L in response to this error.

<8> R/W1C, 0 DMA Map RAM Invalid Entry Error.  During a DMA operation, the
HPC accessed a scatter/gather map RAM entry which did not have its valid
bit set.  The FADRx register is valid when this bit is set.
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Table 3-12  ERRx Register Bit Definitions (Continued)

Bit(s) Type Description
<7> R/W1C, 0 DMA Map RAM Parity Error.  During a DMA operation, the address

translation data received from the scatter/gather map RAM contained a
parity error.  The FADRx register is valid when this bit is set.

<6> R/W1C, 0 DMA Read Return Data Parity/Length Error.  A DMA read return
packet was received down the hose with bad parity on one or more
longwords or a packet was received that contained fewer than the expected
number of longwords.  The FADRx register is valid when this bit is set.

<5> R/W1C, 0 PCI Disconnected Master Abort Error.  The HPC detected a master
abort on a PCI bus during a CSR window or mailbox transaction, and the
transaction was previously claimed and disconnected by a node on the PCI
bus.

<4> R/W1C, 0 CSR Parity Error.  A CSR command packet was received down the hose
with bad parity on one or more longwords.

<3> R/W1C, 0 CSR Overrun Error.  A CSR command packet was received down the
hose and contained too many longwords.

<2> R/W1C, 0 Mailbox Parity Error.  A Mailbox Command packet was received down
the hose with bad parity on one or more longwords.

<1> R/W1C, 0 Mailbox Illegal Length Error.  A Mailbox Command packet was received
down the hose and contained the wrong number of longwords.

<0> R/W1C, 0 Error Summary.  This bit is set if any of the other bits are set in this reg-
ister.
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FADRx — PCIx Failing Address Register 

Table 3-13 FADRx Register Bit Definitions

Address
Access

3 80x0 0200
RO

When an error occurs during a DMA operation, this register is
latched with the address from the corresponding PCI address
phase.  The error that caused the register to latch is recorded in
the ERRx register. 

31 012

Failing PCI DMA Address 0

BXB-0532-93

DMA Transfer Direction

Bit(s) Type Description

<31:2> RO, 0 Failing PCI DMA Address.  When a DMA error occurs, this register
latches the address value from the corresponding PCI address phase.  When
the ERRx register does not indicate a DMA error, the contents of this regis-
ter are unpredictable.  Note that PCI memory addresses are always long-
word aligned.

<1> RO, 0 Reserved. 

<0> RO, 0 DMA Transfer Direction.  When this register is latched, this bit is set to
zero if the DMA transfer was a read from memory or set to one if the DMA
transfer was a write to memory.
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IMASKx — PCIx Interrupt Mask Register 

Address
Access

3 80x0 0280
R/W

The IMASKx register selects which PCI interrupt sources can gen-
erate interrupt requests to the CPU.  The HPC has four interrupt
inputs from each PCI slot.  The register also sets the interrupt pri-
ority level of error interrupts generated by the PCIA and device in-
terrupts generated by PCI devices.  All PCI devices interrupt at the
same IPL.  The error and device IPL fields must be programmed
the same in each HPC.

Although some HPC interrupt inputs are also used for the PCI de-
vices on the standard I/O module, no conflict exists because the af-
fected slots cannot be populated when the standard I/O module is
installed.

31 0

MBZ

BXB-0533-93

Error Interrupt Enable


Slot 0 INTD Enable

Slot 0 INTC Enable

Slot 0 INTB Enable

Slot 0 INTA Enable

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Slot 1 INTD Enable

Slot 1 INTC Enable

Slot 1 INTB Enable

Slot 1 INTA Enable

Slot 2 INTD Enable

Slot 2 INTC Enable

Slot 2 INTB Enable

Slot 2 INTA Enable

Slot 3 INTD Enable

Slot 3 INTC Enable

Slot 3 INTB Enable

Slot 3 INTA Enable

21 2025 24

Device IPL
Error IPL
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Table 3-14 IMASKx Register Bit Definitions

Bit(s) Type Description

<31:25> MBZ Reserved.  Must be zero.

<24:21> R/W, 0 Error Interrupt Priority Level.  This field selects the interrupt pri-
ority level to be used for interrupts requested by the HPC in response
to errors.  This 4-bit field uses the following encoding:

Software must initialize this field so that only one bit is set.  Setting
multiple bits may cause spurious interrupts to be reported.  Software
must set the Device Interrupt Priority Level and the Error Interrupt
Priority Level to different values to ensure that interrupts are not lost
by the I/O port.  It is recommended that the error interrupt priority be
programmed to IPL 17.

IMASKx<24:21> Priority Level

1000
0100
0010
0001

 IPL 17
 IPL 16
 IPL 15
 IPL 14

<20:17> R/W, 0 Device Interrupt Priority Level.  This field selects the interrupt
priority level to be used for interrupts requested by all PCI devices. 
This 4-bit field uses the following encoding:

Software must initialize this field so that one bit is set.   Setting mul-
tiple bits may cause spurious interrupts to be reported.   Software
must set the Device Interrupt Priority Level and the Error Interrupt
Priority Level to different values to ensure that interrupts are not lost
by the I/O port.

IMASKx<20:17> Priority Level

1000
0100
0010
0001

 IPL 17
 IPL 16
 IPL 15
 IPL 14

<16> R/W, 0 Error Interrupt Enable.  Enables recognition of interrupt requests
generated by the HPC in response to error conditions.  The cause of
the error interrupt is reported in the ERRx register.

<15> R/W, 0 Slot 3 - Interrupt D Enable.  Enables recognition of interrupt re-
quests from PCI interrupt line D in this slot.

<14> R/W, 0 Slot 3 - Interrupt C Enable.  Enables recognition of interrupt re-
quests from PCI interrupt line C in this slot.

<13> R/W, 0 Slot  3 - Interrupt B Enable.  Enables recognition of interrupt re-
quests from PCI interrupt line B in this slot.
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Table  3-14  IMASKx Register Bit Definitions (Continued)

Bit(s) Type Description
<12> R/W, 0 Slot 3 - Interrupt A Enable.  Enables recognition of interrupt requests

from PCI interrupt line A in this slot.
<11> R/W, 0 Slot 2 - Interrupt D Enable.  Enables recognition of interrupt requests

from PCI interrupt line D in this slot.
<10> R/W, 0 Slot 2 - Interrupt C Enable.  Enables recognition of interrupt requests

from PCI interrupt line C in this slot.
<9> R/W, 0 Slot 2 - Interrupt B Enable.  Enables recognition of interrupt requests

from PCI interrupt line B in this slot.
<8> R/W, 0 Slot 2 - Interrupt A Enable.  Enables recognition of interrupt requests

from PCI interrupt line A in this slot.
<7> R/W, 0 Slot 1 - Interrupt D Enable.  Enables recognition of interrupt requests

from PCI interrupt line D in this slot.
<6> R/W, 0 Slot 1 - Interrupt C Enable.  Enables recognition of interrupt requests

from PCI interrupt line C in this slot.
<5> R/W, 0 Slot 1 - Interrupt B Enable.  Enables recognition of interrupt requests

from PCI interrupt line B in this slot or from the standard I/O module’s
SCSI device.

<4> R/W, 0 Slot 1 - Interrupt A Enable.  Enables recognition of interrupt requests
from PCI interrupt line A in this slot or from the standard I/O module’s 
Ethernet device.

<3> R/W, 0 Slot 0 - Interrupt D Enable.  Enables recognition of interrupt requests
from PCI interrupt line D in this slot.

<2> R/W, 0 Slot 0 - Interrupt C Enable.  Enables recognition of interrupt requests
from PCI interrupt line C in this slot.

<1> R/W, 0 Slot 0 - Interrupt B Enable.  Enables recognition of interrupt requests
from PCI interrupt line B in this slot or from the standard I/O module’s
EISA interrupt controllers.

<0> R/W, 0 Slot 0 - Interrupt A Enable.  Enables recognition of interrupt requests
from PCI interrupt line A in this slot, or from the EISA Bus Bridge Non-
Maskable Interrupt.
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DIAGx — PCIx Diagnostic Register 

Table 3-15 DIAGx Register Bit Definitions

Address
Access

3 80x0 0300
R/W

The DIAGx register contains control bits that alter the normal be-
havior of the PCIA for test purposes.  The register also contains
control bits for the special feature that supports Memory Channel
on the PCI.  This register should not be modified during normal
operation.

31 3 08 7 6 12

MBZ

BXB-0534-93

Invert Down Hose Parity

HPC Gate Array Revision


Up Hose Force Bad Parity

PCI Force Bad Parity

Bit(s) Type Description
<31:8> MBZ Reserved.  Must be zero.
<7> R/W, 0 Invert Down Hose Parity.  When set, the HPC inverts its parity test on

the fourth cycle of a mailbox write or CSR write packet.  The bit is automati-
cally cleared once a parity error has been detected, thus restoring access to
the HPC registers.

<6:3> R/W, 0 HPC Gate Array Revision.  This field contains the revision of the HPC
gate array.  It is 0 at release.

<2> R/W, 0 Up Hose Force Bad Parity.  When this bit is set, the HPC forces bad par-
ity on data cycles on the Up Hose bus.  When the bit is clear, correct parity
will be generated.
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Table  3-15 DIAGx Register Bit Definitions (Continued)

Bit(s) Type Description
<1:0> R/W, 0 PCI Force Bad Parity.  This field controls the HPC’s generation of parity

when driving the PCI.  The field is encoded as follows:

DIAG<1:0> Action

00
01
10
11

Generate correct parity
Force bad parity on address phases
Force bad parity on data phases
Undefined



       Registers   3-27

IPENDx — PCIx Interrupt Pending Register 

Address
Access

3 80x0 0380
RO

The IPENDx register indicates the presence of interrupt requests
that have not yet resulted in INTR/IDENT packets being sent up
the hose for the DWLPB.  When written, all interrupt requests (ex-
cept the one indicated in the IPROGx) are resampled.  A write to
this register of any value must be performed at the end of every in-
terrupt service to detect any devices that are requesting a new in-
terrupt.  This register is intended for diagnostic purposes.  It is
possible for operating system software to read this register and an-
ticipate an interrupt, but the interrupt will still be delivered. 
Some of the interrupt lines are also used for PCI devices on the
standard I/O module, as described for the IMASKx register. 

DWLPA supports only transition sensitive  interrupts for device
drivers that do not recheck device interrupt status.  DWLPB sup-
ports level sensitive interrupts for drivers that do not recheck with
PALcode by writing to this register.

31 0

MBZ

BXB-0535-93

Error Interrupt Pending


Slot 0 INTD Pending

Slot 0 INTC Pending

Slot 0 INTB Pending

Slot 0 INTA Pending

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Slot 1 INTD Pending

Slot 1 INTC Pending

Slot 1 INTB Pending

Slot 1 INTA Pending

Slot 2 INTD Pending

Slot 2 INTC Pending

Slot 2 INTB Pending

Slot 2 INTA Pending

Slot 3 INTD Pending

Slot 3 INTC Pending

Slot 3 INTB Pending

Slot 3 INTA Pending
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Table 3-16 IPENDx Register Bit Definitions

Bit(s) Type Description
<31:17> MBZ Reserved.  Must be zero. 
<16> RO, 0 Error Interrupt Pending.  An error interrupt is pending from this HPC.
<15> RO, 0 Slot 3 Interrupt D Pending.  An interrupt request on the INTD line is

pending from this slot or not used when Standard I/O module is present.
<14> RO, 0 Slot 3 Interrupt C Pending.  An interrupt request on the INTC line is

pending from this slot or not used when standard I/O module is present.
<13> RO, 0 Slot 3 Interrupt B Pending.  An interrupt request on the INTB line is

pending from this slot or not used when standard I/O module is present.
<12> RO, 0 Slot 3 Interrupt A Pending.  An interrupt request on the INTA line is

pending from this slot or not used when standard I/O module is present.
<11> RO, 0 Slot 2 Interrupt D Pending.  An interrupt request on the INTD line is

pending from this slot or not used when standard I/O module is present.
<10> RO, 0 Slot 2 Interrupt C Pending.  An interrupt request on the INTC line is

pending from this slot or not used when standard I/O module is present.
<9> RO, 0 Slot 2 Interrupt B Pending.  An interrupt request on the INTB line is

pending from this slot or not used when standard I/O module is present.
<8> RO, 0 Slot 2 Interrupt A Pending.  An interrupt request on the INTA line is

pending from this slot or not used when standard I/O module is present.
<7> RO, 0 Slot 1 Interrupt D Pending.  An interrupt request on the INTD line is

pending from this slot or not used when standard I/O module is present.
<6> RO, 0 Slot 1 Interrupt C Pending.  An interrupt request on the INTC line is

pending from this slot or not used when standard I/O module is present.
<5> RO, 0 Slot 1 Interrupt B Pending.  An interrupt request on the INTB line is

pending from this slot or standard I/O SCSI interrupt pending when standard
I/O module is present. 

<4> RO, 0 Slot 1 Interrupt A Pending.  An interrupt request on the INTA line is
pending from this slot or standard I/O Ethernet interrupt pending when stan-
dard I/O module is present. 

<3> RO, 0 Slot 0 Interrupt D Pending.  An interrupt request on the INTD line is
pending from this slot or not used when standard I/O module is present.

<2> RO, 0 Slot 0 Interrupt C Pending.  An interrupt request on the INTC line is
pending from this slot or not used when standard I/O module is present.

<1> RO, 0 Slot 0 Interrupt B Pending.  An interrupt request on the INTB line is
pending from this slot  or standard I/O EISA bridge interrupt pending when
standard I/O module is present. 

<0> RO, 0 Slot 0 Interrupt A Pending.  An interrupt request on the INTA line is
pending from this slot or standard I/O.   Non-Maskable Interrupt pending
when standard I/O module is present.
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IPROGx — PCIx Interrupt in Progress Register 

Address
Access

3 80x0 0400
RO

The IPROGx register indicates current interrupt request(s) that
are outstanding between the DWLPA/DWLPB and the KFTIA/
KFTHA.  Only one device interrupt and one error interrupt can be
outstanding.  This register is intended for diagnostic purposes.  
Some of the interrupt IDs are used by PCI devices on the standard
I/O module, as described for the IMASKx register.

31 4 3 06 5

MBZ

BXB-0536-93

Error Interrupt in Progress
Device Interrupt in Progress

Device Interrupt ID
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Table 3-17 IPROGx Register Bit Definitions

Bit(S) Type Description
<31:6> MBZ Reserved.  Must be zero.
<5> RO, 0 Error Interrupt in Progress.  This bit is set when the HPC sends an error

interrupt request up the hose.  It is cleared when the corresponding interrupt
status packet is received.

<4> RO, 0 Device Interrupt in Progress.  This bit is set when the HPC sends a device
interrupt request up the hose.  It is cleared when the corresponding interrupt
status packet is received.  When this bit is set, the contents of bits <3:0> are
valid.

<3:0> RO, 0 Device Interrupt ID.  While a PCI device interrupt is in progress, this field
indicates which PCI device initiated the interrupt.  The contents of this field
is not valid unless bit <4> is set.  The field is encoded as follows:

Bits<3:0> Interrupt Source

1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000

Slot 3 INTD
Slot 3 INTC
Slot 3 INTB
Slot 3 INTA
Slot 2 INTD
Slot 2 INTC
Slot 2 INTB
Slot 2 INTA
Slot 1 INTD
Slot 1 INTC
Slot 1 INTB
Slot 1 INTA
Slot 0 INTD
Slot 0 INTC
Slot 0 INTB
Slot 0 INTA
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WMASK_xx — PCIx Window Mask Registers 

Table 3-18 WMASK_xx Register Bit Definitions

Address
Access

3 80x0 0480
R/W

Each Window Mask Register controls the size of a region of PCI
memory space addresses that are translated and forwarded to the
system memory bus during a DMA operation.  The window size
varies from 64 kilobytes to 4 gigabytes.  Each of the three HPC
mask registers (WMASK_Ax, WMASK_Bx, WMASK_Cx) defines a
DMA region.  At power-up, the contents are undefined.  Software
should initialize this register before enabling the window with the
corresponding Window Base Register.

31 016 15

Window Mask Bits

BXB-0537-93

MBZ

Bit(s) Type Description
<31:16> R/W Window Mask.  Specifies the window size as follows: 

WMASK<31:16> Window Size WMASK<31:16> Window Size

0000
0001
0003
0007
000F
001F
003F
007F
00FF

64 Kbytes
128 Kbytes
256 Kbytes
512 Kbytes
1 Mbyte
2 Mbytes
4 Mbytes
8 Mbytes
16 Mbytes

01FF
03FF
07FF
0FFF
1FFF
3FFF
7FFF
FFFF

32 Mbytes
64 Mbytes
128 Mbytes
256 Mbytes
512 Mbytes
1 Gbyte
2 Gbytes
4 Gbytes

<15:0> MBZ Reserved.  Must be zero.
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WBASE_xx — PCIx Window Base Registers 

Table 3-19 WBASE_xx Register Bit Definitions

Address
Access

3 80x0 0500
R/W

Each Window Base Register sets the base of a range of PCI memory
space addresses that are translated and forwarded to the system
memory bus.  The size of the window is set with the Window Mask
Register.  The window base address must be aligned on an even
multiple of the window size.  The HPC contains three base regis-
ters (WBASE_Ax, WBASE_Bx, WBASE_Cx), each of which defines
the base of a DMA region.

Software must initialize the base address before enabling the win-
dow.  Software must also ensure that the range of addresses in the
window does not overlap with any memory space addresses recog-
nized by PCI devices on the bus.

31 016 15

Window Base Address

BXB-0538-93

MBZ

Window Enable

Scatter/Gather Enable

12

Bit(s) Type Description
<31:16> R/W Window Base Address.  This field specifies the upper 16 bits of the PCI

base address of the window.
<15:2> MBZ Reserved.  Must be zero.
<1> R/W, 0 Window Enable.  When this bit is set, PCI memory references that hit in

the window are recognized.  When this bit is clear, the PCIA does not re-
spond to addresses in this window.

<0> R/W, 0 Scatter/Gather Enable.  When this bit is set, PCI memory references that
hit in the window are translated through the PCIA address translation
map.  When this bit is clear, PCI memory references that hit in the window
are translated directly using the Translated Base Register.
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TBASE_xx — PCIx  Translated Base Registers 

Table 3-20 TBASE_xx Register Bit Definitions

Address
Access

3 80x0 0580
R/W

The Translated Base Registers provide the system memory base
address of the window from PCI memory space.  This register is
only used for direct translations, as selected by the Scatter/Gather
Enable bit in the Window Base Register.  When a PCI address is
translated, the offset of the PCI address from the PCI window base
address is concatenated to the value in this register to obtain the
system memory address.

The HPC contains three base registers (TBASE_Ax, TBASE_Bx,
TBASE_Cx) corresponding to the three possible DMA windows.

Software must initialize this register before enabling the window. 
The base address must be aligned on an even multiple of the win-
dow size.

31 025 24

Translated Base Address

BXB-0539-93

MBZ

1

0

Bit(s) Type Description

<31:25> MBZ Reserved.  Must be zero.

<24:1> R/W Translated Base Address.  This field supplies some of the bits of the sys-
tem memory base address corresponding to the window from PCI address
space.  The exact range of bits from <39:16> is determined by the
WMASKxx register.

<0> MBZ Reserved.  Must be zero.
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ERRVEC - PCIx Error Interrupt Vector Registers

Table 3-21 ERRVEC Register Bit Definitions

The Error Interrupt Vector Register in each HPC is at offset 900 (hex). 
Each HPC has a block of Device Interrupt Vector Registers, which corre-

Address
Access

3 80x0 0900 — 3 80x0 17FF
R/W

Each HPC contains an Error Interrupt Vector Register (ERRVECx)
and an array of 16 PCI Device Interrupt Vector Registers
(DEVVECx).  All registers have the same format.  These registers
provide the vector information sent to the CPU when either a PCI
interrupt or a PCIA error interrupt occurs.  On power-up, the con-
tents of these registers is not defined.  They must be initialized by
software before the corresponding interrupt is enabled.

31 016 15

BXB-0540-93

Interrupt VectorMBZ

Bit(s) Type Description

<31:16> MBZ Reserved.  Must be zero.

<15:0> R/W Interrupt Vector.  The interrupt vector to be sent to the CPU.  For
OpenVMS, PALcode must be able to identify which HPC generated the in-
terrupt.  The interrupt vector consists of: 

For Digital UNIX, this is the value to be supplied in register "a1" when the
"entInt" system entry point is called.

Bits Definition

<15:4>

<3:2>

<1:0>

The byte offset of the entry in the SCB  used to dispatch the     
interrupt.

The KFTIA or KFTHA hose port used (0-3).

00 =  not a PCI interrupt
01 =  HPC 0
10 =  HPC 1
11 =  HPC 2
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sponds to the interrupt sources on the associated PCI bus.  Within each
block, the registers are assigned as shown in Table 3-22.

Table 3-22 PCI Interrupt Vector Offsets

Offset Without Standard I/O          With Standard I/O
1000 Vector for Slot 0 INTA Vector for Non-Maskable Int.
1080 Vector for Slot 0 INTB Vector for EISA bridge
1100 Vector for Slot 0 INTC Not used
1180 Vector for Slot 0 INTD Not used
1200 Vector for Slot 1 INTA Vector for Ethernet
1280 Vector for Slot 1 INTB Vector for SCSI
1300 Vector for Slot 1 INTC Not used
1380 Vector for Slot 1 INTD Not used
1400 Vector for Slot 2 INTA Not used
1480 Vector for Slot 2 INTB Not used
1500 Vector for Slot 2 INTC Not used
1580 Vector for Slot 2 INTD Not used
1600 Vector for Slot 3 INTA Not used
1680 Vector for Slot 3 INTB Not used
1700 Vector for Slot 3 INTC Not used
1780 Vector for Slot 3 INTD Not used
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Scatter/Gather RAM Map Entry Format

Table 3-23 Scatter/Gather Map Entry Format 

Address
Access

3 8100 0000–3 813F FFFF
R/W

For address translation, the DWLPA implements a 32K entry map 
and the DWLPB implements a 128K entry map.  Each map entry is
one longword in length and longword aligned.  The register con-
tents are undefined on power-up and must be initialized by soft-
ware before use.  

31 01

�Physical Page Number

BXB-0527-93

Valid bit

MBZ

2728

Bit(s) Type Description

<31:28> MBZ Reserved.  Must be zero.

<27:1> R/W Physical Page Number.  This field provides the physical page translation
to be supplied when this entry is referenced.  This field provides bits
<39:13> of the resulting physical address.

<0> R/W Valid.  When this bit is set, the entry contains a valid address translation. 
If the bit is clear and an attempt to use the entry occurs, an error is re-
ported.
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Chapter 4 

 Functional Description

4.1  PCI Interface

The PCI interface allows for communication between the CPU and devices
on the PCI.  Both the CPU and devices on the PCI can initiate communica-
tion and cause the PCI bus to cycle.  

4.1.1  CPU-Initiated PCI Cycles

CPU-initiated PCI cycles are transactions originating from the CPU.

4.1.1.1 CPU-Initiated PCI Commands

All CPU-initiated PCI commands are received by the PCIA in Down Hose
command packets.  The HPCs decode the command packet and operate as
a PCI bus master while executing the command.  As a PCI master, the
HPC supports a subset of the full PCI command set.  Table 4-1 shows the
commands supported by the HPC as a PCI master.

Table 4-1 Supported PCI Commands

A PCI interrupt acknowledge cycle is generated by reading an HPC’s IACK
CSR.  A read to this register causes the HPC to issue the interrupt ac-
knowledge cycle on to the PCI bus.  To date, the only PCI device capable of
receiving this command is the PCI to EISA bridge.  The bridge returns an
interrupt vector that is then sent over the Up Hose as read return data by
the HPC.

PCI Command C_BE<3:0>
Interrupt Acknowledge 0000
Special Cycle 0001
I/O Read 0010
I/O Write 0011
Memory Read 0110
Memory Write 0111
Configuration Read 1010
Configuration Write 1011
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A PCI special cycle is generated by writing data to the PCIA SCYCLE
CSR.  Any write to this register causes the unmodified write data to be
broadcast to all three PCI buses with a command code of 0001.  Accesses to
PCI memory, I/O, and configuration spaces are specified through command
and address bits in the Down Hose command packets.

All other PCI commands generate a read or write on the PCI bus at an ad-
dress specified by the CPU.

The type of read or write command depends on the region of PCI address
space being accessed.

4.1.1.2 PCI Addressing

PCI address space consists of PCI memory space, PCI I/O space, and PCI
configuration space.  PCI memory space is implemented as one 32-bit con-
tiguous address space across all three PCI buses.  Similarly, PCI I/O space
is implemented as one 32-bit contiguous address space across all three PCI
buses.  All accesses to PCI memory and I/O space are sent to all three PCI
buses.  PCI configuration space is logically contiguous across all three PCI
buses, but accesses may be physically sent to only one PCI bus.  A type 0
access to configuration space is decoded by the HPCs and is sent to only
one of the PCI buses.  A type 1 access to configuration space is decoded by
the HPCs and is sent to all three PCI buses.

PCI memory space can be accessed in two ways.  The first method accesses
memory space as a dense memory space.  Accesses to this space are un-
masked longword transfers.  No provision for byte addressing is made with
this type of access although masking of entire longwords of data can be
done.  Byte addressing of PCI memory space is provided by accessing it as
a sparse address space.  Access to sparse memory space can be byte, word,
tribyte, longword, or quadword in length.

PCI I/O and configuration space can only be accessed as a sparse address
space.  The HPCs use the packet type and the space type bits of the Down
Hose command packet to determine the type of PCI address space being
accessed.

During sparse space accesses, the PCIA only receives bits <26:0> of the
PCI address in the Down Hose command packet.  Each HPC obtains bits
<31:27> from one of the two HAE<4:0> fields (Hardware Address Exten-
sion) of its CTL CSR.   The memory HAE is used during PCI sparse mem-
ory space accesses and the I/O HAE is used during PCI sparse I/O space
accesses.  The HAE fields are used to provide extended PCI addresses to
regions of PCI sparse address space which the CPU is unable to access
through its normal system address map.   The PCIA also provides direct
access to the lower 16 Mbytes of PCI memory and I/O space which is in the
normal TLSB system addressing capability by forcing zeros on to PCI byte
address bits <31:27>.  The PCIA decodes PCI address bits <26:24> to de-
termine whether the access is a direct one or uses an HAE.   The PCIA
uses the following translation to generate PCI address bits <31:27>.

    if (PCI address<26:24> = 000)

                PCI address <31:27> = 00000; 

    else

                PCI address<31:27> = HAE<4:0>; 
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Each of the HPCs implements the above address translation if the Force
HAE bit, bit <9> of the CTL CSR, is clear.  If the bit is not clear, the HPCs
use the contents of bits <31:27> of the address field of the Down Hose com-
mand packet as PCI address bits <31:27>.  This allows other systems on
which the PCIA may be used to implement their own translation and to
bypass the HAE translation implemented on the PCIA.

Byte, word, and tribyte accesses to any of the PCI sparse address spaces
require that a byte mask be generated for the longword of data to be trans-
ferred.  CPU address bits <4:3> of the Down Hose command packet ad-
dress are used as transfer size bits, with 00 indicating a byte transfer, 01
indicating a word transfer, and 10 indicating a tribyte tranfer.  CPU ad-
dress bits <6:5> are used to determine the starting byte of the transfer. 
Longword accesses are unmasked and have all byte enables asserted.  Ta-
ble 4-2 shows the byte enables and PCI address bits <1:0> generated for
the supported byte, word, tribyte, and longword combinations of CPU ad-
dress bits <6:3>.

Table 4-2 CPU Address to PCI Address Conversion

A quadword transfer is indicated when CPU address bits <6:3> = 1111.  All
quadword transfers are unmasked transfers and have all byte enables as-
serted during all data phases of the PCI transfer.  PCI address bits <2:0>
are forced to 000 during the PCI address phase.  Combinations of CPU ad-
dress bits <6:3> that are not shown in Table 4-2 or are not equal to 1111
are not supported, and the associated byte enables are unspecified.

For accesses to PCI dense or sparse memory space, regardless of the trans-
fer size, the HPC forces PCI address bits <1:0> to 00 to indicate a linear
incrementing burst addressing mode.  Accesses to PCI I/O space use a
shifted CPU address as the PCI address with CPU address bits <6:5> be-
ing used as PCI address bits <1:0> for byte, word, tribyte, and longword
accesses.  Quadword accesses to PCI I/O space force PCI address bits <1:0>
to 00.  For accesses to configuration space, the HPC forces bits<1:0> of its
CTL CSR into bit <1:0> of the PCI address.  Bits<31:2> are the longword
or quadword aligned address bits.  A value of 00 as PCI address bits <1:0>
indicates a type 0 configuration access, while a value of 01 indicates a type
1 configuration access.

               CPU Address              Resulting PCI Address and Byte Enables
CPU ADDR
<6:5>

CPU ADDR
<4:3>

PCI MEM
ADDR<1:0>

PCI I/O
ADDR<1:0>

PCI CONF
ADDR<1:0>

PCI C_BE
<3:0> L

00 00 00 00 CTL<1:0> 1110
01 00 00 01 CTL<1:0> 1101
10 00 00 10 CTL<1:0> 1011
11 00 00 11 CTL<1:0> 0111
00 01 00 00 CTL<1:0> 1100
01 01 00 01 CTL<1:0> 1001
10 01 00 10 CTL<1:0> 0011
00 10 00 00 CTL<1:0> 1000
01 10 00 01 CTL<1:0> 0001
00 11 00 00 CTL<1:0> 0000
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4.1.1.3 CPU Command Decode

Masked Transfers

Masked transfers are supported through sparse address space.  A masked
transfer is indicated when Down Hose command packet address bits <4:3>
are 00, 01, or 10.  These bits along with address bits <6:5> determine the
PCI byte mask.  All masked transfers, read or write, are one longword in
length.  The type of access, read or write, is specified by the R/W bit in the
Down Hose command packet.  Byte masks are generated for both read and
write operations.

Unmasked Transfers

Unmasked transfers are supported through both dense and sparse ad-
dressing.  Unmasked transfers are indicated when address bits <4:3> of a
sparse address access are 11, or during any dense address space access. 
All PCI byte enables are asserted for these transfers, PCI C_BE L<3:0> =
0000.  

Unmasked accesses to sparse space are longword or quadword in length,
resulting in a PCI burst length of one or two cycles.  Accesses to dense
space are quadword or hexword in length, although the masking of entire
longwords is possible.  Dense space transfers result in a burst length of 2
or 8 longwords being generated on the PCI.

4.1.1.4 CPU Request Queue

The DWLPA can buffer four and DWLPB can buffer six outstanding CPU
initiated Down Hose command packets.  The Down Hose packets may be
Mailbox Command packets, dense command packets, or sparse command
packets.  When the number of outstanding Down Hose packets reaches the
maximum, subsequent command packets can only be sent after a status
packet associated with the first command is returned on the Up Hose. 
Mailbox packets have a Mailbox Status packet returned, dense and sparse
commands have a CSR read return packet or a CSR write acknowledge
packet returned.

Each DWLPA HPC contains four 8 word x 32-bit buffers used to store CPU
write data.  Similarly, a DWLPB HPC contains six 8 word x 32-bit buffers. 
Each HPC also contains one 8 word  x 32-bit buffer used to store CPU read
return data.  These buffers are used to store data for all longword,
quadword, and hexword CPU-initiated transactions.  Note that revision 1
of the HPC gate array, used on DWLPB (DIAGx register bits <6:3> = 001)
has six buffers rather than four for CPU-initiated Down Hose command
packets and six return buffers for CSR Write Status Return packets.

4.1.1.5 Requesting PCI Bus

Each HPC contains a PCI arbiter for the PCI bus it interfaces.  Each arbi-
ter operates independently though in the same manner.  If a Down Hose
command is outstanding and a PCI bus is not granted to the HPC, the
HPC requests it.  Upon receiving a grant from its arbiter, the HPC trans-
fers its command and address to the bus in the cycle following the next idle
cycle.  The HPC deasserts its request on the cycle it sends the command/
address to the bus.
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4.1.1.6 Default Bus Parking

When the PCI bus is idle, the HPC is granted the bus even though no
Down Hose command packets are outstanding.  This condition is referred
to as bus parking.  If a Down Hose command is received and the bus is
parked at an HPC, then the HPC initiates a PCI transfer without assert-
ing a request to its arbiter.

4.1.1.7 Address Phase

During the PCI address phase, the HPC drives the target address on PCI
AD<31:0> H and the command on PCI C_BE<3:0> L.  Even parity across
these signals is driven on PCI PAR H in the next cycle.  The HPC also as-
serts FRAME L indicating that a transfer has been started.  If a parity er-
ror is detected on the address phase, SERR L is asserted to the PCIA two
cycles after the address phase.

4.1.1.8 Data Phase

Longword Reads

In the cycle following the address phase of a longword read, the HPC as-
serts IRDY L to indicate it can accept data, and it starts sampling TRDY
L.  FRAME L is also deasserted in this cycle.  When TRDY L is sampled
asserted, the HPC latches in the read data present on PCI_AD<31:0>.  In
the next cycle the parity is sampled on PCI PAR, and IRDY L is deasserted
to indicate that the transfer is complete.  If a parity error is detected, it is
reported to the I/O port by setting the error bit in the Up Hose status
packet.

Longword Writes

In the cycle following the address phase of a longword write, the HPC
drives the write data on to PCI AD<31:0>, the byte mask on to C_BE<3:0>
L, and asserts IRDY L indicating that valid write data is on the PCI bus. 
FRAME L is also deasserted in this cycle to indicate that this is the last
data transfer of the burst.  The HPC also starts sampling TRDY L in this
cycle.  When TRDY L is sampled true, the HPC asserts IRDY L to indicate
that the transfer is complete.  Two cycles after the assertion of TRDY L,
the HPC samples PERR L and if it is asserted, the HPC reports a parity
error to the I/O port by setting the error bit in the Up Hose status packet. 
If error interrupts are enabled, an error interrupt is generated to the I/O
port.

Quadword Reads

Quadword reads are executed in the same manner as longword reads, ex-
cept two longwords are transferred.  In the cycle following the address
phase of a quadword read, FRAME L is not deasserted indicating that at
least one more longword of data is to be transferred.  For a quadword
transfer, FRAME L is deasserted in the cycle following the valid transfer of
the first longword.  IRDY L and TRDY L are used to handshake each of the
two data transfers.  IRDY L is deasserted after the second longword is
latched from the bus to indicate the transfer is complete.  PCI PAR is sam-
pled one cycle after each data transfer, and if a parity error is detected, the
HPC reports it to the I/O port by setting the error bit in the Up Hose
status packet.
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Quadword Writes

Quadword writes are executed in the same manner as longword writes, ex-
cept two longwords are transferred instead of one.  FRAME L is not
deasserted until the second longword is driven valid on the bus, and IRDY
L and TRDY L are used to handshake each of the data transfers.  PERR_L
is sampled two cycles after each data transfer, and if it is asserted the
HPC reports the parity error to the I/O port by setting the error bit in the
Up Hose status packet.  If error interrupts are enabled, an error interrupt
is generated to the I/O port.

Hexword Reads

Hexword reads are executed in the same manner as longword reads, except
eight longwords are transferred.  In the cycle following the address phase
of a hexword read, FRAME L is not deasserted indicating that at least one
more longword of data is to be transferred.  For a hexword transfer,
FRAME L is deasserted in the cycle following the valid transfer of the sev-
enth longword.  IRDY L and TRDY L are used to handshake each of the
eight data transfers.  IRDY L is deasserted after the last longword is
latched from the bus to indicate the transfer is complete.  PCI PAR is sam-
pled one cycle after each data transfer, and if a parity error is detected, the
HPC reports it to the I/O port by setting the error bit in the Up Hose
status packet.

Hexword Writes

Hexword writes are executed in the same manner as longword writes, ex-
cept eight longwords are transferred instead of one.  FRAME L is
deasserted when the eighth longword is driven valid on the bus, and IRDY
L and TRDY L are used to handshake each of the eight data transfers. 
PERR L is sampled two cycles after each data transfer, and if it is asserted
the HPC reports the parity error to the I/O port by setting the error bit in
the Up Hose status packet.  If error interrupts are enabled, an error inter-
rupt is generated to the I/O port.

4.1.1.9 Transaction Termination

PCI Master Timeout

Since the maximum HPC burst transfer is 16 longwords and the HPC im-
poses no initiator delay between successive longwords that it transmits or
receives, the HPC does not implement a master latency timer.  If imple-
mented, this timer would count the number of cycles since the assertion of
FRAME L.  If a cycle count limit had been exceeded and the HPC’s grant
had been removed, then the HPC would be forced to relinquish the bus.

PCI Target Disconnect

The HPC samples the TRDY L and STOP L signals each cycle and releases
the bus when a target disconnect is issued by a target PCI device.  If a tar-
get abort is detected, an error has occurred that prevents the transaction
from being retried; the HPC ends the PCI transfer and does not attempt a
retry.  An error is reported to the I/O port in the Up Hose status packet.  If
the command is a write and error interrupts are enabled, an error is gener-
ated to the CPU.  

If a target disconnect is detected and the burst transfer was not completed,
the HPC retries the command starting at the address of the next untrans-
ferred longword.  The HPC retries the command until the data transfer
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has completed or until the retry limit specified in its RETRY CSR has been
reached.  If the retry limit is reached and the transfer is not complete, an
error is reported to the I/O port in the Up Hose status packet.  If the com-
mand is a write and error interrupts are enabled, an error interrupt is gen-
erated and sent to the CPU.

PCI Master Abort

The HPC aborts any access it initiates if DEVSEL L is not asserted within
five cycles after the assertion of FRAME L.  A master abort occurs when no
PCI device decodes the command and address as residing within its own
address space.  The HPC reports the error to the I/O port in the Up Hose
status packet and generates an interrupt if the command is a write and if
error interrupts are enabled.

4.1.1.10 Exclusive Access Support

The HPC as a PCI master does not support locking PCI devices.  All com-
pleted PCI transactions in which the HPC is a PCI master terminate with
the target device unlocked.  The HPC supports accesses to locked target
devices through the normal PCI retry mechanism.

4.1.2  Device-Initiated PCI Cycles

Device-initiated PCI cycles are transactions originating from a device on
the the PCI.

4.1.2.1 Device-Initiated PCI Commands

The PCIA serves as a bridge to system memory for all peripheral devices
on the PCI.  Commands generated by a PCI peripheral to system memory
are decoded and serviced by the HPCs, acting as PCI targets.  The HPCs
support a subset of the full PCI command set as a PCI target.  Table 4-3
shows the PCI commands that are supported.

Table 4-3 Supported PCI Target Commands

PCI memory reads and writes are directly supported.  The PCI memory
read line is supported but is executed as a normal memory read.  Simi-
larly, the memory write and invalidate command is supported but is exe-
cuted only as a memory write command.  Commands not shown in Table
4-3 are not supported by the HPC as a PCI target, and no action is taken
by the HPC when they appear on the PCI bus.

PCI Command C_BE_L<3:0> Command Aliasing
Memory Read 0110
Memory Write 0111
Memory Read Multiple 1100 Aliased to memory read
Memory Read Line 1110 Aliased to memory read
Memory Write & Invalidate 1111 Aliased to memory write
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4.1.2.2 PCI Memory Read Multiple Command

When CTLx CSR MRM_EN, bit <21> is clear, PCI Memory Read Multiple
on the PCI bus is treated as a PCI memory read.  When CTLx CSR
MRM_EN (bit 21) is set, PCI Memory Read Multiple on the PCI bus is en-
abled, CTLx<22>, the Memory Read Multiple Prefetch Size bit in the CTLx
register, controls the number of cache blocks the PCIA prefetches in re-
sponse to a Memory Read Multiple on the PCI bus.   If CTLx<22>=0, up to
one additional fetch is made.  For example, if the cache block size is 64
bytes (determined by the Memory Block Size bit, bit <2>, in CTLx), the
reads issued on the Up Hose are:

If CTLx<22>=1, up to three additional fetchs are made.  For example, if
the cache block size is 64 bytes (determined by the Memory Block Size bit,
bit <2>, in CTLx), the reads issued on the Up Hose are:

The MRM_ARB bit, CTLx<20>, controls the number of Up Hose DMA read
transactions that a HPC drives on the Up Hose bus of the PCIA in one Up
Hose bus tenure. (The Up Hose bus is shared by 3 HPC’s on the PCIA. 
Normally an HPC requests tenure on the Up Hose bus, gets tenure from
the up hose arbiter, completes one Up Hose transaction, and then surren-
ders the bus.)  When MRM_EN is enabled, and MRM_ARB = 0, the HPC
drives out 1,  2,  3, or 4 Up Hose DMA transactions.  When MRM_EN is
enabled, and MRM_ARB = 1, prefetching is disabled and only one transac-
tion per Up Hose bus tenure is allowed.

In addition to the control bits just described, one status bit is provided. 
The INC_LTO bit, ERRx register bit <17>, is set during the execution of a
Memory Read Multiple if the number of PCI bus data wait states between
data cycles is greater than the PCI limit of 8 cycles.  Detection of this con-
dition does not result in an error interrupt generated to the CPU.  If
INC_LTO, Incremental Latency Timeout is zero, no timeout has been de-
tected.  If INC_LTO is one, a timeout has been detected. 

DMA_ADDR<7:6>
(CTLx<22> = 0)

Blocks Fetched for 
DMA_ADDR<7:6>

00
01
10
11

00, 01
01
10, 11
11

DMA_ADDR<7:6>
(CTLx<22> = 1)

Blocks Fetched for 
DMA_ADDR<7:6>

00
01
10
11

00, 01, 10, 11
01, 10, 11
10, 11
11
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4.1.2.3 PCI Address Decode

The PCIA provides three address windows, A, B, and C, through which
PCI devices can access system memory.  The PCIA decodes 32-bit PCI ad-
dresses and services supported target commands if its PCI address falls
within any of the PCIA’s address windows.  Addresses that do not fall in
an address window are not serviced by the PCIA since they should decode
to a PCI peripheral device’s memory space.

The base PCI address of each window is defined in its Window Base Regis-
ter in each HPC and falls on an address boundary naturally aligned to its
window size.  Window sizes of  64 Kbytes to 4 Gbytes are supported and
are selected through each window’s Window Mask Register of each HPC. 
See Chapter 3 for a description of each register.

Each PCI address window can be individually enabled or disabled by bit
<1> of its Window Base Register.  When disabled, all accesses addressed to
the window are not serviced by the HPC.  The type of translation per-
formed on the address, direct or scatter/gather, is selected by bit <0> of the
Window_A Base Register. 

4.1.2.4 PCI Address Translation

Direct Mapped Address Translation

Direct address translation sets up a window in system memory of the same
size that is used in PCI memory space.  The window can be located any-
where in system memory address space as long as it starts on an address
boundary that is naturally aligned to its window size.  The base address of
the window in system memory is defined in the Translated Base Register
in each HPC.  Each PCI address window can be independently mapped to
its own address window in system memory.

Scatter/Gather Address Translation

Scatter/gather translation uses an address mapping RAM to translate the
32-bit PCI address into a 40-bit system memory address.  Figure 4-1 shows
the scatter/gather address translation implemented by the PCIA.

For DWLPA or DWLPB with TBIT=0, bits <27:13> of the PCI address are
used to index into the map RAM.  Map RAM data bits <27:1>, the trans-
lated page number, are then merged with PCI address bits <12:0> to gen-
erate a 40-bit DMA system memory address.  The map RAM parity is odd. 
For  DWLPB with TBIT=1, the PCI address bits used are <29:13>.

Scatter/Gather Cache

Each HPC maintains a fully associative five-entry cache of the map RAM. 
This cache provides lower latency translation than is available through
physical RAM access.  Each cache entry contains a 15-bit tag, a 27-bit page
number, a valid bit, and a parity bit.  The contents of the tag are compared
against bits <27:13> (DWLPA, and DWLPB with TBIT = 0) or bits <29:13>
(DWLPB with TBIT = 1) of received PCI DMA addresses.  The cache fill
algorithm is random. 

Cache entries are invalidated when a map RAM CSR write is detected to
an entry in the scatter/gather cache.  Writes to a map RAM entry should
not occur while a DMA transaction using that entry is in progress, since no
attempt is made to stop a DMA transaction in progress.
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Map RAM Parity Errors

Access to the map RAM during a DMA read that results in a parity error
causes the HPC to abort the transaction.  The HPC issues a target abort on
the PCI bus and sets bit <7> of its ERR CSR.  An error interrupt is gener-
ated to the CPU if the Error Interrupt Enable bit is set in the HPC’s
IMASK register.

Access to the map RAM during a DMA write that results in a parity error
does not cause the HPC to abort the transaction.  Instead the HPC contin-
ues receiving write data and drops the transaction and sets bit <7> of its
ERR CSR.  An error interrupt is then generated to the CPU if the Error
Interrupt Enable bit is set in the HPC’s IMASK register.  Software must
force a system crash if a map RAM parity error is detected during a DMA
write transaction, since the write is disconnected from its PCI master.

Map RAM Invalid Page Errors

Access to the map RAM during a DMA read that results in the valid bit not
being set also causes the HPC to abort the transaction.  The HPC issues a
target abort on the PCI bus and sets bit <8> of its ERR CSR.  An error in-
terrupt is sent to the CPU if the Error Interrupt Enable bit is set in the
HPC’s IMASK register.

Access to the map RAM during a DMA write that results in the valid bit
not being set does not cause the HPC to abort the transaction.  Instead the
HPC drops the transaction and sets bit <8> of its ERR CSR.  An error in-
terrupt is sent to the CPU if the Error Interrupt Enable bit is set in the
HPC’s IMASK register.  Software must force a system crash if a map RAM
parity error is detected during a DMA write transaction, since the write is
disconnected from its PCI master.

4.1.2.5 Address Queuing

The HPC can queue up to two PCI DMA transactions per PCI bus if the
first transaction stored is a DMA write.  The second transaction stored can
be a DMA read or a DMA write.  This allows a DMA write transaction al-
ready received on one PCI bus to be transmitted on to the Up Hose while a
second DMA transaction is being received on the same PCI bus.  Since PCI
reads are nonpended, no additional DMA transactions can be received over
the bus until the read data is returned to the PCI master.  If the HPC’s
DMA queue is full, the HPC continues to decode all subsequent incoming
PCI addresses and issues a PCI target disconnect if it is the target of a
transaction.

4.1.2.6 Address Phase

The HPC samples FRAME L to detect a PCI address phase.  When
FRAME L is asserted, the PCIA latches PCI AD<31:0> H and C_BE<3:0>
L.  In the next cycle, the HPC decodes the PCI command and address and
determines if the access is to system memory; it also samples PAR during
this cycle.  If the access is to system memory, the HPC asserts DEVSEL_L
to the PCI bus two cycles after the assertion of FRAME L.
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4.1.2.7 Address Burst Order

Only linear incrementing burst order addressing is supported and is indi-
cated by bits <1:0> of a PCI memory address being equal to 00.  An HPC 
terminates the burst when either the transaction is complete or a memory
block boundary is reached, whichever comes first.

If PCI memory address bits <1:0> are not equal to 00, then the HPC termi-
nates the transaction after one longword of data has been transferred. 
This will cause the burst to be broken up into multiple single longword
transfers with the PCI master generating a new longword address for each
transfer.

4.1.2.8 Memory Block Boundary

The HPC target disconnects any DMA transaction that crosses a memory
block boundary.  The size of the memory block boundary is selected by
HPC CTL CSR bit <2>.  Memory block sizes of 32 and 64 bytes depends
upon the state of the Memory Block Size bit, bit <2>, in the CTLx register. 
Target disconnects are done at memory block boundaries to meet target la-
tency timeout restrictions of the PCI bus.  If prefetching is enabled for the
PCI Memory Read Multiple command, target disconnects occur at two
times or four times the cache block boundary for memory block sizes of 64
bytes or 32 bytes.  Target disconnects at 2x or 4x is set by the state of
CTLx<22>. 

4.1.2.9 Address Parity Errors

If an address parity error is detected on a DMA read or write transaction,
the HPC asserts SERR_L and issues a target abort on the PCI bus.  No
data is written to system memory.  The HPC sets bit <8> of its ERR CSR
and if error interrupts are enabled, an error interrupt is sent to the CPU.

4.1.2.10 Write Data Transfers

DMA write transfers are completely received by the HPC before being sent
on to the Up Hose.  All write transfers are limited in maximum size to the
memory block size.  If a 64-byte memory block is used and all bytes of the
block are valid, the PCIA issues an unmasked double hexword write trans-
action to system memory.  If a 32-byte memory block size is selected or if
any of the byte enables of the selected 64-byte block is not set, a masked
write transaction is issued to system memory.  Masked writes result in
Read-Modify-Write operations to system memory and thus consume twice
the memory bandwidth.  The HPC optimizes the size of the Up Hose DMA
write packet based on the byte enable bits to reduce the amount of Up
Hose bus bandwidth required.  Reduced Up Hose packet transfer sizes of
32- and 16-byte transfers are supported.  A single Up Hose DMA write is
generated for each separate DMA write transaction on the PCI bus.  Multi-
ple PCI write transactions are not packed into a single Up Hose packet.

PCI Write Data Buffers

Each HPC contains two 16-word by 32-bit data buffers for storage of PCI
write data.  Also contained along with each buffer is a 64-bit register used
to store the associated byte enable bits.  PCI write data parity is checked
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as it is received from the PCI bus.  Parity is regenerated over the Up Hose
command and data when it is sent to system memory.

The HPC write data buffers are capable of receiving a longword every cycle
from the PCI.  Once both data buffers have been filled, the PCIA target
disconnects any DMA transaction received on the PCI bus.

Write Data Errors

If a write data parity error occurs during a DMA transaction, the HPC
does not issue a target abort of the transaction on the PCI.  Instead the
HPC continues to receive data until the transaction is complete or a mem-
ory block boundary is reached and then drops the transaction and sets bit
<10> of its ERR CSR.  An error interrupt is generated to the CPU if error
interrupts are enabled.  The PCI address of the failing DMA transaction is
also stored in the HPC’s FADR CSR.

Map parity or invalid entry errors also do not affect the reception of write
data.  The packet is dropped and bit <6> or <7> of the HPC’s ERR CSR is
set to indicate an error.  The PCI address of the failing DMA transaction is
stored in the HPC’s FADR CSR.  If error interrupts are enabled, an error
interrupt is generated.

4.1.2.11 Read Data Transfers

The HPC, upon receiving a DMA read request from the PCI, requests a 32-
byte or a 64-byte read from system memory.  The size of the read request is
the same as the memory block size as defined in each HPC’s CTL CSR. 
IREAD transactions (see Section 4.1.2.13) request a 16-byte read from sys-
tem memory.  When returning data to the PCI bus, the HPC is capable of
bursting a longword of data to the PCI in consecutive cycles until the
transaction is complete.

All read transactions that start at the beginning of a naturally aligned 64-
byte block have their read return data returned to the PCI in a cut-
through fashion: the data is returned to the PCI while the HPC is still re-
ceiving data over the Down Hose.  This is possible because the first
longword of data in the Down Hose Read Data Return packet is always
valid, and the associated delay to the first valid longword is not variable. 
Read transactions that are not 64-byte naturally aligned return data in a
store and forward fashion.  

Since the PCIA interfaces to Down Hoses that can run at different clock
speeds, the HPCs provide a cut-through threshold field in the CTL CSR. 
Bits <7:4> of this register define the number of longwords that the HPC
will receive and load into its read return buffer before transmitting any
data to the PCI bus.  Cut-through operation can be disabled by clearing the
Cut-through Enable bit, bit <8>, of the CTL CSR.

When cut through is enabled, CTLx register bit <8> is set, and CTLx regis-
ter bits <7:4> should be initialized according to the following equation:

(a * d - a * p)  = x (rounded up)

where x = the setting.  If x is a non-integer, then round up.
d = Down Hose clock cycle time.
p = PCI clock cycle time.
a = 8 if memory block size = 32 bytes.
a = 16 if memory block size = 64 bytes.
(Memory block size is controlled by bit <2> of the CTLx register.)
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Example 1:  a = 16 for memory block size = 64 bytes.
p = 30 ns
d = 30 ns
then x = 0x0 and bits <7:4> = 0000

Example 2:  a = 16 for memory block size = 64 bytes.
p = 30 ns
d = 40 ns
x = 5.33333
then x = 0x6 after rounding up and bits <7:4> = 0110.

PCI Read Return Buffer

Each HPC contains a 16-word by 32-bit dual port data buffer used to store
a double hexword of read return data received on the Down Hose bus. 
Read data parity is checked as it is received from the Down Hose bus.  Par-
ity is regenerated over the PCI data and PCI byte enables when the data is
returned to the PCI bus.  The PCI read return buffer is not used as cache
for subsequent DMA read transactions on the PCI bus.

Read Data Errors

If a map parity or invalid page error is detected during the translation of
the DMA read address, the HPC issues a target abort to the PCI master
and terminates the transaction.  The HPC sets bit <7> or <6> of its ERR
CSR and generates an error interrupt if error interrupts are enabled.  The
PCI address of the failing DMA transaction is stored in the HPC’s FADR
CSR.

If a Down Hose parity error is detected during the reception of read return
data from the I/O port the HPC target aborts the transaction.  The HPC
sets bit <5> of its ERR CSR and generates an error interrupt if error inter-
rupts are enabled.  The PCI address of the failing DMA transaction is
stored in the HPC’s FADR CSR.  

If a Down Hose Read Data Return packet with an error is received by an
HPC, it issues a target abort to the PCI master and terminates the trans-
action.  The HPC does not set any error bit since the error occurred up-
stream in system memory or in the I/O port module and is flagged there.

4.1.2.12 PCI Target Latency Timeout

The HPC is capable of returning read data to the PCI in consecutive cycles
up to the end of a memory block at which time a target disconnect will be
issued if necessary.  Since the HPC does not introduce any delay between
data transfers, no target latency timer is implemented.

4.1.2.13 Device-Initiated Exclusive Access

Since the PCIA contains three PCI buses that operate independently, a
PCI device is not capable of locking out PCI devices on another PCI bus
from system memory.  In addition, LSB and TLSB systems do not provide
a mechanism for locking out CPUs from system memory when a PCI lock
is established.  As a result, the PCIA does not implement the PCI lock
function, and an HPC as a target does not lock when it receives a lock re-
quest from a PCI device.

The HPC does provide a limited lock mechanism to support the VAXport
I/O architecture.  When an HPC detects the assertion of the PCI LOCK
signal in the cycle after a PCI address phase and the transaction type is a



4-14     Functional Description

DMA read and the HPC is the target of the transaction, it issues an
IREAD command over the Up Hose to the I/O port for that transaction. 
The HPC does not generate any additional IREAD commands while PCI
LOCK is asserted.  PCI LOCK must be deasserted and then reasserted to
generate another Up Hose IREAD transaction.  See Chapter 6 for more in-
formation on EISA bus locks.

4.2  Hose Interface

The hose interface consists of two parts and supports data transfers be-
tween the PCIA and the I/O port. 

The I/O port provides the interface to the CPU and system memory.  A
Down Hose interface transfers data from the I/O port to the PCIA.  An Up
Hose interface transfers data from the PCIA to the I/O port. 

4.2.1  Down Hose

The Down Hose can transfer 32 bits of data each cycle to the PCIA.  Data
is latched by a PCIA module transceiver and is then bused to the HPCs
over the DN_BUS<31:0> L signals.  Each longword of data is covered with
odd parity.  Parity error detection is performed by logic in each HPC.  

4.2.1.1 Down Hose Commands

The PCIA accepts Down Hose commands and associated packets from the
I/O port.  The Mailbox Command packet, the Dense CSR Command packet,
and the Sparse CSR Command packets are CPU-initiated commands.  The
DMA Read Data Return packet is a response to a DMA read transaction,
and the Interrupt Status Return packet is a response to an Up Hose
INTR/IDENT packet.  Table 4-4 lists the supported Down Hose packet
types and shows the Down Hose header cycle bits that determine the
packet type.

Table 4-4 Down Hose Commands

4.2.1.2 Down Hose to PCI Synchronization

All Down Hose commands sent by the I/O port are synchronous to the
Down Hose clock, DNCLK H.  Each HPC loads the appropriate Down Hose
command, address, and data into its buffers synchronous to DNCLK H. 
The command is then synchronized to the PCI clock.

DND<13:12> DND<1:0> Down Hose Command Packet Type
10 xx Mailbox Command
11 00 Dense CSR Command
11 01,10,11 Sparse CSR Command
01 xx Read Data Return Packet
00 xx Interrupt Status Return Packet
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4.2.1.3 Down Hose Signals

Table 4-5 lists the 38 Down Hose signals.

Table 4-5 Down Hose Signals

4.2.2  Up Hose

The Up Hose transfers 32 bits of data each cycle to the I/O port.  Data is
driven from each HPC over the UP_BUS to a module transceiver that
drives the data on to the Up Hose.  Command and byte mask bits are also
driven with the data along with odd parity covering all signals.

4.2.2.1 Up Hose Commands

DMA commands are initiated by PCI peripherals.  CSR commands and the
Mailbox Status command are responses to CPU-initiated CSR transac-
tions.  The INTR/IDENT command can be initiated by an HPC for an error
interrupt or by a PCI peripheral for a device interrupt.  Supported Up
Hose commands are listed in Table 4-6.

Table 4-6 Up Hose Commands

Flow control between the I/O port and the PCIA is maintained across all
three PCI buses during DMA and INTR/IDENT transactions by signaling
to each HPC the status of the current Up Hose command.  Two signals,
UPSTS<1:0>, are sent to each HPC indicating that status.  The signals are
driven by a module PAL that decodes UPCTL<3:0>.  UP_BUS<31> of
INTR/IDENT cycle is used to indicate to the PAL whether the interrupt is

Signal Signal Count Description
DND<31:0> L 32 Down Hose data
DNP L 1 Down Hose parity
DNDATAVAL L 1 Down Hose data valid
DNCLK H 1 Down Hose clock
DECPKTCNT L 1 Decrement packet count 
DNRST L 1 Down Hose reset
ERROR L 1 Fatal Error

UPCTL<3:0> Up Hose Command Packet Type
0001 DMA Read
0010 IREAD
0100 Mailbox Status Return
0101 DMA Unmasked Write
0111 DMA Masked Write
1000 INTR/IDENT 
1100 CSR Write Status Return
1101 Dense CSR Read Return
1110 Sparse CSR Read Return
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a device or error interrupt.  Table 4-7 describes the Up Hose Command
Status packets.  Appendix A describes each of the Up Hose packet struc-
tures.

Table 4-7 Up Hose Packet Status

Flow control is also maintained between the I/O port and the PCIA on CSR
and mailbox transactions by providing the Mailbox Status Return, CSR
Read Return, and CSR Write Status Up Hose commands.  Before any of
these status packets are sent over the Up Hose, all HPCs are synchronized
to ensure that storage exists in each HPC for another CPU-initiated Down
Hose command.

Synchronization is maintained by requiring each HPC to generate and re-
ceive three open drain signals, CMD_OUT L, CMD_DEC_OUT L, and
CMD_DS L.  All HPCs accept the next Down Hose command when they
sample CMD_OUT L as deasserted.  Upon starting command execution,
each HPC asserts CMD_OUT L to indicate that a command is outstanding
and currently being executed.  No subsequent Down Hose commands are
executed until CMD_OUT L is deasserted for one cycle by all HPCs.  If an
HPC finishes its command execution before CMD_OUT L is deasserted, it
enters a wait state.

CMD_DEC_OUT L is driven low by all HPCs to indicate that the HPC has
not yet completed a decode of the command.  CMD_DEC_OUT L is
deasserted by each HPC when the decode is completed.  The HPC that de-
codes and executes the command asserts CMD_DS L after it finishes the
decode.  If CMD_DS L is asserted when CMD_DEC_OUT L is deasserted,
one HPC has decoded the command and responds by sending the return
status packet to the I/O port.  If CMD_DS L is deasserted when
CMD_DEC_OUT L is deasserted, none of the HPCs has decoded the com-
mand as its own and HPC 0 returns error status to the I/O port.  If the
command is a write and error interrupts are enabled, an interrupt is gen-
erated to the CPU.

The HPC that returns the command’s Up Hose status return is the last
HPC to deassert CMD_OUT L.   When an HPC determines it will not exe-
cute a command, it deasserts its CMD_OUT L immediately after the de-
code.  However, if no other HPC claimed the command, HPC 0 as the de-
fault keeps CMD_OUT L asserted.  After status is returned and
CMD_OUT L is deasserted for one cycle, all HPCs start executing the next
command.  Table 4-8 describes the function of CMD_DEC_OUT L and
CMD_DS L.

The HPC gate array allows back-to-back CSR write dense packets on the
Down Hose and the PCI bus to complete on the PCI bus.  Up to six CSR
dense write status packets can accumulate among the three HPC’s Up

UPSTS<1:0> Description Action
00 No command in progress None
01 CSR/DMA/MBX in progress Increment packet count.
10 Device interrupt in progress Increment packet count.  Set

device interrupt outstanding.
11 Error interrupt in progress Increment packet count.  Set

error interrupt outstanding.
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Hose CSR dense write status packet queue.  This queue empties its con-
tents onto the Up Hose.

Here, CMD_OUT deasserts when a CSR dense write transaction completes
on the PCI bus and another CSR dense write transaction is in the Down
Hose queue waiting for service. CMD_OUT release tells:

• the three HPC PCI bus initiator state machines on the PCIA to start
servicing the next CPU-initiated transaction.

• the Down Hose queue control that one CSR command was just serviced
so one Down Hose CSR buffer is freed for reuse.

Table 4-8 Command Signal Assertion

4.2.2.2 Up Hose Arbitration

Each of the HPCs must arbitrate for the Up Hose before sending a com-
mand on to it.  An HPC starts the arbitration process by issuing a request
for the UP_BUS to its Up Hose arbiter.  When the UP_BUS is available,
the arbiter grants it to the requesting HPC.  Arbitration is round robin
with each HPC having equal priority.

An HPC may delay its request of the Up Hose based on the status of previ-
ously transmitted Up Hose command packets.  If an HPC has a MBX/CSR,
DMA, or INTR/IDENT transfer to send on to the Up Hose and the I/O port
has no buffers available to store the packet, the request is delayed until
DECPKTCNT_L is asserted on the Down Hose.  If an INTR/IDENT is out-
standing and an HPC has an interrupt at that IPL, the HPC delays the re-
quest until an INTR status packet is received on the Down Hose.

4.2.2.3 Up Hose Command FIFO

Each HPC contains a 4-entry FIFO used to determine the order in which
commands are sent on to the Up Hose.  DMA and MBX/CSR Return Status
commands received from the PCI are loaded into the FIFO in the order in
which they are received from the PCI bus.  MBX/CSR Return Status com-
mands are executed in the HPC rather than on the PCI bus and are loaded
into the FIFO at the time that the command completes.

An interrupt command is loaded into the FIFO at the time it is received by
the HPC if it is the highest priority interrupt that is outstanding.  No other
interrupts are loaded into the FIFO until the first interrupt is sent over
the Up Hose.  If the interrupt reaches the top of the FIFO and another in-
terrupt is outstanding at the same IPL in the I/O port, the interrupt is
stalled until an interrupt status packet for that IPL is received.  DMA and

CMD_DEC_OUT L CMD_DS L Description
0 0 MBX or CSR command decode

outstanding - no device selected
0 1 MBX or CSR command decode 

outstanding - device selected
1 0 MBX or CSR command decode done

- no device selected
1 1 MBX or CSR command decode done 

- device selected
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MBX/CSR transfers can be sent over the Up Hose while an interrupt is
stalled.  

4.2.2.4 Up Hose Signals

The Up Hose consists of the 44 signals listed in Table 4-9.

Table 4-9 Up Hose Signals

4.2.2.5 Map RAM Structure

The map RAM consists of 32K/128K entries of address translation pages
used during DMA transactions that require scatter/gather translation. 
The map RAM hardware consists of four SRAMs, an address latch, a data
transceiver, and a read/write control PAL.  The map RAM hardware inter-
faces to the HPCs by the UP_BUS<31:0> signals.  A map RAM entry’s par-
ity is stored in the map RAM array also. 

The HPCs use the UPCTL<3:0> L and UPD<29:28, 26:25> signals to indi-
cate the type of command, read or write, and the length of the command,
longword or quadword.  An HPC asserts its MPDATAVAL L output signal
in the cycle that the address is driven to the map RAM logic. 
UPDATAVAL_L is not asserted to the I/O port during map RAM accesses. 
The map RAM can be read by any HPC during a DMA transaction.  CPU-
initiated reads and writes to the map RAM are performed by HPC 0 during
mailbox commands or CSR sparse space commands.

The map RAM logic also contains the PRESENT register.  This register is
used to determine if a PCI slot is populated and the type of card, high
power or standard power, that resides in the slot as well as the module re-
vision number.  This register is read only and each PCI card contributes
two bits to the register.  One UPCTL code is used when accessing the PRE-
SENT register.  See Chapter 3 for a detailed bit description of the PRE-
SENT register.

The map RAM logic also contains the MCTL register.  This register is writ-
ten upon the completion of power diagnostic code.  Writing a one to bit <0>
of the MCTL register will turn on the MCTL passed LED.  This register is
write only, and one UPCTL code is used when writing the MCTL register. 
See Chapter 3 for a detailed bit description of the MCTL register.

Up Hose Signal Signal Count Description
UPD<31:0>        32 Up Hose data
UPP L        1 Up Hose parity
UPDATAVAL L        1 Up Hose data valid
UPCLK H        1 Up Hose clock
UPCTL<3:0> L        4 Up Hose control
UPRST L        1 Up Hose reset
CBLOK L        1 Cable OK
PWROK L        1 Power OK
UP_ERR_IN L        1 Fatal error in
UP_ERR_OUT L        1 Fatal error out
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Table 4-10 shows the map RAM control codes used during map RAM and
PRESENT and MCTL register accesses.  

Table 4-10 Map RAM Logic Command

4.2.2.6 Special Programming Considerations for the Up Hose

Programming the I/O Port Up Hose Buffers field, bits <24:23>, of the PCIx
Control Register (CTLx) requires special consideration.  The hose protocol
requires that the PCIA know how many Up Hose buffers exist at the other
end of the hose.  This number is fixed at three for the I/O port, but may be
smaller in other implementations.  By default, the PCIA assumes that only
one buffer is available.  On TLSB systems, the HPCs must be repro-
grammed to know that three Up Hose buffers are available.

This PCIA default on TLSB systems presents a complication because:

1. Three separate Down Hose transactions are required to reprogram the
three HPCs on the PCIA.

2. The HPCs cooperate to count the number of Up Hose buffers in use.

3. The HPCs report a fatal error if they detect an overflow or underflow
count.

Therefore, until all HPCs are programmed to the new value, it it important
to ensure that only one Up Hose packet ever be pending from the PCIA. 
The following sequence will maintain that condition and must be used
when reprogramming the I/O Port Up Hose Buffers field:

1. Write CTL0 (the CTLx register of HPC0) with the desired new value. 
HPC0 will send a Write Status Return packet after completing the
write.

2. Execute an MB instruction to ensure that the write and read are or-
dered.

3. Read CTL1 (the CTLx register of HPC1).

4. Write CTL1 with the desired new value that must be the same as the
one written to CTL0.

5. Execute an MB instruction to ensure the write and read are ordered.

6. Read CTL2.

7. Write CTL2 with the desired new value that must be the same as the
one written to CTL0 and CTL1.

Map Ram Logic Command UPCTL<3:0> UPD<29:28> UPD<26:25>
Map RAM Read - Quadword 0010  00 00
Map RAM Write - Quadword 0011  00 00
Map RAM Read - Longword 0000  00 00
Map RAM Write - Longword 0001  00 00
Serial EEPROM CSR Read 0000  00 01
Serial EEPROM CSR Write 0001  00 01
Present Reg Read 0000  00 10
MCTL Reg Write 0001  00 10
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4.2.3  Serial EEPROM

The PCIA has 2 Kbytes of serial EEPROM used to store console code and
field repair data.  The EEPROM has its data and clock driven by software
through the module serial EEPROM CSR.  

4.2.4  PCI to EISA Bridge Hardware

The KFE70 module provides connectivity to eight EISA slots on the PCIA
module.  The KFE70 uses the INTEL PCI-EISA Bridge Component
(PCEB) and the EISA System Component (ESC) chipset, also known as the
Mercury chipset.  The PCEB is a fully buffered bidirectional interface be-
tween the PCI bus and the EISA bus.  The PCEB also offers PCI arbitra-
tion logic which is not used by the PCIA.  The ESC adds EISA bus control
and arbitration.  The equivalent of two 82C59 interrupt controllers, two
82C54 timers, DMA scatter/gather support, and XBus control round out
the chipset’s capabilities.  Refer to Chapter 6 for additional information on
the standard I/O module, the PCI-EISA bridge module.

4.2.5  CPU-Initiated Transactions

All Down Hose mailbox read/writes, sparse CSR read/writes, and dense
CSR read/writes are executed in a similar manner.  Each of the three
HPCs contains the logic to execute the Down Hose command independ-
ently.  The transaction descriptions below describe the operation of one
HPC.

Down Hose read/writes start when the HPC’s Down Hose receiver state
machine decodes the command and address.  If the command is a write,
data is written into the CPU write RAM.  The CPU write RAM is used to
store longword, quadword, and hexword data.  After synchronization to the
PCI clock,  the command is executed differently depending on its destina-
tion.  Destinations are the PCI bus, an HPC register, an HPC RAM loca-
tion, the map RAM, and the PRESENT or MCTL CSRs.

Writes to the PCI bus start by the HPC arbitrating for the PCI bus.  When
a grant is received, the HPC starts an address phase by transmitting the
PCI command and address on to the bus.  Write data is read from the CPU
write RAM and transferred to the bus.  The HPC’s PCI master state ma-
chine continues to get data from the PCI write RAM and transfers it to the
bus until all the data has been transferred.  Reads from the PCI bus are
similar to writes, up to the data phase.  During a read data phase, the tar-
get drives data on to the bus and the HPC latches it and writes it into the
CPU read return RAM.

Writes to an HPC CSR register are executed by reading a longword of data
from the CPU write RAM and then loading it into the selected register. 
Writes to an HPC CSR RAM location are executed similarly with the data
loaded by RAM write.  The HPC supports unmasked longword and
quadword CSR writes only.  Byte and word writes to CSR registers and
RAM are not supported.  CSR register reads are executed by loading  the
selected CSR’s data into the CPU read return RAM while an HPC CSR
RAM read first reads the RAM data and then writes it to the CPU read
return RAM.  Longword and quadword reads are supported to HPC CSR
registers and RAM.



         Functional Description   4-21

All accesses to the map RAM and PRESENT or MCTL registers are per-
formed by HPC 0, which is defined by both of its HPC ID<1:0> H pins be-
ing driven low.  Map RAM reads and writes and PRESENT or MCTL regis-
ter reads and writes are executed by first arbitrating for the UP_BUS. 
When a grant is received, the map address and command (command only if
a PRESENT register read or MCTL write)  are driven on to the UP_BUS
for two cycles.  If the command is a map RAM write, the write data is
driven on the UP_BUS in the next cycle.  Map RAM control logic external
to the HPC write the data into the selected map RAM location.  The PCIA
supports unmasked longword and quadword map RAM writes only.  Byte
and word writes to the map RAM are not supported and are converted to
longword writes.  Only longword writes to the MCTL register are sup-
ported.

Map RAM reads and PRESENT register reads are executed by first driving
the command and address on to the UP_BUS.  Longword and quadword
reads of the map RAM are supported.  Only longword reads of the PRE-
SENT register are supported.  Quadword reads will return the PRESENT
register data in both longwords of the status packet.  In the cycle following
the last address cycle on the UP_BUS, HPC 0 tristates its drivers.  The
map control logic drives read data on to UP_BUS<31:0>  three cycles after
the command was present on the UP_CTL <3:0> signals.  The HPC then
writes the data into the CPU read return RAM.

The outstanding MBX/CSR command is loaded on the Up Hose FIFO and
when it reaches the top, the HPC arbitrates for the UP_BUS to return the
Up Hose status packet.  All write commands regardless of the destination
return a status packet to the I/O port by the Up Hose after all data has
been transferred to/from the destination.  This is done to maintain flow
control with the I/O port and avoid having data overwritten with new
Down Hose write data.  All reads that have data stored in the CPU read
return RAM return the data in an Up Hose status packet.  

4.2.6  DMA Transactions

DMA transactions start with the HPC’s target state machine sampling the
PCI bus for an address phase.  When an address phase is detected, the ad-
dress is latched and decoded to determine if system memory is the target
of the transaction.  If system memory is the target and the transaction is a
write and if there is a DMA write buffer available, data is written into the
buffer with a target disconnect occurring at a memory block boundary if
necessary.

For accesses to an address window that is direct mapped, the HPC uses
the TBASE CSR contents as the upper DMA address bits as described ear-
lier in this chapter and in Chapters 2 and 3.

For accesses to an address window that has scatter/gather address map-
ping enabled, the address is compared with all the entries in the scat-
ter/gather cache and if a match is found, the cache data is used as the
translation page.  If a miss occurred, the map RAM index is extracted from
the DMA address and a request for the UP_BUS is made.  When a grant is
received, the map RAM index and a map RAM read command are driven
on to the UP_BUS.  The map RAM entry is latched from the UP_BUS and
is used as the translation page.  The latched map RAM entry and the map
RAM index are also loaded into the cache.  When the entire DMA com-
mand has been fully received from the PCI bus, it is loaded in to the Up
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Hose command FIFO where it generates an Up Hose request when it
reaches the top of the FIFO.

Upon receiving an UP_BUS grant during a DMA write, the direct or trans-
lated command/address is driven on to the bus followed by a longword of
write data and byte mask each cycle.  The Up Hose DMA address is deter-
mined by the PCI DMA address and the size of transfer.  The Up Hose
DMA address is generated from the PCI address such that a minimum
size, single Up Hose packet transfer occurs.

A DMA read will similarly drive the Up Hose command and address on to
the UP_BUS.  The Up Hose DMA read address is the address of the mem-
ory block being accessed.  All DMA reads sent to the Up Hose bus are the
length of the memory block size.  The tag field of the DMA command is
loaded with the HPC ID code so that the Read Data Return packet can be
detected by the HPC.  Read return data is received on the Down Hose bus
and is latched into the HPC’s PCI read return RAM.  When the cut-
through threshold is reached,  data is returned to the PCI bus up to the
memory block boundary, where a target disconnect will occur if necessary.
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4.3  PCIA Interrupts

The PCIA supports 48 hardware PCI device interrupts, and it generates
error interrupts for PCI bus errors and PCIA-generated errors.  Each HPC
contains the interrupt handling logic for its PCI bus and executes the in-
terrupt requests independent from the other HPCs.  All EISA interrupts
are reported by PCI interrupts from the PCI-to-EISA bridge.  The bridge
module contains logic that combines and prioritizes EISA interrupts into
one PCI interrupt.

4.3.1  PCI Interrupts

4.3.1.1 PCI Device Interrupts

The PCIA supports only one interrupt priority level (IPL) for hardware de-
vice interrupts.  The device IPL is defined in each HPC’s IMASK register,
bits <20:17>, and is initialized by software.  Bits <20:17> must be set to
the same value in each of the three HPCs.  A PCI device interrupt when
driven to an HPC is converted to an Up Hose INTR/IDENT packet.  The
format of the packet is shown in Figure 4-1.

Figure 4-1 INTR/IDENT Packet

4.3.1.2 PCI Error Interrupts

The PCIA also supports only one IPL for error interrupts.  The error IPL is
also defined in each HPC’s IMASK register <24:21> and is initialized by
software.  The error IPL, bits <24:21>, must be set to the same value in
each of the three HPCs and must not be set to the same value as the device
IPL bits <20:17>.  Error interrupts are sent over the Up Hose as
INTR/IDENT packets.  The IPL for error interrupts must be set higher
than the IPL for hardware device interrupts. 

4.3.2  Hose Interrupt Support

The hose interface provides support for transferring interrupts to the CPU. 
When the HPC receives a hardware device interrupt, it merges the se-
lected interrupt vector and the IPL level into an INTR/IDENT packet as
shown in Figure 4-1.  The HPC then inserts the interrupt on an Up Hose
command queue.  The command queue is processed FIFO, except for error
interrupts which have priority.  When the interrupt reaches the top of the
queue, the UP_BUS is requested if no outstanding INTR/IDENT of the
same IPL already exists. When a grant is issued to the HPC, the
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INTR/IDENT packet is then sent to the I/O port and status of the out-
standing interrupt is sent to each of the HPCs by the UPSTS<1:0> L sig-
nals. Bit <31> of the first longword of the INTR/IDENT is set if it is an
error interrupt and it is clear if it is a device interrupt. This bit is used by
the PCIA module only and is a don’t care to the I/O port.

No attempt is made to prioritize hardware interrupts between the HPCs. 
Up Hose arbitration is used to determine the order of interrupt servicing
between PCI buses.  When one HPC sends a device interrupt up the hose,
the other HPCs are blocked from sending device interrupts until an inter-
rupt status packet is decoded on the Down Hose.  To prevent an interrupt
from being delayed indefinitely, an HPC that has an interrupt ready for
the UP_BUS will count the number of times it fails in an attempt to send
an interrupt.  When it counts 16 failures, it asserts a lockout signal
(HPC_ILCKO L) to the other HPCs.  Once the lockout signal is asserted,
an HPC will issue no more than one device interrupt and one error inter-
rupt on the Up Hose before ceasing to arbitrate for the UP_BUS.  This
mechanism allows the "locked out" HPC to successfully arbitrate for the
bus, send its interrupt packet, and deassert the lockout signal.  Note that
the lockout may be asserted simultaneously by more than one HPC.  

When an Interrupt Status Return packet is received from the I/O port, it is
sent to each HPC.  This provides the flow control that allows the PCIA to
send another INTR/IDENT packet over the Up Hose at the same IPL.  The
format of the Interrupt Status Return packet is shown in Figure 4-2.

Figure 4-2 Interrrupt Status Return Packet

4.3.3  Vectored Interrupts

4.3.3.1 PCI Device Interrupts

Each of the four PCI I/O cards on a PCI bus segment can generate four PCI
device interrupts; thus, a total of 16 PCI device interrupts can be received
from one bus segment.  The HPC latches any interrupt signal and stores it
in one of 16 interrupt-pending flops.

The pending flop outputs are prioritized to determine which interrupt to
service.  An interrupt’s priority is determined by the PCI slot of the card,
and the priority of the interrupts on that card.  Slot 0 of a PCI bus gener-
ates the highest priority hardware interrupts, while slot 3 generates the
lowest.  PCI INTA is the highest priority interrupt on a card while PCI
INTD is the lowest priority interrupt.  Table 4-11 shows the interrupt pri-
ority scheme for interrupts from a single PCI bus.

On physical PCI segment 0,  four of the HPC interrupt inputs are also con-
nected to interrupts from PCI devices on the standard I/O module, as de-
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scribed in Chapter 6.  When the standard I/O module is installed, its de-
vices have the highest priority on PCI 0.  

Table 4-11 PCI Interrupt Priority with and without the Standard I/O Module

Each HPC contains 16 hardware interrupt vector registers, with each one
assigned to a different interrupt signal.  The interrupt vectors are initial-
ized by software.  

4.3.3.2 PCI Error Interrupts

Each HPC independently detects errors and generates interrupts based on
these errors.  To ensure that error conditions are reported before any ac-
companying device interrupt, the HPC gives error interrupts priority over
all other Up Hose traffic.  Error interrupts are always inserted at the head
of the HPC’s internal Up Hose queue.

The IPL settings are provided for the I/O port and CPU’s use and to main-
tain flow control between the PCIA and the I/O port.   When a grant is is-
sued to the HPC, the INTR/IDENT is sent to the I/O port and status of the
outstanding interrupt is sent to each of the HPCs over UP_STS<1:0>.  

No attempt is made to prioritize error interrupts between the PCI buses. 
Up Hose arbitration is used to determine the order of error interrupt serv-
icing between PCI buses.  Since each HPC detects errors independently,
each HPC generates its own interrupt for the error.  The vector transmit-
ted in the INTR packet is obtained from the HPCs ERRVEC CSR bits
<15:0>.  Software can distinguish which HPC generated the error inter-
rupt from the interrupt vector and is responsible for clearing all bits of the
HPC’s error register when it services an error interrupt.

When an Error Interrupt Status Return packet is received over the Down
Hose,  it is sent to each of the HPCs.  This provides the flow control that

PCI Slot without
Standard I/O

INT without
Standard I/O

PCI Slot with
Standard I/O Priority

0 A Std I/O NMI
Highest

0 B Std I/O EISA
bridge

0 C
0 D Not used
1 A Not used
1 B Tulip
1 C Not used
1 D Not used
2 A Not used
2 B Not used
2 C Not used
2 D Not used
3 A Not used
3 B Not used
3 C Not used
3 D Not used Lowest
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allows the PCIA to send another INTR/IDENT over the Up Hose at the er-
ror IPL.  Below is a list of errors that can cause error interrupts to the
CPU.  Errors that occur asynchronous to the CPU generate an error inter-
rupt.  Asynchronous errors occur during the execution of CPU-initiated
write commands or during the execution of DMA transactions.  Errors that
occur during CPU-initiated reads are synchronous to the CPU and do not
generate interrupts.

• Mailbox Illegal Length Error

• Mailbox Parity Error

• CSR Overrun Error

• CSR Parity Error

• DMA Read Return Illegal Length Error

• DMA Read Return Data Parity Error

• DMA Map RAM Parity Error

• DMA Map RAM Invalid Entry Error

• PCI Data Parity Error

• PCI Write Parity Error

• PCI Target Abort Error

• PCI Target Disconnect Error

• PCI Nonexistent Address Error

• PCIA Illegal CSR Address Error

• PCIA Map RAM Parity Error

• PCI SERR_L Asserted Error

4.3.3.3 Masking PCI Interrupts

Both PCI device interrupts and PCIA error interrupts can be masked
through each HPC’s  IMASK register.  PCI device interrupts are individu-
ally masked by clearing any of bits <15:0> of the register.  All PCIA error
interrupts can be masked through a single error interrupt enable bit, bit
<16>.  Error interrupts are not generated to the CPU when the interrupt
enable bit is clear. See Chapter 3 for a description of the PCIx Error Sum-
mary Register and the PCIx Interrupt Mask Register.

4.3.3.4 EISA Interrupts

EISA device interrupts and error interrupts from the PCI-to-EISA bridge
are reported through a single PCI interrupt.  The device interrupts are
masked and prioritized in the standard I/O module.  The EISA Non-
Maskable Interrupt (NMI) input from the PCI-to-EISA bridge is routed to
a second PCI interrupt.

EISA device interrupts are consolidated by a tree of five 8259 interrupt
controllers located on the standard I/O module.  The controllers are wired
in a master/slave configuration.  When an EISA interrupt is pending, the
master 8259 asserts an interrupt line to the HPC.  The HPC sends an
INTR/IDENT packet on the Up Hose with a vector corresponding to the as-
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serted HPC input.  The interrupt handler responds by reading the stan-
dard I/O IACK register.  Only one read operation is necessary, since the
standard I/O module contains the logic to generate the dual IACK pulses
required by the 8259 tree.  The data returned by the CSR read indicates
which 8259 input was asserted.  Refer to the 8259 data sheets for more in-
formation.

4.3.4  Diagnostic Features

4.3.4.1 Interrupt Pending Registers

Each HPC contains an Interrupt Pending Register that assigns a bit to
each of the 16 hardware interrupts and the error interrupt.  When an in-
terrupt is received, the corresponding pending bit is set.  The bit remains
set until the interrupt is sent to the Up Hose as an INTR/IDENT packet at
which time it is cleared.  The register bit descriptions of the IPENDx CSR
are shown in Table 4-12.

Table 4-12 Interrupt Pending Register Bit Definitions

4.3.4.2 Interrupt in Progress Registers

Each HPC contains an Interrupt in Progress Register, which is used to in-
dicate the interrupt currently outstanding to the I/O port for which
an interrupt status packet has not yet been returned.  The Interrupt in
Progress Register is cleared when the Interrupt Status Return packet is
received on the Down Hose.  Bit <5> of the register is set if an error inter-
rupt is outstanding.  Bit <4> is set if a hardware device interrupt is out-
standing to the I/O port.  Bits <3:0> indicate the PCI device interrupt that
is outstanding.  See the description of the IPROGx register in Chapter 3.

Bit Without Standard I/O With Standard I/O
16 Error Error
15 Slot 3 INTD Not used
14 Slot 3 INTC Not used
13 Slot 3 INTB Not used
12 Slot 3 INTA Not used
11 Slot 2 INTD Not used
10 Slot 2 INTC Not used
 9 Slot 2 INTB Not used
 8 Slot 2 INTA Not used
 7 Slot 1 INTD Not used
 6 Slot 1 INTC Not used
 5 Slot 1 INTB Not used
 4 Slot 1 INTA Tulip
 3 Slot 0 INTD Not used
 2 Slot 0 INTC Not used
 1 Slot 0 INTB EISA Bridge
0 Slot 0 INTA NMI
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Chapter 5

Error Handling

5.1  Error Categories

There are two error categories:  fatal and nonfatal.  A fatal PCIA error is
any error that invalidates the mailbox/CSR, DMA, or interrupt flow control
mechanisms between the PCIA and the I/O port.  Fatal errors can only be
cleared by a full reset of the PCIA adapter.  The Hose Error LED at the
hose connection to the PCIA is lit when a fatal error is detected on the
PCIA.

Nonfatal PCIA errors are errors that do not invalidate the flow control
mechanisms.  Any nonfatal error that occurs asynchronous to the CPU
causes an error interrupt to be sent to the CPU.   Asynchronous errors can
occur during disconnected CPU-initiated write operations and during DMA
operations.  Errors that occur synchronous to CPU execution during CPU-
initiated reads do not generate an interrupt but instead are indicated by
sending a Read Data Return packet with error status to the I/O port.  If
the read was through a direct CSR access, the I/O port reports the error to
the CPU by writing to the CSR Read Error Return register, which in turn
triggers an interrupt through machine check vector 0x660.  If the read was
through a mailbox, the mailbox ERR will be set to indicate that an error
occurred.

Nonfatal errors that occur during the execution of a CPU-initiated transac-
tion can occur before or after an HPC or PCI destination is selected.   Er-
rors that occur before a destination is selected set an error bit in all the
HPCs and cause an interrupt to be generated to the CPU.  Since HPCs de-
tect errors independently, each HPC generates its own interrupt.  How-
ever, only a single Up Hose status packet is returned by the default HPC,
HPC 0.  An error that occurs on a CPU-initiated command after the desti-
nation is selected sets an error bit in the destination HPC.   In this case,
however, the Up Hose status packet is sent by the HPC that detects the
error.   Additionally, if the command is a write, an interrupt is generated
to the CPU.

An HPC, upon detecting a nonfatal error, returns to its normal operating
state after reporting the error to the CPU.  No action is required by soft-
ware to reenable PCIA operation after a nonfatal error.

5.2  Down Hose Header Cycle Parity Error

There is only one Down Hose error.  The first cycle of any Down Hose
packet that contains the command field bits <13:12> is the header cycle.  
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Any parity error that is detected on this cycle by any of the HPCs causes a
fatal error since the command cannot be decoded.   The HPC that detects
the error asserts ERROR_L on the Up Hose.   All HPCs monitor the state
of the ERROR_L signal to determine whether packets can be transmitted
and received over the hoses.   Once ERROR_L is asserted, it remains as-
serted until a Down Hose reset is performed.

5.3  Mailbox Errors

Mailbox Illegal Length Error

Mailbox packets are eight longwords in length.  A mailbox illegal length
error occurs when the packet is not eight longwords long.   This nonfatal
error is detected before a destination is selected.   Upon detecting this er-
ror, the HPC sets bit <1> of its error register.   If error interrupts are en-
abled, an INTR/IDENT packet is sent to the I/O port.

Mailbox Parity Error

Any parity error detected on the second through eighth cycle of the Mail-
box Command packet is a mailbox parity error.   This is a nonfatal error,
which is detected before a destination is selected.  Upon detecting this er-
ror, the HPC sets bit <2> of its error register.   If error interrupts are en-
abled, an INTR/IDENT packet is sent to the I/O port.

5.4  CSR Command Errors

CSR Overrun Error

The maximum size of a Down Hose CSR command is 18 cycles.   Any CSR
packet that exceeds 18 cycles in length causes a CSR overrun error.   This
is a nonfatal error, which is detected before a destination is selected.  
Upon detecting this error, the HPC sets bit <3> of its error register.   If
error interrupts are enabled, an INTR/IDENT packet is sent to the I/O
port.

CSR Packet Parity Error

A CSR packet parity error occurs when a parity error is detected on a non-
header CSR cycle.   This is a nonfatal error, which is detected before a des-
tination is selected.   Upon detecting this error, the HPC sets bit <4> of its
error register.   If error interrupts are enabled, an INTR/IDENT packet is
sent to the I/O port.

5.5  DMA Errors

DMA Read Data Return Parity/Length Error

This error occurs if a parity error is detected on a data longword of a DMA
Read Data Return packet or if the packet has fewer than the expected
number of longwords.   Since the read data is returned to the PCI master
in a cut-through fashion, the HPC passes the bad data and parity on to the
PCI bus.  This is done for both cut-through and store and forward opera-
tions.  The HPC sets bit <6> of the error register and generates an error
interrupt to the CPU if error interrupts are enabled.   The PCI address of
the failing DMA transaction is stored in the Failing Address CSR.
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DMA Read Data Return Error

A DMA read data return error occurs when the error bit is set in the Down
Hose Read Data Return packet.   This error is not logged in the HPC nor is
an error interrupt generated since the error occurred upstream on the read
and was detected by the I/O port or a memory module.   The HPC issues a
target abort to the PCI master for this error.   

DMA Map RAM Parity Error

A DMA map RAM parity error occurs when map RAM read data is re-
turned to the HPC with bad parity during the scatter/gather address
translation of a DMA access.   If the operation is a DMA write, the HPC
has already buffered the entire DMA packet, and therefore cannot issue a
target abort to the PCI master.   The write data is discarded.  Bit <7> of its
error register is set and an error interrupt is generated to the CPU if error
interrupts are enabled.  The error interrupt is guaranteed to go up the
hose before any subsequent transactions from the PCI device.

Since the DMA write is disconnected from its PCI master,  the master re-
ports a successfully completed data transfer after finishing the DMA
stream.  If the operating system cannot associate the PCIA error interrupt
with a subsequent I/O completion, then the system must crash when this
error is detected.

If the operation is a DMA read, a target abort is issued to the PCI master.  
Bit <7> of the error register is set, and if error interrupts are enabled, an
interrupt is generated to the CPU.   When the PCI master is aborted, it
also sets bit <12> in its status register in PCI configuration space.  In both
read and write transactions, the PCI address of the failing DMA transac-
tion is stored in the Failing Address CSR.   

DMA Map RAM Invalid Entry Error

A DMA map RAM invalid entry error occurs if, during a map RAM read,
bit <1> of the entry is a zero.   If the operation is a DMA write, the HPC
has already buffered the entire DMA packet, and therefore cannot issue a
target abort to the PCI master.   The write data is discarded.  Bit <8> of
the error register is set, and an error interrupt is generated to the CPU if
error interrupts are enabled.  The error interrupt is guaranteed to go up
the hose before any subsequent transactions from the PCI device.

Since the DMA write is disconnected from its PCI master, the master re-
ports a successfully completed data transfer after finishing the DMA
stream.  If the operating system cannot associate the  PCIA error interrupt
with a subsequent I/O completion, then the system must crash when this
error is detected.

If the operation is a DMA read, a target abort is issued to the PCI master.  
Bit <8> of the error register is set, and if error interrupts are enabled, an
interrupt is generated to the CPU.   When the PCI master is aborted, it
also sets bit <12> in its status register in PCI configuration space.  In both
read and write transactions, the PCI address of the failing DMA transac-
tion is stored in the Failing Address CSR.
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5.6  PCI Errors

PCI Address Parity Error

A PCI address parity error occurs if an HPC as a target detects a parity
error on a PCI address phase.  The HPC that detects this error sets bit <9>
of its error register and generates an error interrupt to the CPU if error
interrupts are enabled.  If other PCI nodes detect the same error, this bit
may be set in conjunction with the PCI SERR_L asserted error.

PCI Data Parity Error

A PCI data parity error is detected if an HPC as a master detects a parity
error on a PCI read data phase or if the HPC as a master detects the asser-
tion of PERR_L by another PCI node during a write.  Bit <10> of its error
register is set, and the HPC that detects this error returns an Up Hose
status packet with the error bit set to the I/O port.  On reads, the I/O port
recognizes the error bit, and triggers a machine check error.  On writes,
the I/O port ignores the error bit.  An error interrupt is generated to the
CPU if the operation is a write and error interrupts are enabled.

PCI Write Parity Error

A PCI write parity error is detected if an HPC as a target detects a parity
error on a PCI write data phase.   The HPC allows the DMA logic to re-
ceive data from the PCI but asserts PERR L two cycles after the data
phase.  This causes the transaction to be dropped.  The HPC sets bit <11>
of its error register and generates an error interrupt to the CPU.   The PCI
address of the failing DMA transaction is stored in the Failing Address
CSR.

PCI Target Abort Error

A PCI target abort error is detected if a transaction with HPC as a master
is aborted by a PCI target.   Bit <12> of its error register is set, and the
HPC that detects this error returns an Up Hose status packet with the er-
ror bit set to the I/O port.  On reads, the I/O port recognizes the error bit
and triggers a machine check error.  On writes, the I/O port ignores the er-
ror bit.  An error interrupt is generated to the CPU if the command is a
write and if error interrupts are enabled. This error can indicate corrupted
data and should result in a system crash.

PCI Target Disconnect Error

A PCI target disconnect error occurs if an HPC as a master is disconnected
by a target in consecutive retries to the same longword up to the limit
specified in the HPC’s RETRY CSR.  Bit <13> of its error register is set,
and the HPC that detects this error returns a status packet with the error
bit set to the I/O port.  On reads, the I/O port recognizes the error bit and
triggers a machine check error.  On writes, the I/O port ignores the error
bit.  An error interrupt is generated to the CPU if the command is a write
and if error interrupts are enabled.

PCI Nonexistent Address Error

A PCI nonexistent address error occurs when no HPC as master detects
the assertion of PCI DEVSEL_L on any of the three PCI buses in response
to a valid address phase.   In this case, HPC 0 sets bit <14> of its error reg-
ister and returns a status packet with the error bit set to the I/O port.  On
reads, the I/O port recognizes the error bit and triggers a machine check
error.  On writes, the I/O port ignores the error bit.  An error interrupt is
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generated to the CPU if the command is a write and error interrupts are
enabled.

PCI SERR_L Asserted Error

A PCI SERR_L asserted error occurs when an HPC detects the assertion of
the PCI SERR_L signal by any PCI device.  This signal may be asserted
when the device detects a PCI address parity error, a data parity error on
a PCI special cycle, or any other error condition the device considers cata-
strophic.  Bit <18> is set, and the HPC that detects the signal generates an
error interrupt to the CPU if error interrupts are enabled.   The PCI device
that asserts SERR L sets bit <14> in its status register in PCI configura-
tion space.

PCI Disconnected Master Abort Error

This error occurs when the HPC detects a master abort on a PCI bus dur-
ing an I/O window or mailbox transaction, and the transaction was previ-
ously claimed and disconnected by a node on that PCI bus.  The HPC is
thus unable to complete a PCI burst that had been successfully started and
disconnected.  The HPC sets bit <5> of its error register and generates an
error interrupt to the CPU if error interrupts are enabled.  The most likely
cause for this error is an incorrectly configured PCI device or software that
performs a multi-longword access across the end of a range of device CSRs.  

PCI Incremental Latency Exceeded

This condition is indicated when the PCIA as a PCI target is performing a
burst transaction, and the PCIA must stall more than eight PCI cycles be-
tween driving adjacent data cycles on the bus.  This violates a PCI guide-
line, and indicates that the PCIA is encountering excessive latency in ac-
cessing main memory.  This is not considered an error condition.  Bit <17>
is set by the HPC that detects the condition. The PCI transaction com-
pletes normally, and no interrupt is generated.  This condition is detected
to aid in configuring the DMA behavior of the PCIA.

5.7  PCIA Errors

PCIA Command Overflow Error

A PCIA command overflow error occurs if the PCIA detects a Down Hose
CPU-initiated command packet while all of its Down Hose CPU command
buffers are full.  This is a fatal error. The PCIA asserts ERROR_L on the
Up Hose.   All HPCs monitor the state of the ERROR_L signal to deter-
mine whether packets can be transmitted and received over the hoses.  
Once ERROR_L is asserted, it remains asserted until a Down Hose reset is
performed.

PCIA Illegal CSR Address

A PCIA illegal CSR address occurs when a CPU-initiated command packet
addresses an invalid HPC CSR location.   Bit <15> of the HPC’s error reg-
ister is set, and the HPC that detects this error returns a status packet to
the I/O port with the error bit set.  An error interrupt is generated to the
CPU if the command is a write and error interrupts are enabled.

PCIA Map RAM Parity Error

A PCIA map RAM parity error occurs when a CPU-initiated read com-
mand to the map RAM returns data with bad parity.   Bit <16> of the
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HPC0’s error register is set and the status packet is returned with the er-
ror bit set to the I/O port.

5.8  Up Hose Packet Count Error

There is only one Up Hose error.  An Up Hose packet count error occurs
when any HPC detects an underflow or overflow condition on its Up Hose
packet counter.   This is a fatal error.   The HPC asserts ERROR_L on the
Up Hose.   All HPCs monitor the state of the ERROR_L signal to deter-
mine whether packets can be transmitted and received over the hoses.  
Once ERROR_L is asserted, it remains asserted until a Down Hose reset is
performed.

5.9  PCI Peer-to-Peer Errors

Since any PCI device can function as both a master and a target, there
may be transactions on the PCI that do not involve the HPC.  In these
cases the HPC is a bystander and does not directly detect some errors.

If a parity error occurs on a PCI address cycle, it is impossible to tell which
device was being addressed.  The HPC detects the error, asserts SERR L
on the bus, and generates an error interrupt as described above.  It is
likely other PCI devices will also detect the error and assert SERR L, pro-
vided they have error reporting enabled.  

If a parity error occurs during a PCI data cycle, and the HPC is not partici-
pating in the transaction, the error will not be detected by the HPC.  In-
stead, it is detected by the PCI device involved.  That device will then re-
port the error through its interrupt, provided the device has parity error
reporting enabled.

5.10  PCI Configuration Errors

It is possible for software to erroneously configure two PCI devices to re-
spond to overlapping address ranges.  This will cause bad and potentially
unpredictable things to happen.  If both devices are on the same physical
PCI segment, they will both attempt to respond to an address.  In the
worst case, this could cause physical damage if two devices try to drive a
PCI bus signal to opposite values.

If the devices are on different physical PCI segments, a single host-
initiated request will receive two replies.  Eventually, this will cause an
I/O port module error when the hose flow control counters underflow. 
However, depending on the dynamics of the hose traffic, many transactions
could occur before the error is detected. 
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Chapter 6

PCI to EISA Bridge

The PCIA supports an EISA bus using the standard I/O module.  The mod-
ule provides connectivity to eight EISA slots by an INTEL 82375EB PCI-
EISA Bridge Component (PCEB) and the 82374EB EISA System Compo-
nent (ESC), also known as the Mercury chipset.  The EISA bridge module
plugs into a special, dedicated slot on PCI segment 0.

The PCEB is a fully buffered bidirectional interface between the PCI bus
and the EISA bus.  The PCEB also offers PCI arbitration logic which is not
used in the PCIA implementation.  The ESC adds EISA bus control and
arbitration. 

The standard I/O module includes an integrated PCI I/O Ethernet port
(Tulip chip). The XBus includes chips that provide PC-style serial, parallel,
floppy, keyboard, and mouse ports, plus NVRAM, real time clock, and Eth-
ernet address ROM.  A cascade of 8259 interrupt conrtrollers prioritize in-
terrupts from EISA and XBus sources.

The Ethernet port is usable directly.   Support for the other ports requires
an internal cable and bulkhead that occupies the adjacent PCI/EISA ex-
pansion slot.

Support for the various functions of the standard I/O module is operating
system dependent.

6.1  PCI and EISA Subsystem Block Diagram

The EISA eight-slot subsystem consists of the PCI-EISA bridge chipset at-
tached to one PCI bus.  Figure 6-1 shows this structure.   The bridge chips
are on a module installed in a dedicated slot on PCI segment 0.  
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Figure 6-1 PCI and EISA Subsystem

6.2  PCI-EISA Bridge Chipset

Figure 6-2 shows the functional division between the two components of
the INTEL PCI-EISA bridge chipset.  The PCEB contains most of the PCI
interface as well as the entire datapath connection between the two buses. 
The ESC manages the EISA and ISA protocol and helps to control the
EISA side of the PCEB datapath.
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Figure 6-2 PCI-EISA Bridge Chip Function

6.3  Address Mapping

6.3.1  PCI to EISA

The standard I/O module "resides" within the bottom 64 Kbytes of the PCI
I/O space.  The bridge can be configured to pass additional PCI address
ranges through to the EISA bus.  Any PCI transaction that addresses the
bottom 64 Kbytes of PCI I/O space and does not receive a DEVSEL# is sub-
tractively decoded by the PCEB and passed on to the EISA bus.  Refer to
the PCEB Specification for additional information on subtractive decoding.

Table 6-1 PCI to EISA Address Mapping

PCEB ESC
PCI Interface
PCI Arbiter
PCI Line Buffers
Data Swap Logic
EISA Interface
BIOS Timer

DMA/Scatter-Gather
Interrupt Control (2x82C59)
Timer (2x82C54)
EISA Bus Control
EISA Arbiter
X Bus Control

PCI

EISA

BXB0588-94

CPU Address Range PCI Address Range PCI Address Space
x2.0000.0000 - x2.0001.FFFF 0000.0000 - 0000.0FFF EISA bridge registers and 

XBus addressing
x2.0002.0000 - x2.0003.FFFF 0000.1000 - 0000.1FFF EISA slot 1
x2.0004.0000 - x2.0005.FFFF 0000.2000 - 0000.2FFF EISA slot 2
x2.0006.0000 - x2.0007.FFFF 0000.3000 - 0000.3FFF EISA slot 3
x2.0008.0000 - x2.0009.FFFF 0000.4000 - 0000.4FFF EISA slot 4
x2.000A.0000 - x2.000B.FFFF 0000.5000 - 0000.5FFF EISA slot 5
x2.000C.0000 - x2.000D.FFFF 0000.6000 - 0000.6FFF EISA slot 6
x2.000E.0000 - x2.000F.FFFF 0000.7000 - 0000.7FFF EISA slot 7
x2.0010.0000 - x2.0011.FFFF 0000.8000 - 0000.8FFF EISA slot 8
x2.0012.0000 - x2.001F.FFFF 0000.9000 - 0000.FFFF Available for remaining PCI

 options
x2.0020.0000 - x2.1FFF.FFFF 0001.0000 - 00FF.FFFF PCI I/O space - Sparse mapping

(fixed)
x2.2000.0000 - x2.FFFF.FFFF 0100.0000 - 07FF.FFFF PCI I/O space - Sparse mapping

(variable)



6-4   PCI to EISA Bridge

6.3.2  EISA to PCI

The PCI-EISA bridge passes all EISA traffic to the PCI side with the ex-
ception of a fixed "hole" between 0008 0000 and 0010 0000 (512 to 1024
Kbytes) and a programmable hole.  EISA devices require the fixed hole’s
address range to be served locally (that is within the EISA subsystem) for
backward compatibility with ISA PC systems.  The programmable hole
may be used if an EISA device has EISA addressable memory.

6.4  Bridge Buffers

The PCEB buffers packets in both directions.  Four line buffers (LBs), each
capable of holding 16 bytes of data, smooth write data flow from EISA to
PCI or read data flow from PCI to EISA.  Strict ordering is maintained. 
These buffers are flushed and bypassed for PCI interrupt acknowledge cy-
cles.  The bridge chipset automatically controls the flushing of line buffers
as necessary.  Note that an additional form of buffering, posted write buff-
ers, are no longer supported by the Mercury chipset.

6.5  Interrupts

Interrupt lines from the EISA and XBus devices are connected to the 8259
interrupt controller tree on the standard I/O module.  The outputs of the
master 8259 are connected to the HPC for PCI segment 0.  Table 6-2 shows
the interrupt connections.  The HPC interrupt pin determines the inter-
rupt priority, with interrupt 0 being the highest.

Table 6-2 EISA Bridge and Standard I/O Interrupt Connections

EISA and standard I/O device interrupts are consolidated and prioritized
by a tree of five 8259 interrupt controller chips.  The interrupt sources are
connected as shown in Table 6-3.   When an EISA interrupt is pending, the
master 8259 chip asserts an interrupt line on the HPC, as shown above.  
The interrupt vector for the HPC interrupt points to an operating system
EISA interrupt dispatcher.  The dispatcher must perform a CSR read of
the Standard I/O IACK register to obtain the identity of the interrupt
source.  Reading the IACK register generates a pair of IACK pulses needed
by the 8259s.  

A passive release condition is indicated by an interrupt through request
line 7 on the master 8359, with no corresponding interrupt indicated in the
8259’s Interrupt Status Register.

Device HPC INTR Pin Shared With 
EISA Bridge Nonmaskable Interrupt (NMI) 0 PCI Bus 0 Slot 0 - INTA
EISA Bridge Device and Internal Interrupts 1 PCI Bus 0 Slot 0 - INTB
Standard I/O Ethernet chip (Tulip) 4 PCI Bus 0 Slot 1 - INTA
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Table 6-3 Standard I/O EISA Interrupt Assignments

6.6  EISA Bus Lock

The EISA DSSI option requires the use of bus locks.  This option can as-
sert EISA LOCK to perform atomic operations to the VAXport command
queue headers.  The PCEB chip passes on the lock state by asserting
PCILOCK when it arbitrates for and wins ownership of the PCI bus.  The
PCILOCK signal must be asserted in the cycle following the address phase. 
The HPC monitors the PCILOCK line and if it sees that the PCEB chip
has asserted that signal during a read command, it converts the read to an
IREAD on the Up Hose.  When the quadword of read data returns, the
HPC passes the data on to the PCEB which in turn forwards the data to
the EISA adapter.  The EISA adapter deasserts EISA LOCK at this point
so that PCILOCK may be released by the PCEB.  The EISA adapter then
examines the lowest order bit in the quadword and decides whether it has
gained access to the shared resource based on the state of the least signifi-
cant bit.  A one indicates that another device or a CPU currently owns the
lock variable.  If this is the case, the adapter retries the EISA LOCK com-
mand.

Datapath buffering is disabled by the PCEB during EISA LOCK opera-
tions.

8258 Interrupt  line Function
Master 0 ESC chip interrupt (DMA and timers)

1 Cascade from Slave 0
2 Reserved
3 Cascade from Slave 1
4 Cascade from Slave 2
5 Cascade from Slave 3
6 Reserved
7 Reserved for passive release

Slave 0 0 Not used with PCIA
1 Not used with PCIA
2 Tulip Ethernet port
3 Mouse
4 Not used with PCIA
5 Not used with PCIA
6 Keyboard
7 Floppy disk controller

Slave 1 0 Serial port 2
1 Parallel port
2 EISA IRQ 3
3 EISA IRQ 4
4 EISA IRQ 5
5 EISA IRQ 6
6 EISA IRQ 7
7 Serial port 1
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6.7  Lockout Prevention

The PCIA and KFTIA/KFTHA process commands in the order they are
presented.  No buffers in the PCIA require special flushing or synchroniza-
tion between the read and write transactions, so no special steps are
needed to prevent lockout between the PCI and EISA subsystems.

6.8  Configuration Rules

The PCIA has 12 expansion slots (card cage positions) that can hold expan-
sion modules.  Eight of these positions are equipped with both EISA and
PCI connectors, and can accommodate either type of module.  Table 6-4 
shows the slot usage when the standard I/O module is installed.

The standard I/O module shares PCI bus resources with some of the PCI
adapter module slots.  The EISA bridge occupies the configuration space
addresses also used by PCI slot 0, as described in Chapter 2.  The EISA
bridge and standard I/O PCI devices use the interrupt lines that are also
used by PCI slots 0 and 1, as described above.  Therefore, PCI slots 0 and 1
must not be populated with PCI adapter modules when the standard I/O
module is installed.  Slot 0 is physically blocked by the standard I/O mod-
ule.  Console or diagnostic firmware is responsible for indicating an error
condition if both the standard I/O slot and PCI slot 1 are populated.  The
information required to perform this check is available in the PCIA PRE-
SENT register.  

If the standard I/O module is not present, all twelve slots are available for
PCI options.  If the standard I/O module is installed, there is one EISA-
only slot, seven PCI or EISA slots, and three PCI-only slots.

Table 6-4 Slot Usage with Standard I/O Module Installed

Bulkhead Position PCI Slot EISA Slot

0 Physically/electrically blocked by
standard I/O module

1 Electrically blocked by  standard
I/O module

0 (EISA position only)

2 2  (PCI position only)

3 3 1

4 4 2

5 5 3

6 6  (PCI position only)

7 7 4

8 8 5

9 9 6

10 10  (PCI position only)

11 11 7
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6.9  EISA Bridge Registers

The EISA bridge registers are given in the Intel 82420/82430 PCIset ISA
and EISA Bridges Databook, April 1993.  The PCI Adapter (PCIA) Engi-
neering Specification, February 1994, lists the EISA bride registers used
on the PCIA.   
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Appendix A

PCIA Supported Hose Packets

A.1  Down Hose Packets

Figure A-1 Interrupt Status Return Packet

31 20 19 16 15 14 13 12 11 10 9 4 3 08 7 6 5

0

12

0 0 0 0 0 0 0 0 0 0 0 IPL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BXB-0643A-94

DND <31:0>

1*

Bits <31:20> - Zero

Bits <19:16> - IPL

Bits <15:14> - Zero

Bits <13:12> - 00, Interrupt status return command.

Bits <11:0> - Zero
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Figure A-2 DMA Read Data Return Packet

31 24 23 22 13 12 11 10 08 7

TAG <7:0> E 0 0 0 0 0 0 0 0 0 0 1 0 LEN 0 0 0 0 0 0 0 0

BXB-0641A-94

DND <31:0>

1*




2




3






16




17

* = Clock cycle

14

LWDATA1 <31:0>

LWDATA2 <31:0>

LWDATA15 <31:0>

LWDATA16 <31:0>

Cycle 1   Bits <31:24> -  Tag <7:0>

Cycle 1   Bit   <23>      -  Error

Cycle 1   Bits <22:14> -  Zero

Cycle 1   Bits <13:12> -  01, DMA read return command.

Cycle 1   Bit   <11>      -  Zero

Cycle 1   Bits <10:8>   -  DMA length

Cycle 1   Bits <7:0>     -  Zero



Cycles 2 - 17   Bits <31:0>  -  Data longwords
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Figure A-3 Mailbox Command Packet

BXB-0599B-94

DND <31:0>

* = Clock cycle

Cycle 1   Bits <31>      -  Zero 

Cycle 1   Bit   <30>      -  Who am I bit

Cycle 1   Bits <29:15> -  Zero

Cycle 1   Bit   <14>      -  Read/Write bit.  0 is a Read, 1 is Write.

Cycle 1   Bits <13:12> -  10,  Indicates this is a mailbox command.

Cycle 1   Bits <11:4>   -  Zero

Cycle 1   Bits <3:2>     -  Byte Length Field. 

                                            00 = Byte

                                            01 = Word

                                            10 = Tribyte

                                            11 = Longword, if PCI byte address <1:0> = 00 and 

                                                    PCI address space <1:0> = 01, 10, or 11

                                            11 = Quadword, if PCI byte address <1:0> = 11 and 

                                                    PCI address space <1:0> = 01, 10, or 11

Cycle 1   Bits <1:0>     -  PCI Address Space Field <1:0>

                                             00 = Dense PCI Memory Space

                                             01 = Sparse PCI Memoy Space

                                             10 = Sparse PCI I/O Space

                                             11 = Sparse PCI Configuration Space



Cycle 2   Bits <31:16>  -  Hose number <15:0> 

Cycle 2   Bits <15:8>    -  Zero

Cycle 2   Bits <7:0>      -  Byte mask.  If bit is set, byte is masked.

                                                             If bit is clear, byte is written.



Cycle 3   Bits <31:0>    -  PCI byte address <31:0>



Cycle 4   Bits <31:0>    -  Zero



Cycle 5   Bits <31:0>    -  Data Longword 1 to be written



Cycle 6   Bits <31:0>     -  Data Longword 2 to be written



Cycle 7-8 Bits <31:0>   -  Zero

1 0

31 14 13 12 11 012

Zero Zero SPC

34

LEN

Bus Hose Number

PCI Byte Address <31:0>

Zero

1




2




3




4




5




6




7




8

30 29 15

0 W

16 78

Zero Mask

Write Data Longword 1

Write Data Longword 2

Zero

Zero
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Figure A-4 CSR Sparse Read Packet

BXB-0599-94

DND <31:0>

* = Clock cycle

PCI Byte Aligned Address <26:0>

Cycle 1   Bits <31:30> - Zero 

Cycle 1   Bit   <29:26> - Virtual ID of TLSB Commanding Node.  Indicates the CPU

                                       that is the source of the transaction.

Cycle 1   Bits <25:15> -  Zero

Cycle 1   Bit   <14>      -  Read/Write bit.  0 is a Read.

Cycle 1   Bits <13:12> -  11,  Indicates this is a CSR command.

Cycle 1   Bits <11:4>   -  Zero

Cycle 1   Bits <3:2>     -  Byte Length Field. 

                                            00 = Byte

                                            01 = Word

                                            10 = Tribyte

                                            11 = Longword, if PCI byte address <1:0> = 00 and 

                                                    PCI address space <1:0> = 01, 10, or 11

                                            11 = Quadword, if PCI byte address <1:0> = 11 and 

                                                    PCI address space <1:0> = 01, 10, or 11

Cycle 1   Bits <1:0>     -  PCI Address Space Field <1:0>

                                             00 = Dense PCI Memory Space

                                             01 = Sparse PCI Memoy Space

                                             10 = Sparse PCI I/O Space

                                             11 = Sparse PCI Configuration Space



Cycle 2   Bits <31:27>  -  Zero or the Memory Space Hardware Extension field of

                                             the PCIx CTL register 

Cycle 2   Bits <26:0>    -  PCI Byte Aligned Address <26:0>

0 0 VID W 1 1

31 30 29 26 25 15 14 13 12 11 012

Zero Zero SPC

34

LEN

27

HAXR
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Figure A-5 CSR Sparse Write Packet

BXB-0599A-94

DND <31:0>

* = Clock cycle

PCI Byte Aligned Address <26:0>

Cycle 1   Bits <31:30> - Zero 

Cycle 1   Bit   <29:26> - Virtual ID of TLSB Commanding Node.  Indicates the CPU

                                       that is the source of the transaction.

Cycle 1   Bits <25:15> -  Zero

Cycle 1   Bit   <14>      -  Read/Write bit.  0 is a Read.

Cycle 1   Bits <13:12> -  11,  Indicates this is a CSR command.

Cycle 1   Bits <11:4>   -  Zero

Cycle 1   Bits <3:2>     -  Byte Length Field. 

                                            00 = Byte

                                            01 = Word

                                            10 = Tribyte

                                            11 = Longword, if PCI byte address <1:0> = 00 and 

                                                    PCI address space <1:0> = 01, 10, or 11

                                            11 = Quadword, if PCI byte address <1:0> = 11 and 

                                                    PCI address space <1:0> = 01, 10, or 11

Cycle 1   Bits <1:0>     -  PCI Address Space Field <1:0>

                                             00 = Dense PCI Memory Space

                                             01 = Sparse PCI Memoy Space

                                             10 = Sparse PCI I/O Space

                                             11 = Sparse PCI Configuration Space



Cycle 2   Bits <31:27>  -  Zero or the Memory Space Hardware Extension field of

                                             the PCIx CTL register 

Cycle 2   Bits <26:0>    -  PCI Byte Aligned Address <26:0>



Cycle 3   Bits <31:0>    -  Data Longword 1 to be written



Cycle 4   Bits <31:0>    -  Data Longword 2 to be written

0 0 VID W 1 1

31 30 29 26 25 15 14 13 12 11 012

Zero Zero SPC

34

LEN

27

HAXR

Data Longword 1

Data Longword 2

1




2




3




4
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Figure A-6 CSR Dense Read Packet

BXB-0598-94

DND <31:0>

* = Clock cycle

PCI Byte Aligned Address <31:0>

Cycle 1   Bits <31:30> - Zero 

Cycle 1   Bit   <29:26> - Virtual ID of TLSB Commanding Node.  Indicates the CPU

                                       that is the source of the transaction.

Cycle 1   Bits <25:15> -  Zero

Cycle 1   Bit   <14>      -  Read/Write bit.  0 is a Read.

Cycle 1   Bits <13:12> -  11,  Indicates this is a CSR command.

Cycle 1   Bits <11:4>   -  Zero

Cycle 1   Bits <3:2>     -  Byte Length Field.  Not used during dense reads.

Cycle 1   Bits <1:0>     -  PCI Address Space Field <1:0>

                                                             00 = Dense PCI Memory Space

                                                             01 = Sparse PCI Memoy Space

                                                             10 = Sparse PCI I/O Space

                                                             11 = Sparse PCI Configuration Space



Cycle 2   Bits <31:0>   -  PCI Byte Aligned Address <31:0>

0 0 VID W 1 1

31 30 29 26 25 15 14 13 12 11 012

Zero Zero SPC

34

LEN
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Figure A-7 CSR Dense Write Packet

BXB-0597-94

DND <31:0>

1*




2




3




4




5








10




11

* = Clock cycle

PCI Byte Aligned Address <31:0>

Byte Mask Bits <31:0>

LWDATA 7<31:0>

LWDATA 8 <31:0>

Cycle 1   Bits <31:30> - Zero 

Cycle 1   Bit   <29:26> - Virtual ID of TLSB Commanding Node.  Indicates the CPU

                                       that is the source of the transaction.

Cycle 1   Bits <25:15> -  Zero

Cycle 1   Bit   <14>      -  Read/Write bit.  1 is a Write.

Cycle 1   Bits <13:12> -  11,  Indicates this is a CSR command.

Cycle 1   Bits <11:4>   -  Zero

Cycle 1   Bits <3:2>     -  Byte Length Field.  Not used during dense writes.

Cycle 1   Bits <1:0>     -  PCI Address Space Field <1:0>

                                                             00 = Dense PCI Memory Space

                                                             01 = Sparse PCI Memoy Space

                                                             10 = Sparse PCI I/O Space

                                                             11 = Sparse PCI Configuration Space



Cycle 2   Bits <31:0>   -  PCI Byte Aligned Address <31:0>



Cycle 3   Bits <31:0>   -  Byte mask<31:0>.  If bit is set, byte is written.

                                                                      If bit is clear, byte is masked.



Cycles 4 - 11   Bits <31:0>  -  Data longwords 1-8 to be written.

LWDATA 1 <31:0>

0 0 VID W 1 1

31 30 29 26 25 15 14 13 12 11 012

Zero Zero SPC

LWDATA 2 <31:0>

34

LEN
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A.2  Up Hose Packets

Figure A-8 DMA Read Packet

Figure A-9 IREAD Packet

31 24 23 11 10 08 7

TAG<7:0> 0 LEN ADR <39:32>

BXB-0592-94

ADR <31:0>

3 0

0 0 1

UPD <31:0> UPCTL

x x x x

1*



2

* = hose cycle


 0

UPCTL <3:0> = 0001



Cycle 1   Bits <31:24> - Tag <7:0>.  HPC ID is inserted as tag on all DMA read transactions.

Cycle 1   Bits <23:11> - Zero

Cycle 1   Bits <10:8>   - DMA length code <2:0>.  Hexword and Double Hexwords supported

                                                                               000 = Hexword

                                                                               100 = Double Hexword

Cycle 1   Bits <7:0>    - DMA address bits <39:32>



Cycle 2   Bits <31:0>  - DMA address bits <31:0>

31 24 23 11 10 08 7

TAG<7:0> 0 LEN ADR <39:32>

BXB-0593-94

ADR <31:0>

3 0

0 0 1

UPD <31:0> UPCTL

x x x x

1*



2

* = hose cycle




UPCTL <3:0> = 0010



Cycle 1   Bits <31:24> - Tag <7:0>.  HPC ID is inserted as tag on all IRead transactions.

Cycle 1   Bits <23:11> - Zero

Cycle 1   Bits <10:8>   - DMA length code <2:0>.  Only Octaword supported

                                                                               011 = Octaword

Cycle 1   Bits <7:0>    - DMA address bits <39:32>



Cycle 2   Bits <31:0>  - DMA address bits <31:0>

0
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Figure A-10 DMA Write Mask Packet

31 24 23 11 10 08 7

xxxx 0 0 0 0 0 0 0 0 0 0 0 0 LEN ADR <39:32>

UPD<31:0>

1*




2




3




4






17




18

* = Clock cycle

LWDATA1 <31:0>

LWDATA2 <31:0>

LWDATA15 <31:0>

LWDATA16 <31:0>

0

ADDRESS <31:0>

3 0

0 1 1 1

UPCTL

x x x x

M<3:0>

M<3:0>

M<3:0>

M<3:0>



Cycle 1  UPCTL <3:0> = 0111

BXB-0594-94

Cycle 1   Bits <31:24> - Tag <7:0>.  HPC ID is inserted as tag on all DMA write transactions.

Cycle 1   Bits <23:11> - Zero

Cycle 1   Bits <10:8>   - DMA length code <2:0>.  Octaword, Hexword, and Double Hexwords 

                                                                               011 = Octaword

                                                                               000 = Hexword

                                                                               100 = Double Hexword

Cycle 1   Bits <7:0>    - DMA address bits <39:32>



Cycle 2   UPCTL <3:0>  =  Don't care

Cycle 2   Bits <31:0>  - DMA address bits <31:0>



Cycle 3 - 18  UPCTL <3:0> = Byte Mask

Cycle 3 - 18  Bits <31:0> - Data longwords 0 - 15 to be written. 
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Figure A-11 DMA Unmasked Write Packet

31 24 23 11 10 08 7

xxxx 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 ADR <39:32>

UPD<31:0>

1*




2




3




4






17




18

* = Clock cycle

LWDATA1 <31:0>

LWDATA2 <31:0>

LWDATA15 <31:0>

LWDATA16 <31:0>

0

ADDRESS <31:0>

3 0

0 1 1

UPCTL

x x x x




Cycle 1  UPCTL <3:0> = 0101

BXB-0595-94

Cycle 1   Bits <31:24> - Tag <7:0>.  HPC ID is inserted as tag on all DMA write transactions.

Cycle 1   Bits <23:11> - Zero

Cycle 1   Bits <10:8>   - DMA length code <2:0>.  Only Double Hexwords supported

                                                                               100 = Double Hexword

Cycle 1   Bits <7:0>    - DMA address bits <39:32>



Cycle 2   UPCTL <3:0>  =  Don't care

Cycle 2   Bits <31:0>  - DMA address bits <31:0>



Cycle 3 - 18  UPCTL <3:0> =Don't care

Cycle 3 - 18  Bits <31:0> - Data longwords 0 - 15 to be written. 

0

x x x x

x x x x

x x x x

x x x x
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Figure A-12 Mailbox Status Return Packet

Figure A-13 Interrupt/IDENT Packet

31 0

Return Data <31:0>

BXB-0644a-94

3 0

0 1 0 0

UPD <31:0> UPCTL

x x x x

1*



2



3



4

* = hose cycle

Device-Specific Status <29:0>

Return Data <63:32>

Device-Specific Status <61:30>

DE

12

x x x x

x x x x

Cycle 1   UPCTL <3:0>  =  0100
Cycle 1   Bits <31:0>  - Data Longword 0 read.



Cycle 2   UPCTL <3:0>  =  Don't care

Cycle 2   Bits <31:0>  - Data Longword 1 read



Cycle 3   UPCTL <3:0>  =  Don't care

Cycle 3   Bits <31:2>  - Zero 

Cycle 3   Bit <1>  -  Error bit.  Set if an error occurs during the transaction.

Cycle 3   Bit <0>  -  Done bit.  Set when the mailbox command is completed.



Cycle 4   UPCTL <3:0>  =  Don't care

Cycle 4   Bits <31:0>  -  Zero

31 24 23 16 15 0

xxxx 0 0 0 IPL Vector <15  :0>

BXB-0647a-94

UPD <31:0>

1*




2

* = Clock cycle

0

Don't Care

3 0

1 0 0 0

UPCTL

x x x x

20 19

Cycle 1  UPCTL <3:0> = 1000
Cycle 1   Bits <31> -  PCIA specific bit.

                                  0, if this is a device interrupt.

                                  1, if this is an error interrupt. 

Cycle 1   Bits <30:29>  -  PCIA specific field.  HPC ID<1:0>. 

Cycle 1   Bits <28:24>  -  PICA specific field.  Zero.

Cycle 1   Bits <23:20>  -  Zero 

Cycle 1   Bits <19:16>  -  IPL

Cycle 1   Bits <15:0>    -  Interrupt vector

 

Cycle 2   UPCTL <3:0>  =  Don't care

Cycle 2   Bits <31:0>  -  Zero 
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Figure A-14 CSR Sparse Read Return Packet

VIDE ZERO

BXB-0647b-94

UPD <31:0>

1*




2




3

* = Clock cycle

0

Data Longword 1

3 0

1 1 1 0

UPCTL

x x x x

Cycle 1  UPCTL <3:0> = 1110
Cycle 1   Bits <31>        -  Zero 

Cycle 1   Bits <30>        -  Error bit, set if there is an error during the transaction

Cycle 1   Bits <29:26>   -  Virtual ID of the TLSB commander initiating the transaction

Cycle 1   Bits <26:10>   -  Zero 

Cycle 1   Bits <9:6>       -  Count <3:0> = 0100 for DWLPA and 0110 for DWLPB.  

                                          Indicates the number of transactions the adapter can queue. 

Cycle 1   Bits <5:0>       -  Zero

 

Cycle 2   UPCTL <3:0>  =  Don't care

Cycle 2   Bits <31:0>     -  Data Longword 1 read



Cycle 3   UPCTL <3:0>  =  Don't care

Cycle 3   Bits <31:0>     -  Data Longword 2 read 

31 30 29 26 25 10 9 06 5

CNT ZERO

x x x xData Longword 2
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Figure A-15 CSR Dense Read Return Packet

Figure A-16 CSR Write Status Return Packet

VIDE ZERO

BXB-0647c-94

UPD <31:0>

* = Clock cycle

0

Data Longword 1

3 0

1 1 1 0

UPCTL

x x x x

Cycle 1  UPCTL <3:0> = 1110
Cycle 1   Bits <31>        -  Zero 

Cycle 1   Bits <30>        -  Error bit.  Set if there is an error during the transaction

Cycle 1   Bits <29:26>   -  Virtual ID of the TLSB commander initiating the transaction

Cycle 1   Bits <26:10>   -  Zero 

Cycle 1   Bits <9:6>       -  Count <3:0> = 0100 for DWLPA and 0110 for DWLPB.  

                                          Indicates the number of transactions the adapter can queue. 

Cycle 1   Bits <5:0>       -  Zero

 

Cycle 2 - 9  UPCTL <3:0>  =  Don't care

Cycle 2 - 9  Bits <31:0>     -  Data Longword 1 - 8 read 

31 30 29 26 25 10 9 06 5

CNT ZERO

x x x xData Longword 2

1*




2




3






8




9

Data Longword 7

Dsts Longword 8

x x x x

x x x x

VIDE ZERO

BXB-0647d-94

UPD <31:0>

* = Clock cycle

0

3 0

1 1 0 0

UPCTL

Cycle 1  UPCTL <3:0> = 1110
Cycle 1   Bits <31>        -  Zero 

Cycle 1   Bits <30>        -  Error bit.  Set if there is an error during the transaction

Cycle 1   Bits <29:26>   -  Virtual ID of the TLSB commander initiating the transaction

Cycle 1   Bits <26:10>   -  Zero 

Cycle 1   Bits <9:6>       -  Count <3:0> = 0100 for DWLPA and 0110 for DWLPB.  

                                          Indicates the number of transactions the adapter can queue. 

Cycle 1   Bits <5:0>       -  Zero




31 30 29 26 25 10 9 06 5

CNT ZERO1*
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PCI address parity, 5-4
PCI data parity, 5-4
PCI disconnected master abort, 5-5
PCI incremental latency exceeded, 5-5
PCI nonexistent address, 5-4
PCI SERR_L asserted, 5-5
PCI target abort parity, 5-4
PCI target disconnect, 5-4
PCI write parity, 5-4
Up Hose packet count, 5-6

Error categories, 5-1
Error interrupts, 4-23, 4-25
Error Interrupt Enable bit, 3-23
Error Interrupt in Progress bit, 3-30
Error Interrupt Pending bit, 3-28
Error Interrupt Priority Level bits, 3-23
Error Summary bit, 3-20
ERRVEC register, 3-34
ERRx register, 3-18
Exclusive access, 4-13
Exclusive access support, 4-7

F
FADRx register, 3-21
Failing PCI DMA Address bits, 3-21
Features, 1-1

G
GPRx register, 3-17

H
Hardware Address Extension Disable bit, 3-15
Hardware compatibilty, 1-1
Hexword

reads, 4-6
writes, 4-6

Hose interface, 4-14
Hose interrupt support, 4-23
HPC Gate Array Revision bits, 3-25

I
IACK register, 3-6
IBR register, 3-12
IMASKx register, 3-22
Incremental Latency Exceeded bit, 3-19
Interrrupt status packet, 4-24
Interrupts

bridge, 6-4
EISA, 4-26
PCI, 4-23
vectored, 4-24

Interrupt A Enable bit, 3-24
Interrupt A Pending bit, 3-28
Interrupt B Enable bit, 3-23
Interrupt B Pending bit, 3-28
Interrupt C Enable bit, 3-23
Interrupt C Pending bit, 3-28
Interrupt D Enable bit, 3-23
Interrupt D Pending bit, 3-28
Interrupt in Progress registers, 4-27
Interrupt masking, 4-26
Interrupt Pending registers, 4-27
Interrupt Status Return packet, A-1
Interrupt transactions, 1-7
Interrupt vector offsets, 3-35
Interrupt/IDENT packet, A-11
Invert Down Hose Parity bit, 3-25
IPENDx register, 3-27
IPROGx register, 3-29
IREAD packet, A-8
I/O Port Up Hose Buffers bits, 3-14
I/O space assignment, 2-2
I/O Space Hardware Address Extension bits,

3-15
I/O system block diagram, 1-2

L
Latency timeout, 4-13
Lockout prevention, 6-6
Longword

reads, 4-5
writes, 4-5
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M
Mailbox Comand packet, A-3
Mailbox errors, 5-2
Mailbox Illegal Length Error bit, 3-20
Mailbox parity error, 5-2
Mailbox Parity Error bit, 3-20
Mailbox Status Return packet, A-11
Mailbox transactions, 1-6
Mapping

dense, 2-4
sparse, 2-5

Map RAM address space, 2-13
Map RAM invalid page errors, 4-10
Map RAM logic command, 4-19
Map RAM parity errors, 4-10
Map RAM structure, 4-18
Masking PCI interrupts, 4-26
Master abort, 4-7
Master Retry Limit bits, 3-16
Master timeout, 4-6
MCTL register, 3-11
Memory block boundary, 4-11
Memory Block Size bit, 3-15
Memory locks, 1-2
Memory Read Multiple Arbitration bit, 3-14
Memory read multiple command, 4-8
Memory Read Multiple Enable bit, 3-14
Memory Read Multiple Prefetch Size bit, 3-14
Memory Space Hardware Address Extension

bits, 3-15
Memory space, PCI, 2-4, 2-15
Module Revision bits, 3-8
MRETRYx register, 3-16

P
Packet

CSR Dense Read, A-6
CSR Dense Read Return, A-13
CSR Dense Write, A-7
CSR Sparse Read, A-4
CSR Sparse Read Return, A-12
CSR Sparse Write, A-5
CSR Write Status Return, A-13
DMA Data Return, A-2
DMA Read, A-8
DMA Unmasked Write, A-10
DMA Write Mask, A-9
Interrupt Status Return, A-1
Interrupt/IDENT, A-11
IREAD, A-8
Mailbox Command, A-3
Mailbox Status Return, A-11

PCIA block diagram, 1-5
PCIA description, 1-3
PCIA errors, 5-5

PCIA Illegal CSR Address bit, 3-19
PCIA Information Base Repair Register, 3-12
PCIA interrupts, 4-23
PCIA Interrupt Acknowledge Register, 3-6
PCIA Map RAM Parity Error bit, 3-19
PCIA Module Control Register, 3-11
PCIA physical layout, 1-3
PCIA registers, 3-2
PCIA reserved addresses, 2-13
PCIA Slot Present Register, 3-7
PCIA Special Cycle Register, 3-5
PCIA TBIT Register, 3-9
PCIx Bus Control Register, 3-13
PCIx Diagnostic Register, 3-25
PCIx Error Interrupt Vector Register, 3-34
PCIx Error Summary Register, 3-18
PCIx Failing Address Register, 3-21
PCIx General Purpose Register, 3-17
PCIx Interrupt in Progress Register, 3-29
PCIx Interrupt Mask Register, 3-22
PCIx interrupt Pending Register, 3-27
PCIx Master Retry Limit Register, 3-16
PCIx Transaction Base Register, 3-33
PCIx Window Base Register, 3-32
PCIx Window Mask Register, 3-31
PCI addressing, 1-2, 4-2
PCI address decode, 4-9
PCI Address Parity Error bit, 3-19
PCI Arbitration Control bits, 3-13
PCI bus request, 4-4
PCI commands

CPU-initiated, 4-1
device-initiated, 4-7

PCI configuration errors, 5-6
PCI configuration space, 2-8
PCI Cut-through Enable bit, 3-15
PCI Cut-through Threshold bits, 3-15
PCI cycles

CPU-initiated, 4-1
device-initiated, 4-7

PCI Data Parity Error bit, 3-19
PCI Disconnected Master Abort Error bit, 3-20
PCI errors, 5-4
PCI Force Bad Parity bits, 3-26
PCI interface, 4-1
PCI interrupts, 4-23
PCI I/O space, 2-8
PCI master abort, 4-7
PCI master timeout, 4-6
PCI memory space, 2-4, 2-15
PCI Nonexistent Address Error bit, 3-19
PCI peer-to-peer errors, 5-6
PCI Reset bit, 3-15
PCI SERR_L bit, 3-19
PCI Target Abort Error bit, 3-19
PCI target commands, 4-7
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PCI target disconnect, 4-6
PCI Target Disconnect Error bit, 3-19
PCI to EISA bridge hardware, 4-20
PCI to system bus addressing, 2-13
PCI window mask values, 2-15
PCI Write Parity Error bit, 3-19
PCI-EISA chip functions, 6-3
Physical Page Number bits, 3-36
PRESENT register, 3-7

Q
Quadword reads, 4-5
Quadword writes, 4-6

R
Reads

hexword, 4-6
longword, 4-5
quadward, 4-5

Read data errors, 4-13
Read data transfers, 4-12
Read multiple command, 4-8
Read return buffer, 4-13
Register

PCIA Information Base Repair, 3-12
PCIA Interrupt Acknowledge, 3-6
PCIA Module Control, 3-11
PCIA Slot Present, 3-7
PCIA Special Cycle, 3-5
PCIA TBIT, 3-9
PCIx Bus Control, 3-13
PCIx Diagnostic, 3-25
PCIx Error Interrupt Vector, 3-34
PCIx Error Summary, 3-18
PCIx Failing Address, 3-21
PCIx General Purpose, 3-17
PCIx Interrupt in Progress, 3-29
PCIx Interrupt Mask, 3-22
PCIx interrupt Pending, 3-27
PCIx Master Retry Limit, 3-16
PCIx Transaction Base, 3-33
PCIx Window Base, 3-32
PCIx Window Mask, 3-31

Register list, 3-2
Request queue, 4-4
Reserved addresses, 2-13

S
Scatter/gather cache, 4-9
Scatter/gather capability, 1-1
Scatter/Gather Enable bit, 3-32
Scatter/Gather Map RAM Size bits, 3-14
Scatter/Gather RAM Map Entry Format, 3-36
SCYCLE register, 3-5

Self-test, 1-1
Self-Test Passed LED bit, 3-11
Serial EEPROM, 4-20
Serial EEPROM Clock bit, 3-12
Serial EEPROM Receive Data bit, 3-12
Serial EEPROM Transmit Data bit, 3-12
Slot usage, 6-6
Software compatibilty, 1-1
Sparse mapping, 2-5
Standard I/O Present bit, 3-8
Subsystem block diagram, 6-1
Synchronization, Down Hose to PCI, 4-14
System bus to PCI addressing, 2-2

T
Target disconnect, 4-6
Target latency timeout, 4-13
TBASE_xx register, 3-33
TBIT register, 3-9
TLSB address map, 2-1
TLSB I/O, 1-2
TLSB system addressing, 2-1
Transactions

CPU-initiated, 4-20
CSR, 1-6
DMA, 1-5, 4-21
interrupt, 1-7
mailbox, 1-6

Transaction termination, 4-6
Transfers

masked, 4-4
unmasked, 4-4

Translated Base Address bits, 3-33

U
Up Hose, 4-15
Up Hose arbitration, 4-17
Up Hose commands, 4-15
Up Hose command FIFO, 4-17
Up Hose Force Bad Parity bit, 3-25
Up Hose packets, A-8
Up Hose packet count error, 5-6
Up Hose packet status, 4-16
Up Hose programming, 4-19
Up Hose signals, 4-18

V
Valid bit, 3-36
Vectored interrupts, 4-24

W
WBASE_xx register, 3-32
Window Base Address bits, 3-32
Window Enable bit, 3-32
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Window Mask bits, 3-31
WMASK_xx register, 3-31
Writes

hexword, 4-6
longword, 4-5
quadrword, 4-6

Write data buffers, 4-11
Write data errors, 4-12
Write data transfers, 4-11

X
XBus, 6-1, 6-3


