These instructions describe the procedure for identifying and replacing a failing SIMM on the VAX 7000/10000 or DEC 7000/10000 MS7AA-FA 2-gigabyte memory module.
The MS7AA-FA memory module is the 2-gigabyte memory module for VAX 7000/10000 and DEC 7000/10000 systems. It is populated with 36 64-Mbyte single in-line memory modules (SIMMs). Should a SIMM fail it can be replaced in the field.

These instructions tell how to identify the failing SIMM and how to replace a SIMM.

- Section 1 tells how to identify the failing SIMM from the operating system error log.
- Section 2 tells how to replace the SIMM.
- Section 3 tells how to identify the SIMM from the console level. This information may be needed if the operating system cannot be booted.

NOTE

The part number for the 64-Mbyte SIMM is 54-21718-01. This SIMM can only be used on a 2-Gbyte module.
1 How to Identify a Failing SIMM from an Operating System Error Log

First you must identify the failing SIMM.

1. From the error log, locate the error syndrome (for OpenVMS, see Example 1).
2. Determine if the string is odd or even; is it string 1, 3, 5, or 7, or string 0, 2, 4, or 6?
3. Determine if the memory interface controller (MIC) error is a MIC A or a MIC B error.
4. Find the SIMM number in the matrix of Table 1.

For example, from the OpenVMS AXP error log in Example 1, you see:

- The MS7AA-FA module has an error syndrome 34 (see 1).
- The failing string is 3, which is odd (see 2).
- The MIC is B (see 3).

Therefore, from Table 1 you find 34 in the first column, labeled Syndrome. The string, 3, is odd so you look at the columns labeled Odd. The number under MIC B is J 31, the socket that holds the failing SIMM.

NOTE

The OSF/1 operating system error log will appear in the next version of this document.
Example 1: Sample OpenVMS System Error Report

V M S SYSTEM ERROR REPORT COMPILED 24-JAN-1994 08:28:00

PAGE 23.

******************************* ENTRY 84. *******************************

ERROR SEQUENCE 630. LOGGED ON: CPU_TYPE 00000002
SYSTEM UPTIME: 0 DAYS 16:29:20
SCS NODE: SUVB02 VMS V1.5

HW_MODEL: 00000402 Hardware Model = 1026.

MEMORY ERROR KN7AA DEC 7000 MODEL 620
CRD FLAGS 0000
LOG REASON 0004
RELATED ENTRY 1 OF 1
BAD PAGES 00000000
MEMDSC SIZE 00000020
MEMDSC OFFSET 00000060
NUM OF FPRINTS 00000001
FPRINT SIZE 00000050
FPRINT OFFSET 00000080

MEMORY DESCRIPTOR #1
NODE 00000006
LDEV 00004000
MCR 0000000C
AMR 00000343

MEMORY DESCRIPTOR #2
NODE 00000007
LDEV 00004000
MCR 0000000C
AMR 0000034B

1 FOOTPRINTS IN THIS PACKET

CRD FOOTPRINT #1
FOOTPRINT 0004000D 00000006

Syndrome = 34(X) ①
Bit in Error = 6.
Failing string = 3. ②
MICB error ③
Failing node = 6.
20-JAN-1994 20:18:02.93

SYSTEM TIME
LOW ADDRESS 00000000 0153AE00
HIGH ADDRESS 00000000 115E2600
CUM ADDRESS 00000000 100DF800
SCRUB BLOCKSIZE 00000040
STATIC FLAGS 0001
LOG REASON 0008
CALLER FLAGS 00000000
SCRUB FAIL 00000000
MATCH COUNT 0000000E
SCRUB COUNT 0000000E
LAST SCRUB TIME 21-JAN-1994 08:50:02.93
<table>
<thead>
<tr>
<th>Syndrome</th>
<th>MIC</th>
<th>A</th>
<th>B</th>
<th>MIC</th>
<th>A</th>
<th>B</th>
<th>Syndrome</th>
<th>MIC</th>
<th>A</th>
<th>B</th>
<th>Syndrome</th>
<th>MIC</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>51</td>
<td>J10</td>
<td>J34</td>
<td>J11</td>
<td>J35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>J22</td>
<td>J36</td>
<td>J23</td>
<td>J37</td>
<td>52</td>
<td>J10</td>
<td>J34</td>
<td>J11</td>
<td>J35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>J22</td>
<td>J36</td>
<td>J23</td>
<td>J37</td>
<td>54</td>
<td>J8</td>
<td>J28</td>
<td>J9</td>
<td>J29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>J20</td>
<td>J36</td>
<td>J21</td>
<td>J37</td>
<td>58</td>
<td>J4</td>
<td>J28</td>
<td>J5</td>
<td>J29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>J2</td>
<td>J24</td>
<td>J3</td>
<td>J25</td>
<td>61</td>
<td>J4</td>
<td>J18</td>
<td>J5</td>
<td>J19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>J18</td>
<td>J36</td>
<td>J19</td>
<td>J37</td>
<td>62</td>
<td>J4</td>
<td>J20</td>
<td>J5</td>
<td>J21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0B</td>
<td>J22</td>
<td>J30</td>
<td>J23</td>
<td>J31</td>
<td>64</td>
<td>J4</td>
<td>J20</td>
<td>J5</td>
<td>J21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0D</td>
<td>J2</td>
<td>J24</td>
<td>J3</td>
<td>J25</td>
<td>68</td>
<td>J10</td>
<td>J14</td>
<td>J11</td>
<td>J15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0E</td>
<td>J14</td>
<td>J26</td>
<td>J15</td>
<td>J27</td>
<td>70</td>
<td>J4</td>
<td>J22</td>
<td>J5</td>
<td>J23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>J18</td>
<td>J32</td>
<td>J19</td>
<td>J33</td>
<td>80</td>
<td>J14</td>
<td>J26</td>
<td>J15</td>
<td>J27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>J8</td>
<td>J16</td>
<td>J9</td>
<td>J17</td>
<td>83</td>
<td>J10</td>
<td>J22</td>
<td>J11</td>
<td>J23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>J8</td>
<td>J20</td>
<td>J9</td>
<td>J21</td>
<td>85</td>
<td>J12</td>
<td>J18</td>
<td>J13</td>
<td>J19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>J14</td>
<td>J32</td>
<td>J15</td>
<td>J33</td>
<td>86</td>
<td>J20</td>
<td>J36</td>
<td>J21</td>
<td>J37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>J10</td>
<td>J36</td>
<td>J11</td>
<td>J37</td>
<td>89</td>
<td>J6</td>
<td>J26</td>
<td>J7</td>
<td>J27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A</td>
<td>J10</td>
<td>J26</td>
<td>J11</td>
<td>J27</td>
<td>8A</td>
<td>J12</td>
<td>J26</td>
<td>J13</td>
<td>J27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1C</td>
<td>J8</td>
<td>J16</td>
<td>J9</td>
<td>J17</td>
<td>8C</td>
<td>J6</td>
<td>J22</td>
<td>J7</td>
<td>J23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1F</td>
<td>J24</td>
<td>J32</td>
<td>J25</td>
<td>J33</td>
<td>8F</td>
<td>J18</td>
<td>J34</td>
<td>J19</td>
<td>J35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>J14</td>
<td>J34</td>
<td>J15</td>
<td>J35</td>
<td>91</td>
<td>J6</td>
<td>J28</td>
<td>J7</td>
<td>J29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>J12</td>
<td>J14</td>
<td>J13</td>
<td>J15</td>
<td>92</td>
<td>J10</td>
<td>J28</td>
<td>J11</td>
<td>J29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>J6</td>
<td>J18</td>
<td>J7</td>
<td>J19</td>
<td>94</td>
<td>J2</td>
<td>J28</td>
<td>J3</td>
<td>J29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>J20</td>
<td>J32</td>
<td>J21</td>
<td>J33</td>
<td>98</td>
<td>J8</td>
<td>J30</td>
<td>J9</td>
<td>J31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>J4</td>
<td>J26</td>
<td>J5</td>
<td>J27</td>
<td>A1</td>
<td>J2</td>
<td>J32</td>
<td>J3</td>
<td>J33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2A</td>
<td>J10</td>
<td>J26</td>
<td>J11</td>
<td>J27</td>
<td>A2</td>
<td>J12</td>
<td>J30</td>
<td>J13</td>
<td>J31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2F</td>
<td>J6</td>
<td>J20</td>
<td>J7</td>
<td>J21</td>
<td>A8</td>
<td>J4</td>
<td>J30</td>
<td>J5</td>
<td>J31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>J8</td>
<td>J30</td>
<td>J9</td>
<td>J31</td>
<td>B0</td>
<td>J18</td>
<td>J34</td>
<td>J19</td>
<td>J35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>J6</td>
<td>J30</td>
<td>J7</td>
<td>J31</td>
<td>C1</td>
<td>J20</td>
<td>J32</td>
<td>J21</td>
<td>J33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>J12</td>
<td>J30</td>
<td>J13</td>
<td>J31</td>
<td>C2</td>
<td>J18</td>
<td>J34</td>
<td>J19</td>
<td>J35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>J2</td>
<td>J28</td>
<td>J3</td>
<td>J29</td>
<td>C4</td>
<td>J16</td>
<td>J28</td>
<td>J17</td>
<td>J29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>J14</td>
<td>J30</td>
<td>J15</td>
<td>J31</td>
<td>C8</td>
<td>J16</td>
<td>J28</td>
<td>J17</td>
<td>J29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>J6</td>
<td>J24</td>
<td>J7</td>
<td>J25</td>
<td>D0</td>
<td>J8</td>
<td>J22</td>
<td>J9</td>
<td>J23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>J2</td>
<td>J24</td>
<td>J3</td>
<td>J25</td>
<td>E0</td>
<td>J24</td>
<td>J34</td>
<td>J25</td>
<td>J35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>J16</td>
<td>J36</td>
<td>J17</td>
<td>J37</td>
<td>F1</td>
<td>J2</td>
<td>J16</td>
<td>J3</td>
<td>J17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>J8</td>
<td>J26</td>
<td>J9</td>
<td>J27</td>
<td>F2</td>
<td>J16</td>
<td>J32</td>
<td>J17</td>
<td>J33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4A</td>
<td>J4</td>
<td>J32</td>
<td>J5</td>
<td>J33</td>
<td>F4</td>
<td>J22</td>
<td>J34</td>
<td>J23</td>
<td>J35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4C</td>
<td>J6</td>
<td>J24</td>
<td>J7</td>
<td>J25</td>
<td>F8</td>
<td>J12</td>
<td>J14</td>
<td>J13</td>
<td>J15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4F</td>
<td>J12</td>
<td>J16</td>
<td>J13</td>
<td>J17</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: 2-Gigabyte SIMM Isolation Matrix
2 How to Replace a SIMM

After you have determined the failing SIMM on the memory module, remove the module from the system and follow this procedure.

CAUTION

You must wear an antistatic wrist strap attached to the cabinet when you handle any modules.

1. Remove the cover that shields side 1 of the module by removing the eight small Phillips screws.
2. Determine the location of the failing SIMM from Figure 1.
3. Locate the row of SIMMs on the module that holds the failing SIMM.

Figure 1: SIMM J Connector Numbers
4. Beginning with the SIMM closest to the gate arrays, remove each SIMM up to and including the failing SIMM. To remove a SIMM, release the latches on both ends of the SIMM connector. Insert a #1 Phillips screwdriver as shown in Figure 2, and rotate the screwdriver until the latch releases. Open both latches. Then turn the SIMM at a 45 degree angle toward the gate arrays and pull the card out of the connector.

5. Put the failing SIMM aside for return to the appropriate repair facility.

6. Insert a new SIMM in place of the failing SIMM, angling it into the connector at 45 degrees. Turn it to a vertical position until the latches snap into place. The connector is keyed in the center so that the correct side of the SIMM faces front.

7. Insert the other SIMMs back into their connectors.

8. Replace the module cover.

Figure 2: Removing a SIMM
3 How to Identify a Failing SIMM at Console Level on a DEC 7000/10000

While in console mode, you can determine which SIMM has failed. Example 2 shows a sample console session with the steps to take to identify a failing SIMM.

Example 2: Sample Console Display

1. >>> set mode diag
2. >>> set d_startup on
3. >>> show mem
4. >>> mem_ex -t 1 -sa 1000000 -ea 7ffffffc0
5. >>> CPU:0 Halt Code = 1
6. >>> dep -l ms7aa0:21c0 10000002
7. >>> mem_ex -t 1 -f -sa 60000000 -l 20000000

<table>
<thead>
<tr>
<th>ID</th>
<th>Program</th>
<th>Device</th>
<th>Pass</th>
<th>Hard/Soft Test</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>mem_ex</td>
<td>mem</td>
<td>0</td>
<td>0</td>
<td>20:59:54</td>
</tr>
</tbody>
</table>

```
CPU unexpected exception/interrupt through vector 00000066  
process mem_ex, pcb = 007F0620  
pc: 00000000 000D6B40  ps: 30000000 00000004  
r2: 00000000 0013F8A0  r5: 00000000 00001F04  
r3: 00000000 001ECCA0  r6: 00000000 1FBFFFFD  
r4: 00000000 0000020  r7: FFFFFFFF FFFFFFFF  
```

Listing of GPRs and FPRs:

```
lbesr2: 00000000 0000007F  lbesr3: 00000000 0000007F  
lbecr0: 00000000 03000500  lbecr1: 00000000 000C8040  
  # 03000500 x 20 (hex) = 6 000A000  
lmmr0: 00000000 00000000  lmmr1: 00000000 00000321  
```

Listing of registers:

```
ms7aa0_lber:00000000 00040203  ms7aa0_lbecr0: 00000000 03000500  
ms7aa0_lbecr1:00000000 000C8040  ms7aa0_mera: 00000000 0000C07  
ms7aa0_msynda:00000000 00000FF3  ms7aa0_merb: 00000000 00000007  
ms7aa0_msyndb:00000000 00000FF3  
```

Failing FRU: ms7aa0
Example 2 (Cont.): Sample Console Display

<table>
<thead>
<tr>
<th>ID</th>
<th>Program</th>
<th>Device</th>
<th>Pass</th>
<th>Hard/Soft Test</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>4f</td>
<td>mem_ex</td>
<td>mem</td>
<td>0</td>
<td>0</td>
<td>21:01:29</td>
</tr>
</tbody>
</table>

>>> dep -l ms7aa0:21c0 10000000
>>>
>>> dep -l ms7aa0:2140 ff
>>> dep -l ms7aa0:2440 ff
>>> mem_ex -t 1 -f -sa 60000000 -l 2000000

<table>
<thead>
<tr>
<th>ID</th>
<th>Program</th>
<th>Device</th>
<th>Pass</th>
<th>Hard/Soft Test</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>mem_ex</td>
<td>mem</td>
<td>0</td>
<td>0</td>
<td>21:01:31</td>
</tr>
</tbody>
</table>

>>> ex -l ms7aa0:2140
ms7aa0: 00002140 00000015

ms7aa0: 00002180 00000045

ms7aa0: 00004180 000000F3

ms7aa0: 00002100 03000500

>>>

1. Enter diagnostic mode.
2. Determine the size of physical memory using the **show memory** command.
3. Subtract 40 from the highest memory address to determine the ending address for mem_ex.
4. Run mem_ex test 1 from 16 meg (100 0000) to the top of memory.
5. Multiply the contents of the LBERC0 register by 20 (hex) to get the failing address.
6. Determine the failing memory module, ms7aa0.
7. Disable ECC checking on the failing module.
8. Initialize all of memory on the failing module by running mem_ex test 1 with the -f option on the 32 meg address block that contains the failing address. This will clear the double-bit errors that were generated during memory self-test.
 Starting address = 30 0500 X 20 = 6000 A000 = failing byte address
 ^ from callout 6
 Test address = 6000 0000
 Length = 20 0000
9. Enable ECC checking on the memory module by depositing 1000 0000 into Memory Diagnostic Register A.
10. Clear the error registers on the memory module.
11. Run mem_ex test 1 with the -f option on the 32 meg address block that contains the failing address.
12. Examine Memory Error Register A on the failing memory module to determine the failing syndrome (see Figure 3).
13. Examine Memory Error Syndrome Registers A and B to determine the failing bank.
The contents of Memory Error Syndrome Register A gives the error syndrome.

Examine the Failing Address Register (FADR) on the failing module. Use Table 2 to determine if the failing string is Odd or Even.

The contents of FADR indicates the string.

From this information you can identify the failing SIMM.

For example, from the console display in Example 2, you see:

- The MS7AA-FA module has an error syndrome 45 (see 15).
- The string is even (see 18). From the show mem command (see 17) we know the interleave is 2-way. Using the contents of FADR 16 and Table 2 we know the string is even.
- The MIC is A (see 19) because CERA is set in MERA (see 19 and Figure 3).

Therefore, from Table 1 you find 45 in the first column, labeled Syndrome. The failing string is even so you look at the columns labeled Even. The number under MIC A is J2, the socket that holds the failing SIMM.

Table 2: Using FADR Bit to Determine Odd/Even String

<table>
<thead>
<tr>
<th>No. of 2-Gbyte Modules</th>
<th>Interleave Count</th>
<th>FADR Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>bit 1 (0 = Even string 1 = Odd string)</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>bit 2 (0 = Even string 1 = Odd string)</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>bit 3 (0 = Even string 1 = Odd string)</td>
</tr>
</tbody>
</table>

The interleave count for one 2-Gbyte module with four 512-Mbyte modules is 4. Use FADR bit 2 in this case.
Figure 3: Memory Error Register A

NOTE

For more information about the memory registers, see the MS7AA Memory Technical Manual.